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Abstract—This article presents a new approach based on a
deep-learning method using a U-Net architecture to generate
electromagnetic propagation over a specific terrain. For this
purpose, the learning dataset is constructed artificially using a
fast split-step wavelet (SSW) method. For this phase, the synthetic
1D profiles are randomly generated from rectangle and triangle
shapes. This latter allows for conveying the ‘“staircase” model
used in SSW. To ensure a precise sampling of the underlying
manifold, the study employs Latin Hypercube Sampling. To
achieve robust and precise predictions, a specific loss function is
proposed. To evaluate this approach, numerical tests are realized.
These tests demonstrate the effectiveness of the proposed method
in realistic terrain.

Index Terms—electromagnetic propagation, split-step, wavelet,
Deep Learning, U-Net

I. INTRODUCTION

Fast and accurate modeling of electromagnetic (EM) propa-
gation is very important for many applications, such as for the
5G network design or radar coverage prediction. Fast methods
such as the knife-edge model [1] are widely used in this
context to obtain a prediction. Nevertheless, the accuracy of
the latter is low when accounting for real-life terrain. Thus,
more complex models have been proposed, such as the one
based on the surface integral equation [2], or on the parabolic
wave equation [3], [4], [5], or ray-tracing-based models [6],
[7], which trade the computation time for better accuracy.

Recently, machine-learning-based methods have received
a lot more attention from the propagation community [8].
Indeed, the latter introduces a framework that could lead to
achieving near real-time prediction, as a knife edge model,
while keeping a good accuracy. A large part of these models
is based on an artificially created dataset to overcome the cost
of real-life measurements [8], [9], [10].

For example, for indoor propagation, machine learning
methods based on the U-Net [11] architecture have been
introduced and have shown promising results [9], [10]. In
particular, one can cite the Deep Ray model [9], where an
artificially constructed dataset using a ray launching method
has been used for the training.

The context of atmospheric propagation over rural terrain
has also been considered, with artificial data being created with
simple propagation models [12], or one where the machine-
learning is used to accelerate part of the method [13]. Nev-
ertheless, recent models where the data have been created
with an accurate propagation model have shown interesting
results for path loss prediction [10]. In the aforementioned

models, the samples have been created to “look like” real-
life terrain, which leads to accurate results for reliefs with
matching shapes.

In this article, we introduce a machine-learning method that
allows for predicting path loss from an input terrain profile.
The latter is based on a U-Net architecture since it has shown
very good results for other related applications [9], [10]. Here,
the dataset is created using a parabolic wave equation model
solved using the split-step wavelet method [4], [5]. Unlike
previous work, we constructed the 1D terrain profiles using
only rectangle and triangle shapes to convey the underlying
staircase model used in SSW, resulting in a more versatile
framework. The Latin Hypercube Sampling (LHS) [14] is used
for precise sampling of the underlying manifold.

II. THE UNDERLYING MODEL
A. Notation and discretization

From now on, an exp(jwyt) time variation is assumed for
the field, with wy = 27 f; the angular frequency. We work in
the Cartesian coordinate system (x, z) with x the propagation
direction and z the altitude. The refractive index, denoted by
n, is assumed to be slowly varying along the propagation
direction.

The overall computational domain is of maximum range
Tmax and zpyax. Besides, we want to compute the field above
the ground, thus z > 0. Furthermore, we assume the source
is placed at x5 < 0 and that the field is known at x = 0.
Therefore, we have (x,y) € [0, Zmax] X [0, Zmax]-

For numerical reasons, a discretization is performed along
x and z, with respective steps Az and Az. In addition, we
denote by u,[-] the reduced field w at position z discretized
along z.

B. The parabolic wave equation model

The parabolic wave equation (PWE) [3] corresponds to a
reduction of the Helmholtz equation where only the forward
propagation in a paraxial cone is considered. This allows for a
wider mesh size along the propagation direction and efficient
computation. In this work, we use the wide-angle PWE [3]
with 45° validity cone around the z-axis. This latter is given
by
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where u denotes the reduced field [3], and k( the free-space
wave number.

Note that the PWE model is particularly adapted to our goal
since the effect of the refraction, the ground composition, and
the relief can be accounted for.

