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On the Relationship Between the Vogler Algorithm Derivation and the Parabolic
Equation for Multiple Knife-Edge Diffraction

Viet-Dung Nguyen, Huy Phan, Oliver Y. Chén, Ali Mansour, Arnaud Coatanhay, and Thierry Marsault

Abstract— We prove the equivalence between the derivation of the

Vogler algorithm and the parabolic equation for multiple knife-edge

diffraction problems under certain conditions. To illustrate the key

ideas, we present two case studies for single and double knife-edge

diffraction, where the proposed results generalize the available results

in the literature. The insight from our proof can serve two purposes:

allowing cross-checking results of the Vogler algorithm and the parabolic

equation; and building the foundation on which new methods for solving

this essential problem and related ones can be developed.

Index Terms— Multiple knife-edge diffraction, parabolic equation,

RF transmission, Vogler method.

I. INTRODUCTION

Multiple knife-edge diffraction is a fundamental problem for

analysis and designing reliable systems in radar and wireless

communication applications [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], especially in the presence of irregular terrain. Generally,

this problem can be formulated and solved in two different ways

by using the Vogler algorithm [1], [2], [3] or solving the parabolic

equation (PE) [4], [8], [9].

The parabolic equation is used as an influential tool to model

electromagnetic propagation, in general, and diffraction, in par-

ticular [4], [8], [9], [12]. The Vogler algorithm, meanwhile, has

proved its outstanding accuracy compared to existing solutions in

the literature [13].

From theoretical aspects, a link between the parabolic equation

and the Fresnel diffraction formula for double knife-edge diffraction

is first established in [4] (see Chapters 2 and 7 as well as references

therein). Shanin and Korolkov [14] showed that the solution of the

parabolic equation for half-plane diffraction is a good estimation of

the exact solution of the Helmholtz equation, thus explaining why

the solution of the parabolic equation works well even close to the

edge of the half-plane. In [15], a system of integral equations in a

spectrum domain is derived from the parabolic equation to tackle

multiple knife-edge diffraction.
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From practical aspects, while the validation of the parabolic

equation method with experiment data is well observed as presented

in [4], [16], [17], and [18] and references therein, there is a lack of

numerical comparison of two approaches as well as its agreement is

not fully understood.

To fill this gap, we present a proof to show that those approaches

are two different solutions of the same problem. This proof is built

on the results of [4] for the double knife-edge model. Specifically,

we generalize the previous results to an arbitrary number of knife

edges, N ≥ 1, where we present the main result in Section II and

two case studies with N = 1 and 2 in Section III. The numerical

comparison and validation are presented in Supplementary Material

with this communication. We note that our actual study focuses on the

analytical derivation aspect from the point of view of the parabolic

equation which is significantly different from [3], [19] that aim to

solve the diffraction integrals efficiently in different setups.

Our proof could bring insights in terms of both theoretical and

practical aspects. We can cross-check the obtained results with two

different methods or provide alternating methods. We could observe

that the result from the Vogler method can play the role of an

independent double-check for that of a parabolic equation, and

vice versa.

Aiming to solve the same equation, the Vogler method provides a

numerical solution based on a complicated “integral form,” while

the main approaches to solving parabolic equations are from a

“differential equation form.” Following [4] and recent surveys [8], [9],

two main approaches for solving parabolic equations numerically are

the split-step-Fourier and finite-difference methods that are expected

to have different characteristics compared to the Vogler algorithm.

In the literature, there are certain statements that connect the parabolic

equation and the Vogler algorithm, for example, see the second

paragraph of Section II in [20]. The result, however, does not apply

to a general case (i.e., implicitly for triple knife-edge diffraction),

and, to the best of our knowledge, there is no explicit theory for

that case. Moreover, the proposed theoretical results here can be

used as additional conditions to develop new methods, for example,

solving multiple knife-edge diffraction by physics-aided machine

learning [21] which has recently attracted significant attention.

