Detection of Mysticete Calls: a Sparse Representation-Based Approach - ENSTA Bretagne - École nationale supérieure de techniques avancées Bretagne Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2017

Detection of Mysticete Calls: a Sparse Representation-Based Approach


This paper presents a methodology for automatically detecting mysticete calls. This methodology relies on sparse representations of these calls combined with a detection metric that explicitly takes into account the possible presence of interfering transient signals. Sparse representations can capture the possible variability observed for some vocalizations and can automatically be learned from the time series of the digitized acoustic signals, without requiring prior transforms such as spectrograms, wavelets or cepstrums. The proposed framework is general and applicable to any mysticete call lying in a linear subspace described by a dictionary-based representation. The potential of the detector is illustrated on North Pacific blue whale D calls extracted from the DCLDE 2015 low frequency database as well as on ``Madagascar'' pygmy blue whale calls extracted from the OHASISBIO 2015 database. Receiver operating characteristic curves (ROC) are calculated and performance is compared with three other methods used for automatic call detection: the XBAT bank of matched spectrograms, a bank of matched filters derived from a generalized likelihood ratio approach and a kernel-based spectrogram detector. On the test data, the ROC curves show that the proposed detector outperforms these three methods.
Fichier principal
Vignette du fichier
RAPPORT_SRD_2017_V1.1 (1).pdf (2.12 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01736178 , version 1 (16-03-2018)
hal-01736178 , version 2 (11-10-2018)


  • HAL Id : hal-01736178 , version 2


François-Xavier Socheleau, Flore Samaran. Detection of Mysticete Calls: a Sparse Representation-Based Approach. [Research Report] RR-2017-04-SC, Dépt. Signal et Communications (Institut Mines-Télécom-IMT Atlantique-UBL); Laboratoire en sciences et technologies de l'information, de la communication et de la connaissance (UMR 6285 - CNRS - IMT Atlantique - Université de Bretagne Occidentale - Université de Bretagne Sud - ENSTA Bretagne - Ecole Nationale d'ingénieurs de Brest); École nationale supérieure de techniques avancées Bretagne. (Ministère de la Défense). 2017. ⟨hal-01736178v2⟩
657 Consultations
230 Téléchargements


Gmail Facebook X LinkedIn More