C. Overview of split-step wavelet

In this section, we briefly introduce split-step wavelet
(SSW) [4], [5], which is an efficient computational scheme
to solve (1).

Indeed, by going back and forth in the wavelet and spatial
domain, SSW efficiently computes the field iteratively. A
propagation step from z to x + Ax is performed as follows

Upiar = RLW T 'PCy. Wy, 2)

where W denotes the discrete wavelet transform (performed
via the fast wavelet transform), Cy, a compression with a
hard-threshold V; operator, P the wavelet-to-wavelet propa-
gator [5], and R and L the operators that account for the
relief and the refraction, respectively. The latter is performed
using a phase-screen [3]. Furthermore, the relief is accounted
for using the staircase model [3]. In addition, P is a sparse
operator that computes the free-space propagation in the
wavelet domain [5]. Finally, the ground composition is taken
into account using the local image method [4].

To conclude this part, SSW allows us to efficiently construct
the artificial data needed for the training of the machine-
learning method. Besides, numerous phenomena can be in-
troduced such as the relief, the ground composition, or the
refraction.

III. DEEP-SSW

In this section, we introduce the proposed machine learning
model, based on a U-Net architecture, that aims at predicting
the path loss for given inputs (such as relief or ground
composition). The latter is then trained with the artificial SSW
dataset, and thus called from here on Deep-SSW. For this
version, only the effect of the terrain is taken into account,
but the framework can be generalized to account for other
phenomena, such as the ground composition or the transmitter
altitude. It should be noted that the input and output are 1D
vectors, but a 2D generalization is the object of a future paper.

A. The deep learning architecture

The objective of the machine-learning model is to approxi-
mate the function f that maps the input physical phenomena,
denoted by ¢, to a path loss prediction y by fg : ¢ +— ¢. The
latter depends on the weights 6 of the network, with |0| the
dimensionality of the network.

Here, ¢ contains terrain data, i.e., the altitude at each
discrete point along z, leading to ¢ € R™=, and thus y € RN=
corresponding to the path loss at the transmitter altitude. The
function f, which would be SSW, allows us to obtain y, the
real path loss, from ¢ such that y = f(¢). Thus, by optimizing
6, we want to obtain § = fy(¢) as close as possible to y,

for a given loss function. This latter is described in detail in
Section III-B.

In this work, a U-Net architecture [11] is used, since it has
shown good results for related topics [9], [10]. The proposed
architecture is shown in Figure 1. It consists of two main
parts: the feature detection, the descending part, and the field
construction, i.e., a regression, the ascending stage.

a) Feature detection: The first part intends to extract
useful features from the input vector. Here, the latter goes
through 5 encoding levels of convolution, batch normalization,
ReLU activation, and sub-sampling to identify the essential
information. In our framework, the convolution kernel is set
to k. To add information without increasing the kernel size,
and the number of parameters to optimize, we use atrous
(or dilated) convolution, as in [9]. It consists of artificially
increasing the kernel window by adding 0O (spacing) between
the weights. The parameter of kernel widening is called
dilation rate and is denoted by dr here. This latter is amplified
throughout the feature detection part to capture details further
away for lower scales, as shown in Figure 1.

b) Field construction: For the second part, the network
aims at constructing the field from the features it has identified
in the first stage. It consists of 5 decoding levels, where
we go from the lowest scale, details about the relief, to
the highest scale through transpose convolution, convolution,
batch normalization, and ReLU activation window. Here the
kernel for the convolution is of size 2. Furthermore, at each
stage of the construction, up-sampling is performed using
copied parts of the skipped connection and the output of the
transpose convolution. At the end a convolution with a size 1
kernel returns the desired path loss prediction.

This architecture reminds us of the SSW method. Indeed,
the operation Cy. W and WP could be seen as the
downward and upward stages. By doing so, we can explain the
number of stages that correspond to the levels of the wavelet
decomposition in SSW.

B. The objective function

Now that the architecture has been introduced, we need to
optimize the weight 6 of the network. To do so we first need
to define the objective loss function.

