A Deep Split-Step Wavelet Model for the Long-Range Propagation - ENSTA Bretagne - École nationale supérieure de techniques avancées Bretagne
Communication Dans Un Congrès Année : 2024

A Deep Split-Step Wavelet Model for the Long-Range Propagation

Résumé

This article presents a new approach based on a deep-learning method using a U-Net architecture to generate electromagnetic propagation over a specific terrain. For this purpose, the learning dataset is constructed artificially using a fast split-step wavelet (SSW) method. For this phase, the synthetic 1D profiles are randomly generated from rectangle and triangle shapes. This latter allows for conveying the “staircase” model used in SSW. To ensure a precise sampling of the underlying manifold, the study employs Latin Hypercube Sampling. To achieve robust and precise predictions, a specific loss function is proposed. To evaluate this approach, numerical tests are realized. These tests demonstrate the effectiveness of the proposed method in realistic terrain.
Fichier principal
Vignette du fichier
EuCAP2024_template_v2.pdf (335.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04564715 , version 1 (16-07-2024)

Identifiants

Citer

Thomas Bonnafont, Benjamin Chauvel, Abdelmalek Toumi. A Deep Split-Step Wavelet Model for the Long-Range Propagation. 2024 18th European Conference on Antennas and Propagation (EuCAP), Mar 2024, Glasgow, United Kingdom. pp.1-5, ⟨10.23919/EuCAP60739.2024.10501561⟩. ⟨hal-04564715⟩
111 Consultations
32 Téléchargements

Altmetric

Partager

More