Estimation d'un mélange de distributions alpha-stables à partir de l'algorithme EM
Résumé
Le modèle Gaussien est souvent utilisé dans de nombreuses applications. Cependant, cette hypothèse est réductrice. Par exemple, il est possible que les données fournies par des capteurs ne soient pas symétriques et/ou présentent une décroissance rapide au niveau de la queue de la distribution. De plus, il est rare que la densité de probabilité représentant les données soit unimodale. Il existe des algorithmes permettant l'estimation d'un mélange de distributions. L'algorithme Espérance-Maximisation (EM) permet entre autre d'estimer un mélange de distributions Gaussiennes. Nous proposons dans ce papier d'étendre l'algorithme EM pour estimer un mélange de distributions α-stables. Un des objectifs futurs de ce papier est d'appliquer la notion de fonctions de croyance continues sachant que les informations fournies par les sources peuvent être modélisées par un mélange de densité de probabilité α-stables.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...