II. VOGLER ALGORITHM DERIVATION AND PARABOLIC

EQUATION WITH MULTIPLE KNIFE-EDGE DIFFRACTION

We first give a brief background on the parabolic equation and then

outline the main steps of the proof. Our main contributions are related

to a generalization of the result presented in [4], from N = 1, 2 to

an arbitrary N ≥ 1. We consider the scalar wave [4]

∂2u(x, z)

∂x2
+

∂2u(x, z)

∂z
2

+ 2ik
∂u(x, z)

∂x
+

(

n2(x, z) − 1
)

k2u(x, z) = 0

(1)

where the x-axis defines the range or the paraxial direction and the

z-axis refers to height (see Fig. 1). The refractive index n is a function



Fig. 1. Geometry of multiple knife edges with a point (or punctual) source δ

at a transmitter.

of x and z. The wave and complex numbers are defined as k = 2π/λ

and i = (−1)1/2, respectively. The standard parabolic equation is then

given by

∂2u(x, z)

∂z
2

+ 2ik
∂u(x, z)

∂x
+ k2

(

n2(x, z) − 1
)

u(x, z) = 0. (2)

We note that (2) is achieved by using the first-order approxima-

tion of the forward wave after factorizing (1). If we assume that

the propagation medium is in a vacuum or a relatively homo-

geneous one, that is, n(x, z) ≈ 1, we then can simplify (2) as

follows:

∂2u(x, z)

∂z
2

+ 2ik
∂u(x, z)

∂x
= 0. (3)

Now, we present the main steps of the proof.

1) The closed-form solution of the parabolic equation in vacuum

or a relatively homogeneous medium (see Lemma 1).

2) Derivation of the reduced field multiple knife-edge diffraction

from the parabolic equation (see Theorem 1).

3) Derivation of the multiple knife-edge diffraction from the

Fresnel–Kirchhoff theorem and the equivalence between the

two derivations (see Theorem 2).

Lemma 1: In the case of propagation in vacuum or in a relatively

homogeneous medium where x > 0 and n(x, z) ≈ 1, a closed-form

solution of (3) is given by

u(x, z) =
√

1

λ x
exp

(

−
iπ

4

)

×
+∞
∫

−∞

u(0, v) exp

(

ik(z − v)2

2x

)

dv.

(4)

Proof: See Appendix A.

From Lemma 1, we can observe that the solution of a

given range can be deduced from the initial field u(0, v). This

solution is computed by, first, transforming into the frequency

domain and then returning to the original Cartesian domain.

Here, using the Fourier transform (see Appendix A) simplifies the

computation.

Lemma 2: Considering a small diffraction angle approximation,

the total path length difference of N knife-edges, dN , can be approx-

imated as follows:

dN ≈
N

∑

m=0

(zm+1 − zm)2

2rm+1

(5)

where, by convention, z0 = h0 and zN+1 = hN+1.

Proof: See Appendix B.

It is worth mentioning that Lemma 2 serves not only as an imme-

diate step, but also a specific condition (i.e., small-angle diffraction

approximation) to obtain Theorem 1.

Theorem 1: Given the multiple knife-edge geometry and using

small-angle diffraction approximation, the reduced field u(x, z) at

the receiver is given by

u

(

N+1
∑

m=1

rm, hN+1

)

= constN

+∞
∫

h1

· · ·
+∞
∫

hN

exp(ikdN )dz1 . . . dzN (6)

where constN is a constant.

Proof: See Appendix C.

Theorem 2: Given the multiple knife-edge geometry and the total

path length difference dN in (5), solving a solution of the parabolic

equation in vacuum or a relatively homogeneous medium is equiv-

alent to the computation of the Fresnel–Kirchhoff formulation, that

is, the diffraction attenuation AN between the total field E and the

free-space field E0

AN =
E

E0

=
E(h1, . . . , hN )

E(−∞, . . . ,−∞)
(7)

where

E(h1, . . . , hN ) =
+∞
∫

h1

· · ·
+∞
∫

hN

exp(ikdN )dz1 . . . dzN . (8)

Proof: By applying Theorem 1 and comparing (8) and (6), E is

proportional to u, that is, E ∝ u. Moreover, note that the free-space

field can be computed by setting the lower limits of (6) to −∞
(i.e., h1 = · · · = hN → −∞), we achieve (7). After that, let us

consider multiple knife-edge diffraction geometry presented in Fig. 1.

The Fresnel–Kirchhoff formulation of the field E to the free-space

E0 is given in [2]

AN =
E

E0

=

+∞
∫

h1

· · ·
+∞
∫

hN

exp(ikdN )dz1 . . . dzN

+∞
∫

−∞
· · ·

+∞
∫

−∞
exp(ikdN )dz1 . . . dzN

(9)

where the Huygens’ principle is applied [22], [23] (i.e., we integrate

over each aperture, from hm to ∞). We note that edge currents and

backscatter are disregarded in this derivation. We thus conclude the

proof.

