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Abstract

Class incremental learning consists in training discriminative models to classify an increasing number of classes over time. How-
ever, doing so using only the newly added class data leads to the known problem of catastrophic forgetting of the previous classes.
Recently, dynamic deep learning architectures have been shown to exhibit a better stability-plasticity trade-off by dynamically
adding new feature extractors to the model in order to learn new classes followed by a compression step to scale the model back
to its original size, thus avoiding a growing number of parameters. In this context, we propose a new algorithm that enhances the
compression of previous class knowledge by cutting and mixing patches of previous class samples with the new images during
compression using our Rehearsal-CutMix method. We show that this new data augmentation reduces catastrophic forgetting by
specifically targeting past class information and improving its compression. Extensive experiments performed on the CIFAR and
ImageNet datasets under diverse incremental learning evaluation protocols demonstrate that our approach consistently outperforms
the state-of-the-art . The code will be made available upon publication of our work1.

Keywords: Class incremental learning, Catastrophic forgetting, Rehearsal memory, Knowledge distillation, CutMix, Dynamic
networks, Convolutional neural networks, Deep learning

1. Introduction

In recent years, deep learning has undergone a remarkable
evolution, demonstrating impressive achievements in various
domains [1, 2, 3]. In particular, in the field of visual clas-
sification, convolutional neural networks have been shown to
attain and even exceed human performance [4, 5, 6, 7]. De-
spite reaching human-like performance on specific vision tasks,
however, these models encounter limitations in their ability to
continually learn and adapt to novel concepts [8], a capabil-
ity inherent in human cognition. In fact, this inability to adapt
incrementally poses significant challenges in real-world appli-
cations like face recognition[9, 10], robotics[11, 12] up to au-
tonomous driving [13]. The field of class incremental learning
specifically studies the process of incrementally training a clas-
sification model on newly acquired data to accommodate new
classes or concepts over time. The main challenge in class in-
cremental learning is called catastrophic forgetting and refers
to the tendency of models trained incrementally to forget pre-
viously learned classes when learning new ones, leading to a
degradation in performance on earlier tasks or classes. Con-
stituting an open research problem, this has led to a plurality
of approaches that seek to alleviate its effects. Among them,
memory rehearsal [14, 15, 16, 17, 18, 19, 20, 21] stands out
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1https://github.com/QFerdi/FECIL

as one of the most widely adopted methods. This technique
involves maintaining a fixed-size memory containing a few ex-
emplars from previously learned classes. During model fine-
tuning, this memory is incorporated alongside the new class
data to retain a subset of samples from prior classes within
the dataset, thus preventing complete forgetting. This rehearsal
strategy leads to an initial performance gain that many ap-
proaches [22, 15, 19, 23, 18, 24] seek to extend by combin-
ing it with knowledge distillation so as to further reduce for-
getting. Knowledge distillation consists in transferring ”knowl-
edge” from one model to another, which in incremental learning
translates to transferring knowledge from the previous model to
the one being finetuned on new data. This enables the training
model to preserve knowledge of previous classes while adapt-
ing to new ones, thereby mitigating forgetting.

While effective at reducing forgetting these methods also re-
duce the adaptation of the model and therefore induce a stabil-
ity/plasticity trade-off [25, 20] dilemma between retaining past
classes and adapting to new classes. Recently, a new paradigm
[20, 21, 26] has emerged that proposes to freeze previous fea-
ture extractors and dynamically expand the feature space of the
model by training new extractors during each incremental step.
This novel technique has demonstrated a superior trade-off be-
tween stability and plasticity compared to conventional incre-
mental methods [20]. This performance gain, however, comes
at the cost of an increasing number of network parameters over
time.

To address this issue, a plausible solution involves compress-
ing the model back to its initial size upon the completion of each
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incremental step [21]. This compression training step is done
on the incremental dataset that is biased towards new classes
and therefore impedes the compression of previous class knowl-
edge. To address this limitation, we propose a novel method
termed as Rehearsal-CutMix that is shown to enhance the
compression step. Specifically, the key contributions of this
work can be summarized as follows:

• We present a novel incremental algorithm based on the ex-
pansion/compression paradigm for incremental learning.

• We introduce a new hybrid data augmentation technique
that combines the widely adopted CutMix augmenta-
tion [27] with the rehearsal memory employed in incre-
mental learning as illustrated in 1.

• Through comprehensive experimentation on multiple
datasets and popular incremental evaluation protocols
we demonstrate the effectiveness of this new rehearsal-
CutMix augmentation when used during the compression
step of our algorithm. Furthermore, our method attains the
best performance against the state-of-the-art on all evalua-
tion datasets.

