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Abstract

This article proposes a finite volume-based computational
method to simulate a cell’s response to an electrical pulse.
The membrane of the cell and dielectric dispersion is ac-
counted for leading to a Poisson equation with heteroge-
neous jump conditions. To address this, we employ a tai-
lored discrete dual finite volume scheme, ensuring precise
treatment of jump conditions and demonstrating second-
order convergence. Numerical tests are provided in both the
stationary a non-stationary cases to show the effectiveness
of the method.

1 Introduction

The electropermeabilization phenomena [1] occurs when a
sufficient electrical pulse is applied to a biological cell. This
latter, also known as electroporation, allows to open pores
in the cell’s membrane either reversibly or irreversibly. The
state of permeabilization depends on the transmembrane
voltage, i.e. the difference of potentials at the inner and
outer surface of the membrane. This phenomenon has mul-
tiple applications in various domains [1].

This phenomenon has been well-studied experimen-
tally [1], and some clinical tests have been performed [1].
Nonetheless, there is a need for predictive computational
methods to properly adapt the electric field. This model-
ing is challenging. First, we deal with a partial differential
equation with jump conditions on irregular boundaries [2].
Second, the membrane is very thin compared to the compu-
tational domain. Finally, the conductivity of the membrane
is changing with the transmembrane voltage.

Most of the computation schemes are based on the finite el-
ement method [2] or the use of the commercial software
COMSOL [3]. Besides, for the electroporation different
models are used, either based on the Krassowska, Neu et al.
asymptotic equations [4], or the one developed by Leguèbe
et al. [5]. However, in general, the membrane thickness
is not accounted for and an equivalent model of the mem-
brane is used instead. Indeed, the difference in size between
the different media is a burden for finite element schemes.
However, Mescia et al. [6] have shown that the thickness
shall be accounted for.

Recently in [7], we have proposed to use a finite vol-
ume scheme, i.e., the discrete dual finite volume method

(DDFV) [8], to accurately model a cell exposed to an elec-
trical field. In particular, the membrane thickness is taken
into account. Indeed, DDFV allows us to properly take
into account jump conditions at interfaces [8]. Nonetheless,
in [7] we only studied the stationary case.

The aim of this paper is to generalize our previous study [7]
to the nonstationary case while accounting for dispersive
species, as in [3]. To do so, the cell’s model is expressed
as a Poisson equation with jump conditions. The dispersive
nature of the media is introduced through a 1st-order Debye
model, and the model of [5] is used to account for the elec-
troporation of the membrane. This set of equations is then
solved using a tailored DDFV scheme. Numerical results
are shown in both the stationary and non-stationary cases.

2 Model and notations

2.1 Quasi-static electrical model of the cell

We use here the single-shell model, where the cell is de-
scribed by two subdomains, the membrane, denoted by Ωm,
and the cytoplasm, denoted by Ωc, as illustrated in Figure 1.
The exterior media is denoted as Ωe. The interfaces be-
tween each medium are denoted by Γe,m and Γm,c, as pic-
tured in Figure 1. All these media have different dielectric
parameters, denoted by εi and σi for their respective per-
mittivity and conductivity.

Ωe

Ωm

Ωc

Γe,m

Γm,c

Figure 1. Single shell-model of the cell.

First, in this case, the magnetic field can be neglected, lead-
ing to a quasi-static study [3, 5, 6]. Second, since the quan-
tity of interest here is the transmembrane voltage, denoted
by Um, and corresponding to a difference of potential, we
work with the electric potential V .



The electro-quasi-static model accounting for the mem-
brane thickness is then given as

−∇ ·
(

εi
∂∇Vi

∂ t +σi∇Vi

)
= 0(

εm
∂∇Vm

∂ t +σm∇Vm − εe
∂∇Ve

∂ t +σe∇Ve

)
·ne,m = 0(

εc
∂∇Vc

∂ t +σc∇Vc − εm
∂∇Vm

∂ t +σm∇Vm

)
·nm,c = 0

(1)

In this set of equations, εi corresponds to ε0εi,r, and ni,j
to the unit normal directed from media i to j. This latter
is equivalent to the one described in [3], and comes from
rewriting the Maxwell-Gauss relation on the electrical in-
duction using the constitutive relation for linear and dielec-
tric media. Furthermore, the second and third equations
correspond to the transition between each medium. Mixed
boundary conditions, Dirichlet and Neumann, at the bound-
ary of Ωe are also accounted for to complete the model.

To consider dispersive media, as in [3], we use a 1st-order
Debye model, which leads to

τi
∂Pi,disp

∂ t
+Pi,disp = ε0 (εi,r − εi,∞)Ei, (2)

where Pi,disp is the polarization due to dispersive species,
τi corresponds to the relaxation time, εi,r to the static per-
mittivity, and εi,∞ to the high-frequency permittivity of the
medium considered.