In [1] and [2], Vogler proposed an efficient method, so-called

the recursive Vogler algorithm, to compute the integral (7) directly.

Hereinafter, we only summarize the main steps. The essential idea

is to transform the N -fold integral into N integrals. To obtain a

closed-formed solution, we need to eliminate the cross-product terms

between zm and zm+1 in (5) (or rewrite (5) as the sum of squares)

by changing variables so that we achieve a product of N integrals.

This is possible because the lower limits and the upper limits of (8)

are infinity (see Lemma 3 for a general case). For more details,

see [2] and [3].

Lemma 3: The free-space field E0 is given by

E0 ∝
∫ +∞

−∞
· · ·

∫ +∞

−∞
exp(ikdN )dz1 . . . dzN

=
(√

π
)N

exp











ik
(h0 − hN+1)

2

2
N+1
∑

m=1

rm











(10)

where A ∝ B means that A is proportional to B.

III. CASE STUDIES

To illustrate the main steps, we present here two case studies for

N = 1 and 2. For each case, we found that the result is consistent

and generalizes the existing results in the literature.



A. Case Study 1: Single Knife-Edge Diffraction

When N = 1, we apply Lemma 1 (see also the first part of proof

of Theorem 1 in Appendix C) and obtain

u(r1 + r2, h2) =
1

λ
√

r1(r1 + r2)
exp

(

−
iπ

2

)

×
+∞
∫

h1

exp

(

ik

2

(

(z1 − h0)
2

r1

+
(h2 − z1)

2

r2

))

dz1.

(11)

Thus, the diffraction field, A1, in this case is given by

A1 =
E

E0

=

+∞
∫

h1

exp
(

i π

λ

(

(z1−h0)2

r1
+ (h2−z1)2

r2

))

dz1

+∞
∫

−∞
exp

(

i π

λ

(

(z1−h0)2

r1
+ (h2−z1)2

r2

))

dz1

. (12)

We now consider the integral in the numerator of A1. Notice that

(z1 − h0)
2

r1

+
(h2 − z1)

2

r2

=





√

1

r1

+
1

r2

z1 −

(

h0

r1
+ h2

r2

)

√

1

r1
+ 1

r2





2

+
(h2 − h0)

2

r1 + r2

. (13)

Let

θ1 =
(h1 − h0)

r1

+
h1 − h2

r2

, v1 = θ1

√

2

λ

r1r2

r1 + r2

.

By changing the variable

w =
√

2

λ





√

1

r1

+
1

r2

z1 −

(

h0

r1
+ h2

r2

)

√

1

r1
+ 1

r2





we obtain

dw =
√

2

λ

√

1

r1

+
1

r2

dz1

and w → v1 when z1 → h1 as well as u → ∞ when z1 → ∞. Thus,

we can write the total field E as follows:

E ∝
1

√

2

λ

√

1

r1
+ 1

r2

exp

(

i
π

λ

(h2 − h0)
2

r1 + r2

)

×
+∞
∫

v1

exp

(

1

2
iπw2

)

dw. (14)

The diffraction field thus is computed as

A1 =

+∞
∫

v1

exp
(

iπ w2

2

)

dw

+∞
∫

−∞
exp

(

iπ w2

2

)

dw

=
1

1 + i

+∞
∫

v1

exp

(

iπ
w2

2

)

dw (15)

where we used the fact that
∫ +∞

−∞
exp

(

iπ
w2

2

)

dw = 1 + i.

This is, in fact, the standard form of single knife-edge diffraction.

Moreover, if h0 = h2 = 0, we obtain

v̄1 = h1

√

2

λ

r1 + r2

r1r2

that is, the Fresnel–Kirchhoff parameter (see [13], equation (3.26) in

Chapter 3). We note further that the absolute value of A1 is identical

to that obtained from the Vogler algorithm [1].

B. Case Study 2: Double Knife-Edge Diffraction

When N = 2, following Theorem 1, the field u is given by

u(r1 + r2 + r3, z3) =

√

1

λ (r1 + r2 + r3)
exp

(

−
iπ

4

)

×
+∞
∫

−∞

u(r1 + r2, z2) exp

(

ik(z3 − z2)
2

2r3

)

dz2.