Rehearsal memory

Incremental dataset Samples Training images

Mixup [28]

CutMix [27]

R-CutMix (ours)

Figure 1: Overview of the differences between Mixup [28], CutMix [27], and
our Rehearsal-CutMix procedure. Our method specifically samples one image
from the incremental dataset containing mostly new classes and one image from
the rehearsal memory containing only previous classes before mixing them to-
gether for training.

This work follows up on our previous study [24] that lever-
aged contrastive learning methods to improve the quality of the
features learned incrementally. Going beyond that earlier work,
we take advantage of the improved stability/plasticity trade-off
of dynamic models and enhance the necessary compression step
with a new data augmentation based on the popular CutMix
[27] technique, recognized for its proven efficacy in enhancing
model generalization.

The remainder of the article is organized as follows. In sec-
tion 2 we conduct a comprehensive review of related works in
the class incremental field, providing some context to the dif-
ferent components of our method. In section 3 we then describe
in detail our methodology and the integration of the Rehearsal-
CutMix data augmentation technique to the compression step.

The performance evaluation of our approach is unfolded in sec-
tion 4, where we present experimental results and comparative
analyses across multiple datasets and methods, demonstrating
the superiority of our framework. Finally, section 5 concludes
our work and identifies directions for future investigations.

2. Related works

In this section, we first review the main approaches used
to alleviate catastrophic forgetting during incremental training.
Subsequently, we describe the emerging paradigm that dynam-
ically expands the trained network and has been shown to lead
to better plasticity/stability trade-offs during incremental steps.
Finally, a description of the mixup data-augmentation strategy
and its importance in the context of incremental learning is ex-
plored.

2.1. Conventional methods

Class incremental learning methods aim to train models able
to learn new classes incrementally in a way that controls the
forgetting of previous ones. We refer the interested reader to
the following surveys [29, 30] for a detailed presentation of the
state-of-the-art , allowing us to focus on the main components
in the following paragraphs.

In the past years, numerous methods have been proposed
to alleviate catastrophic forgetting during incremental learn-
ing. Notably, knowledge distillation, initially introduced as a
means to transfer knowledge from a larger teacher model to a
smaller student model [31], found its early application in incre-
mental learning through the method Learning without Forget-
ting(LwF) [32]. By using the probabilistic model output of the
previous incremental step as a soft target for the model being
trained during an incremental step, Li et al. were able to trans-
fer knowledge from previous classes into the model learning
new classes, thus mitigating forgetting.

Subsequent developments instigated by the iCarL
method [14], expanded on this basis by combining it
with a rehearsal memory mechanism to further reduce forget-
ting [22, 15, 18]. This procedure consists in storing the most
representative exemplars of each seen class within a fixed-size
memory in order to be able to jointly replay them with new
data during incremental steps.

This approach posed a novel challenge by inducing an im-
balance in the incremental dataset towards new classes that is
known to be particularly problematic for the training of deep
neural networks [33] and was shown to bias classification to-
wards the most represented classes of the dataset [29]. In
EtEIL [22], the authors proposed fine-tuning the classification
layer on a balanced subset of the training data while DER [20]
trains a new classification layer from scratch on this subset. The
alternative method of rescaling weights of new and past classes
within the biased classification layer has also been explored. In
Bic [15], authors apply an affine rescaling of the weights and
learn its parameters on a balanced validation set. Finally, at-
taining comparable performance, the method WA [18] greatly
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simplified this rebalancing step by simply rescaling the clas-
sification layer based on the norm ratio of past and new class
weights.

2.2. Dynamic models

An emerging concept in incremental learning advocates
freezing the learned weights after each incremental step and
adding new ones for adaptation to new classes. Early ap-
proaches considered using completely different sets of neu-
rons [34, 35] for each incremental step but were inherently
bounded by the network capacity, depleted only after training
on a few incremental tasks.

Towards overcoming this limitation, recent works explored
the addition of new neurons [35] or even new complete fea-
ture extractors incrementally to accommodate new classes [20,
26, 21]. These approaches typically induce a considerable in-
crease in network parameters with each incremental step that
some works try to mitigate with complex pruning-based ap-
proaches [35, 20, 26]. These approaches typically involve train-
ing models with sparsity losses to then be able to prune many
useless neurons from the model in order to reduce significantly
the number of parameters with a minimal loss of performance.
This type of approach mitigates but does not solve completely
the issue of the number of required parameters growing with
the incremental steps and generally requires specific hyper-
parameters depending on the dataset and application to find the
right balance between performance and parameter growth.

The recent method FOSTER [21], however, considered a
concurrent approach making use of the knowledge distillation
loss to compress the dynamic network with added neurons back
to its original size after each incremental step. This compres-
sion necessitates a dedicated training step on the incremental
dataset and therefore faces the typical challenges of incremental
learning such as forgetting of past class information and train-
ing on an imbalanced dataset.