In the context of regression, two main loss functions are
used. The first one is the mean square error (MSE), or L2-norm
error. Indeed, this has the advantage of leading to accurate
point-to-point descriptors, since the square magnified the out-
liers. Besides, the latter is usually used in the electromagnetic
community as a measure of error. Nonetheless, to have a good
point-to-point accuracy, the output path loss could lose on
smoothness. Therefore, one can think of using the L'-norm,
which leads to smoother models at the cost of point-to-point
accuracy.

In our work, we propose to combine both the previous cost
functions. The proposed empirical risk to minimize is thus
defined as
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Fig. 1. Architecture of the proposed U-Net based network for path loss prediction.

where o € [0,1] and 8 € [0,1] are parameters to adjust
to obtain the maximum of the advantages of both the L!
and L2 loss functions, i.e., a smooth descriptor with good
point-to-point accuracy. Here, we denote by [E the mean value
over the samples ¢. In equation (3), L4 corresponds to the
distribution of the samples, described in Section III-C. Finally,
the problem (3) is solved using a usual Adam optimizer [15]
for the stochastic gradient descent!

C. Data and sampling strategy

In this section, the method used to obtain the distribution
of the samples L4 is described. Ideally, we want the latter
to cover the manifold of the physical phenomena while being
also as little as possible for computational efficiency.

An LHS [14] sampling strategy is used here to ensure good
coverage of the physical phenomena’s manifold. The idea is to
create different obstacles — triangles and/or rectangles — of dif-
ferent heights, widths, and at different positions. This follows
the underlying staircase model used for the terrain ¢ in SSW.
This sampling strategy has the advantage of being versatile
since it can easily be generalized either for introducing more
obstacle shapes or more physical phenomena.

In more detail, we create 1000 samples for terrain con-
taining from 2 to 5 different obstacles, leading to a total
of 4000 equidistributed samples in terms of the number of
obstacles. Focusing on the rural environment, the height’s

ITo accelerate the training procedure, the bias of the last layer is set at first
to the mean value of the field over the samples.

extent of each obstacle is in [0,65] m. Furthermore, the
path loss is computed over 80 km with N, = 1600. Since
supervised training is used, the labels are the true fields, i.e.
u, in dB at the altitude of the transmitter. A sample example,
consisting of the terrain, ¢, and the true field y, is plotted in
Figure 2.
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Fig. 2. Example of a sample for the dataset. The terrain and the corresponding
field (v in dB) are plotted.

Now, to train the network, the dataset needs to be divided
into training and test datasets. Here, we use 80% for the
training and the remaining data (20%) as the test dataset.



IV. NUMERICAL EXPERIMENTS

This section is devoted to numerical simulations. The ob-
jectives are first to optimize the network, then to validate
the training process, and finally to validate and evaluate the
method on real input terrain data.

A. Optimization of the network and training parameters

In this part, we optimize the hyperparameters of our net-
work. In particular, we first focus on setting a and 3 to obtain
the best of the linear combination of the MAE and MSE.
Second, the kernel size k£ of the convolution blocks and the
dilation rate dr are jointly optimized to obtain a good accuracy
while keeping a low training time.

a) Setting o and [3: In this paragraph, we try to optimize
the loss function, i.e. to jointly set o and S to obtain a
smooth estimator with good point-to-point accuracy. To do
so, we train the network with different pair («, 8). Then, we
compute the MSE of the different networks over a dataset
consisting of 200 samples when 6 reliefs are considered, and
also for the propagation over a real-life terrain (obtained from
IGN data [16]). In the first case, all MSEs are of the same
order 0.2 for all the networks, except the one trained with the
MAE, which is at 0.35. In the second case, we plot the MSE
computed for all the pairs in Fig. 3.

Fig. 3. MSE computed for the propagation over a real (IGN data) landform
for different o and 3.

From Fig. 3, one can see that the combination a = 0.4
and 8 = 0.8 leads to the best accuracy in terms of MSE.
Besides, except for some pairs, the network is quite robust
since the error is of the same magnitude. Nonetheless, in the
following, the optimized Deep-SSW corresponds to the one
with (a, 8) = (0.4,0.8).

b) Choosing the kernel size and the dilation rate: Sec-
ond, we focus on finding the best choice in terms of accuracy
and training time for the kernel size and dilation rate for the
convolutions. The same method is used here, i.e. we train
different networks with different pairs and compare them in
terms of MSE. The kernel size varies in k € {3,5, 7}, leading
to 10.8 millions, 15 millions and 19.2 millions of training
parameters for each network, respectively. The dilaration rate

is set to dr € {1,3,6,12,24,48}. The goal is to find the best
duo in terms of both MSE and resource allocation.