(16)

By using the result from N = 1, we obtain

u(r1 + r2 + r3, z3)

= const2

+∞
∫

h1

+∞
∫

h2

exp

(

ik

2

(

(z1 − h0)
2

r1

+
(z2 − z1)

2

r2

+
(z3 − z2)

2

r3

))

dz1dz2 (17)

where

const2 =
1

λ 3/2

√

1

r1(r1 + r2)(r1 + r2 + r3)
exp

(

−i
3π

4

)

.

Thus, the diffraction field A2 is computed as

A2 =

+∞
∫

h1

+∞
∫

h2

exp
(

ik

2
d2

)

dz1dz2

+∞
∫

−∞

+∞
∫

−∞
exp

(

ik

2
d2

)

dz1dz2

(18)

where

d2 =
(z1 − h0)

2

r1

+
(z2 − z1)

2

r2

+
(z3 − z2)

2

r3

.

We note that d2 can be rewritten as

d2 = v2
1 + v2

2 +
(h3 − h0)

2

(r1 + r2 + r3)

where

v1 =
z1 − h0

µ1

−
µ1(z2 − h0)

r2

v2 =
(z2 − h0)η

µ2

−
µ2(h3 − h0)

ηr3

with

µ1 =
√

r1r2

r1 + r2

, µ2 =
√

r2r3

r2 + r3

, η =

√

r2(r1 + r2 + r3)

(r1 + r2)(r2 + r3)
.

By changing variables,

w1 =
√

2

λ
v1

w2 =
√

2

λ
v2

we obtain

dw1 =
√

2

λ

1

µ1

dz1

dw2 =
√

2

λ

η

µ2

dz2

and

w2 → q =
√

2

λ

(

(h2 − h0)η

µ2

−
µ2(h3 − h0)

ηr3

)



when z2 → h2 as well as

w1 → p =
√

2

λ

(

h1 − h0

µ1

−
µ1(z2 − h0)

r2

)

when z1 → h1. Thus, we can rewrite

E =
λ

2

µ1µ2

η
exp

(

iπ

λ

(

(h3 − h0)
2

(r1 + r2 + r3)

))

×
+∞
∫

p

+∞
∫

q

exp

(

iπ

2

(

w2
1 + w2

2

)

)

dw1dw2. (19)

Thus, A2 can be computed as

A2 =
−i

2

+∞
∫

p

+∞
∫

q

exp

(

iπ

2

(

w2
1 + w2

2

)

)

dw1dw2. (20)

We note that a special case where h0 = h3 = 0 is presented in [4].

This is consistent with the result for double knife-edge diffraction

in [22].

IV. CONCLUSION

We have proved the relationship between the parabolic equation

and the Vogler algorithm derivation for multiple knife-edge diffrac-

tion. By considering a relatively homogeneous propagation medium,

we show that the standard parabolic equation can be simplified to

the parabolic equation of diffraction theory. Then, we have proved

that given a point (or punctual) source at the transmitter, solving this

equation for multiple knife-edge models (N ≥ 1) is equivalent to

the well-known Vogler algorithm derivation. Indeed, two different

methods provide solutions to the same problem. The result of

the established link between the two methods here is useful for

cross-checking in practice and we could use the insight from the

proof to develop new methods for specific problems.

APPENDIX

A. Proof of Lemma 1

Proof: We remind that [4] (see Chapter 2, Section II.4),

F

[

∂2u(x, z)

∂z
2

]

= −4π 2 p2U (x, p),F

[

∂u(x, z)

∂x

]

=
∂U (x, p)

∂x

where F is the Fourier transform and U refers to the Fourier trans-

form of the function u with respect to the variable z. By convention,

the Fourier transform pair is defined as

U (x, p) =
+∞
∫

−∞

u(x, z) exp(−2iπpz)dz, u(x, z)

=
+∞
∫

−∞

U (x, p) exp(2iπzp)dp.