2.2 Electroporation model

Now that the electro-quasi-static model of the cell has been
described, we focus on the electroporation model. The elec-
trical pulse induces a change in the membrane conductivity
that is modeled by a non-linear law.

In this article, we rely on the LMSP model [5], because
it allows us to accurately describe the state of the mem-
brane, electroporated or permeabilized. In addition, with
the LMPS model fewer parameters are needed and the func-
tions describing the degree of poration and permeabiliza-
tion are bounded when compared to other models such
as [4], even if the method can also be used with the latter.

In our case, the latter reads as

σm(t,Um) = σm0 +σ1X1(t,Um)+σ2X2(t,Um), (3)

with σm0 the resting conductivity of the membrane, σ1 and
σ2 the conductivity in the porated and permeabilized state,
respectively. In this equation, the functions X1 and X2 de-
scribe the degree of poration and permeabilization of the
cell’s membrane. They are solutions of the two following
ordinary differential equations (ODE)

∂X1
∂ t = β1(Um)−X1

τep
,

∂X2
∂ t = max

(
β2(X1)−X2

τperm
, β2(X1)−X2

τres

)
,

(4)

where τep, τperm, and τres correspond to the characteristic
times of the poration, permeabilization and resealing. Fi-
nally, the functions β1 and β2 are two linearized Heaviside
functions defined as

βi(λ ) =
1+ tanh(ki (|λ |−Ti))

2
, (5)

where ki allows to modify the slope of the functions, and Ti
is the threshold for going from 0 to 1.

3 A finite volume based computational
scheme

3.1 Time discretization of the model

For better readability let us work with the model without
dispersion. Indeed, all can be generalized to the dispersive
case. Here, we use an explicit Euler scheme for the time
derivative, which for equation (1) leads to −∇ · ((εi +∆tσn

i )∇V n
i )= f

((εm +∆tσn
m)∇V n

m − (εe +∆tσe)∇Ve) ·ne,m = σs,e,m
((εc +∆tσc)∇Vc − (εm +∆tσm)∇Vm) ·nm,c = σs,m,c

(6)
where ∆t corresponds to the time step and shall be of order
ε0, while the upper script n denotes the element at t = n∆t.
In addition, f and σs·,· correspond to source terms account-
ing for the previous computed term at t = (n−1)∆t.

Next, the two ODEs (4) are solved using also an explicit
Euler scheme, leading to

Xn
1 = Xn−1

1 +∆t β1(Un
m)−Xn−1

1
τep

Xn
2 = Xn−1

2 +∆t max
(

β2(Xn
1 )−Xn−1

2
τperm

,
β2(Xn

1 )−Xn−1
2

τres

) (7)

For good accuracy the time step shall be lower than
min(τep,τperm,τres)≥ 10−7. Therefore, from the discretiza-
tion of the PDE, we are limited to ∆t of order ε0.

Finally, when dispersion is taken into account, equation (2)
is also solved using an explicit Euler scheme.

3.2 A DDFV based solver

We have thus to solve a Poisson equation with transition
conditions at each time step. Since the jump conditions are
flux ones, we choose to use a finite volume scheme.

Here, we choose to use and adapt the DDFV method [8],
which is a finite volume scheme with a second-order con-
vergence even when a highly distorted mesh is used. It
also allows accounting for jump conditions, and contrary
to usual finite volume schemes, we have a strong conver-
gence of the gradient. Nonetheless, this comes at the cost
of twice as many unknowns.



The computational domain is discretized as follows. First,
we denote by M the primal mesh, corresponding to a non-
overlapping partition of the domain Ω, with K ∈ M the
associated control volumes. Here, a quadrangular grid is
chosen and obtained using the method of Hyman et al. [9] to
create a mesh that follows the physics of the problem. Sec-
ond, the method is based on the use of a dual mesh, denoted
by M ∗, constructed from the primal mesh by considering
the vertices of the primal mesh as the unknowns. The ver-
tices of the dual volume K ∗ ∈M ∗ correspond to the center
of the primal mesh. Finally, both grids are linked through
the diamond mesh, denoted by D . A diamond D ∈ D cor-
responds to the quadrangle defined by xK xK ∗xL xL ∗ , cor-
responding to the center of the volumes K , K ∗, L and
L ∗, respectively, as shown in Figure 2. Next, both the dis-
crete gradient and divergence operators can be introduced
as follows. The first is defined as

∇
DV T =

1
2|D|

((
VxL

−VxK

)
Nν +

(
VxL ∗ −VxK ∗

)
Nν∗

)
,

and the second as

divT
K

(
ξ D

)
=

1
|K | ∑ν∈DK

ξ D ·Nν ,

divT
K ∗

(
ξ D

)
=

1
|K ∗| ∑ν∗∈DK ∗ ξ D ·Nν∗ .

xK

xK ∗

xL

xL ∗

Nν∗,K

Nν∗,LNν

xν

Figure 2. Illustration of a diamond D and of the corre-
sponding half diamonds.