First, in Fig. 4, we plot a heatmap of the MSE computed
for the different doublet (k, dr), computed over the 6 obstacles
dataset.

Fig. 4. MSE computed over the 6 obstacles dataset for different & and dr.

In this case, we can see that setting £k = 5 with dr = 12
gives a very good MSE, close to the one for £ = 7. Therefore,
to keep the number of parameters of the network to optimize,
this seems a good choice. To further study the effect of these
parameters, we do the same when computing the propagation
above an IGN data terrain. This leads to the results given in
Fig. 5.

Fig. 5. MSE computed for the propagation over a real (IGN data) landform
for different k and dr.

In this case, the same conclusion holds for the kernel size k,
which can be set to £ = 5. Nonetheless, one can see that for
a more realistic relief, a higher dr is necessary to have a good
accuracy. This result has led us to try to increase the dilation
rate over the different levels of the encoder to introduce more
information while descending, as in [9], [10]. Therefore, we
use an increased dilation rate, which is set at 12 for the first
two layers and 24 for the other layers of the encoder. This
leads to an MSE of 0.2 on the 6 obstacles dataset and 1.01
on the IGN data, which is as expected between the MSE of
a constant dr = 12 and dr = 24, leading to a more versatile
predictor.



B. Test with IGN terrain data

In this section, the proposed Deep-SSW method is tested
with true IGN [16] terrain data. The idea is to see how accurate
the method is for real-life applications. Thus, we compare the
machine-learning algorithm to SSW.

In this test, we compute the field from Paris to Chartres, two
French cities distant by around 80 km and with a usual rural
terrain elevation. Nonetheless, to be in between the altitude
bounds of the LHS sampling, we normalize the IGN profile
to 60 m at most. A staircase model is then applied to the latter.
The terrain and the computed fields with SSW and its Deep
version are plotted in Figure 6. Besides, for Deep-SSW, we
set k = 5 and dr increasing from 12 to 24 through the encoder
stage, as mentioned in the previous section.
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Fig. 6. Propagation from Paris to Chartres computed with both SSW and
Deep-SSW. The Deep-SSW is plotted in orange dotted line. The MSE is also
given in the legend for reference.

As expected, since the data are completely different from the
ones used to train Deep-SSW the MSE = 1.01 has increased,
compared to the validation test of the previous section, but
is still low. Nonetheless, the overall variation of the field has
been well retrieved by the machine-learning method. The main
errors come from the very low and rapidly oscillating extrema
due to the diffraction from the rough part at the beginning.

Finally, the inference time here is below 0.07 s, almost real-
time on a conventional desktop computer, whereas with SSW
it took around 5 s. Therefore, Deep-SSW allows computing an
accurate first glance at the propagation even with real landform
data.

V. CONCLUSION

In this study, we introduced a Deep Split-Step Wavelet
model based on the U-Net architecture, which demonstrated
strong performance even when applied to real-world landform
data.

The main achievement of our work is the elaboration of
a very general framework for the sample generation. Indeed,
using physical insight into the underlying model, a LHS-based
construction of terrain samples has been proposed. The latter

is versatile and can very easily handle the introduction of other
phenomenons or relief shapes. In addition, a U-Net network
with dilated convolution has been proposed to predict the field
at the transmitter altitude. To train the network, a dedicated
loss function has also been introduced. Finally, numerical tests
have shown that the proposed network can be used in place of
the knife-edge method, to obtain more accurate field prediction
in almost real-time.

Nonetheless, some work still needs to be done. We are cur-
rently developing a transfer learning and fine-tuning strategy,
which could involve introducing additional outputs or handling
different terrains with minimal computational expense. Finally,
a generalization to the 2D case, integrating the refraction
effects, will be the object of the future paper.
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