By transforming (3) to the frequency domain, we obtain

−4π2 p2U (x, p) + 2ik
∂U

∂x
(x, p) = 0. (21)

Then, the solution U (x, p) is given by

U (x, p) = exp

(

−
2iπ2 p2

k
x

)

U (0, p) (22)

where we used, in the above, the fact that a solution of the first-order

linear ordinary differential equation ay(x) + by′(x) = 0 has the

following form y(x) = exp(− ax

b
)C0, where C0 is a constant that

depends on initial conditions. We note that since the product in the

frequency domain p is equivalent to the convolution product in the

Fig. 2. Geometry of multiple knife edges with a point (or punctual) source δ

at the transmitter.

space domain z, we can evaluate u(x, z) from U (x, p) by using the

inverse Fourier transform F
−1 and the following identity

F
−1

[

exp

(

−
2iπ 2 p2x

k

)]

=
√

1

λ x
exp

(

−
iπ

4

)

exp

(

ikz
2

2x

)

which can be proved by applying the integral of a Gaussian function:

+∞
∫

−∞

exp
(

−ax2 + bx + c
)

dx =
√

π

a
exp

(

b2

4a
+ c

)

where a = ((2iπ2x)/k), b = 2iπz and c = 0. We thus conclude the

proof.

B. Proof of Lemma 2

Proof: Following the geometry of multiple knife-edge diffraction

and considering two consecutive knife edges m and m + 1, the path

length difference can be written as

d(zm, zm+1) =
√

(zm+1 − zm)2 + r 2
m+1 − rm+1

= rm+1





√

1 +
(

zm+1 − zm

rm+1

)2

− 1





≈
(zm+1 − zm)2

2rm+1

(23)

where we used the Maclaurin series of (1 + x)1/2. By summing

the path length difference of all the segments for m = 0, . . . , N

(by convention, z0 = h0 and zN+1 = hN+1), we then achieve (5).

We thus conclude the proof.

C. Proof of Theorem 1

Proof: Let {zm}N
m=1 be the height variables above {hm}N

m=1,

respectively (see Fig. 2). We assume a point (or punctual) source

at the transmitter, that is, u(x, z) = δ(x)δ(z − h0), where δ is the

Dirac delta function. Following Lemma 1, we compute the field u at

a point (r1, z1), where z1 > h1, as follows:

u(r1, z1) =

√

1

λr1

exp

(

−
iπ

4

)

+∞
∫

−∞

u(0, v) exp

(

ik(z1 − v)2

2r1

)

dv

=

√

1

λr1

exp

(

−
iπ

4

)

exp

(

ik(z1 − h0)
2

2r1

)

(24)



where the second equality is obtained by using the translation

property for the Dirac delta function. As a consequence, we can

calculate the field u at a point (r1 + r2, z2) as (see Fig. 2)

u(r1 + r2, z2) =
1

λ
√

r1(r1 + r2)
exp

(

−
iπ

2

)

×
+∞
∫

h1

exp

(

ik

2

(

(z1 − h0)
2

r1

+
(z2 − z1)

2

r2

))

dz1.

(25)

The lower limit h1 is used here instead of −∞ since u = 0

from −∞ to h1. By applying this procedure successively, that

is, u(r1 + r2 + r3, z3), . . . , u(
∑N+1

m=1 rm, hN+1), we obtain the desired

result (6), where

constN =
1

(√
λ

)N+1√
r1(r1 + r2) · · · (r1 + · · · + rN+1)

× exp

(

−
iπ(N + 1)

4

)

(26)

is the constant related to u(
∑N+1

m=1 rm, hN+1). We note that since this

constant will be canceled out when computing the ratio between u

at the receiver and the corresponding free-space field, we do not

define constN in the statement of Theorem 1. We prove this statement

by induction. We have already shown that it is true for N = 1, 2

in Sections III-A and III-B. We assume that (6) holds for N − 1,

that is,

u

(

N
∑

m=1

rm, hN

)

= constN−1

+∞
∫

h1

· · ·
+∞
∫

hN−1

exp(ikdN−1)dz1 . . . dzN−1.

(27)

Again, by applying Lemma 1, we have

u

(

N+1
∑

m=1

rm, hN+1

)

=
√

√

√

√

1

λ

(

∑N

m=1 rm

) exp

(

−
iπ

4

)

×
+∞
∫

−∞

u

(

N
∑

m=1

rm, zN

)

exp

(

ik(hN1 − zN )2

2hN1

)

dzN

= constN

+∞
∫

h1

· · ·
+∞
∫

hN

exp(ikdN )dz1 . . . dzN . (28)

Thus, the formula (6) holds by induction. Moreover, recall that

AN = (E/E0) where the free-space field E0 can be computed by

setting the lower limits of integral of u to −∞ (i.e., hN
j=1 → −∞),

thus concluding the proof.
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