Next, to account for the jump conditions we use the idea of
the technique derived in [8]. Nonetheless, here we have a
source term σs in the jump condition, and we assume that
the jump occurs only between primal control volumes1. To
do so, a new unknown is added, that will be eliminated us-
ing the transition conditions as in [10], and the discretiza-
tion is performed on half diamonds as shown in Figure 2.
The latter are defined as

∇
τK V T = ∇

DV T +
δ

|τK |
Nν ,

∇
τL V T = ∇

DV T − δ

|τL |
Nν ,

where δ is the new unknown to be eliminated [8]. To
achieve that, we use the transition condition and obtain

δ =
1
|ν |

1
εL
|τL | +

εK
|τK |

(
(εL − εK )∇

DV T ·nν +σs,·,·
)
,

1This is not a strict assumption since the mesh is computed to respect
it using the method described in [9]

where σs,·,· is the corresponding surface conductivity. It
shall be noted that adding the surface conductivity only
modify the right hand side.

Finally, the set of equations of (6) is discretized using the
DDFV operators. This leads to

∀K ∈ M , −divT
K

(
εK ∇τK V T

)
= fK ,

∀K ∗ ∈ M ∗, −divT
K ∗

(
εK ∇τK V T + εL ∇τL V T

)
= fK ∗ ,

where f· corresponds to the source term. The system of
linear equations can then be rewritten as

SV T = M f T +Dδ σ
T
s , (8)

where S and M correspond to the associated stiffness and
mass matrix. To conclude, to account for the Dirichlet con-
dition, we use the penalization method, while the Neumann
conditions are intrinsically taken into account.

4 Numerical tests

4.1 The stationary case

We begin by studying the stationary case to show that our
method is robust. The scenario is described in Figure 3,
where a spherical cell is studied. The cell radius is Rd =
0.2 µm, while the membrane thickness is dm = 0.0008 µm.
The electrical parameters are as follows: εe = εc = 80, and
εm = 2. We set V+ = 1 V and V− = −1 V at the left and
ride side of the domain, respectively, and consider homoge-
neous Neumann conditions on the upper and lower bound-
aries of the domain.

Ωm

Ωc

V+ V−
D = 1 µm

εc,σc
εm
σm

Ωe
εe,σe

Figure 3. Numerical setup for the single spherical cell.

In Figure 4, we plot the evolution of the potential along a
horizontal equatorial cut of the cell. In addition, the pre-
dicted value of the potential is also shown.

As expecgted, we observe that the potential decreases with
the same slope in the exterior media and in the cell and more
rapidly in the membrane (Figure 4). Furthermore, these re-
sults are in line with the analytical calculation.

4.2 Cell response to a trapezoidal pulse

Second, we study the cell response to a trapezoidal pulse.
The setup is the same except that the cell’s parameters are
taken from [3], and that V− = 0, and V+ corresponds to the



Figure 4. Potential on an equatorial cut along the cell.

Figure 5. Um at the pole of the cell when no dispersive
(blue) or dispersive (orange) media are accounted for.

applied pulse. The computed transmembrane voltage along
the pole of the cell is plotted in Figure 5.

We observe a consistent behavior: the transmembrane volt-
age increases with the pulse until a threshold and then de-
creases toward an asymptotic value. In the case of nondis-
persive media, we retrieve the same values and the same
behavior as in [2], showing that the method works well. In
the case of dispersive species, as in [3], Um is increasing
more rapidly toward a larger value. Our results are in line
with the literature.

5 Conclusion

In this article, we have extended our work [7], by using and
adapting the DDFV scheme to study the cell’s response to
an electric pulse while accounting for dispersive species.

First, as recommended in [6] the membrane is accounted for
as a whole domain. The dispersive nature of the media is
also introduced through a 1st order Debye model. Second,
a time discretization is applied to the obtained model. For
each time step, this leads to a Poisson equation with het-
erogeneous jump conditions. The latter is efficiently solved
using a modified DDFV scheme.

Numerical experiments, conducted in both stationary and
non-stationary scenarios, attest to the method’s effective-
ness. Further works include the study of diverse cell shape,

as in [6], and of cell aggregate. We also would like to com-
pare results with experimental studies and extend the work
to the 3D case.
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