To alleviate the previous shortcoming, in this work we intro-
duce a novel data augmentation based on the popular CutMix
augmentation [27] and designed specifically to improve the dis-
tillation of previous classes during this compression step.

2.3. Mixup-based data augmentation

Mixup [28] is a data augmentation technique that consists in
generating and training on random interpolations between sam-
ples. Despite its simplicity this augmentation has been shown to
improve significantly the generalization of state-of-the-art neu-
ral network architectures. Specifically, training classification
models on interpolations between samples leads to smoother
decision boundaries between classes therefore improving the
generalization of the model.

Recently, many variants of this mixup procedure have been
proposed [27, 36, 37] by changing the method used to mix
different samples and labels. CutMix [27], the main method
considered in this paper, combines Mixup with the Cutout data
augmentation [38] by cropping and mixing patches of different
images instead of interpolating between them. This method of
mixing images together was shown to retain the benefits of both

Cutout and Mixup and further reduce the over-confidence issue
that can arise when training deep neural networks.

Manifold Mixup [36] on the other hand considers interpo-
lations between hidden representations of the samples to learn
class manifolds with less variance to further improve the robust-
ness of models trained in this way. While superior to the base
Mixup augmentation, Manifold Mixup requires two images to
go through the feature extractor part of the network before mix-
ing them to obtain the final training sample and therefore in-
duces an increased training time and gpu memory cost when
training the model.

3. Proposed Method

In this section, we describe in detail our method called Fea-
ture Expansion and enhanced Compression for Incremental
Learning (FECIL). A schema representing the overall pipeline
is shown in Figure 2 while the details of the expansion and
compression stages are explained in sections 3.2 and 3.3 re-
spectively.

3.1. Method overview and problem setting
In the class incremental learning problem that we consider, a

model is trained sequentially for T classification tasks, wherein
each task incorporates a set of Cnew new classes that the model
is required to classify. For each classification task t, a new
dataset Dnew = {X,Y} is considered, where X and Y represent
a set of labeled samples (images in our case) belonging to Cnew

classes that were previously unknown. Our method makes use
of the rehearsal strategy introduced in [14] that stores the most
representative samples of each class using Herding sampling
[39]. These representative samples are stored in a small fixed-
size memory Mt for future incremental training steps which
leads to an augmented training dataset Dt = {Dnew

⋃
Mt} con-

taining a part of all Ct classes including those of the previous
classes.

Each incremental step is split into two training phases. The
first one is the expansion phase where we create and train an
expanded network Φt

big by adding a new feature extractor φt
new

and weights for the new classes in the classification layerH t be-
fore updating the models’ parameters on the new data task. By
freezing the previous feature extractor and training a new one,
it is ensured that no forgetting of previous features happens in
this expansion phase, however the training dataset is still im-
balanced towards new classes, therefore the prominent weight
alignment (WA) technique [18] is used after this training step
to remove the bias from the classification layer.

The resulting dynamic network contains two feature extrac-
tors and one classification layer allowing to classify both new
and past classes. In order to prevent the number of param-
eters from growing after each incremental step, this network
is then compressed into a more compact network Φt that is
then saved for the next incremental step. Knowledge distil-
lation is a technique that has witnessed particular success in
non-incremental scenarios for this kind of network compres-
sion problems [31, 40, 41, 42, 43, 44]. In the context of incre-
mental learning, however, it has been shown by the FOSTER
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Figure 2: Pipeline of the proposed approach. Each incremental step consists of two training phases, first the expansion phase where we dynamically expand Φt−1 to
learn new classes, and second, the phase where we compress the expanded model Φt

big back to its original size with minimal performance drop using our Rehearsal-
CutMix distillation mechanism.

method [21] to struggle with previous classes compression due
to the imbalance of the incremental dataset. We therefore in-
troduce a new data-augmentation scheme based on the CutMix
method that we call Rehearsal-CutMix, specifically designed to
improve the distillation of past classes knowledge in this com-
pression step. Finally, similarly to our expansion step, any bias
resulting from the dataset imbalance is removed from the clas-
sification layer with the WA technique after this training step.

Upon compression of Φt
big into Φt, Φt

big is then discarded
and only Φt is retained and used in the next incremental step,
which ensures the model size does not grow with the incremen-
tal steps.

3.2. Feature expansion
This phase bears similarities with the one introduced in DER

[20]. At incremental task t, like DER, we create the dynamic
model Φt

big that expands the previous feature space with a new
feature extractor φt

new to accommodate new classes. Unlike
DER, however, our dynamic model does not require all previous
extractors but only two, φt

new and φt−1 thanks to the compression
step we will detail in section 3.3. Both the previous and new
feature extractors are then fed into a new classifierH t

big with Ct

(the total number of old and new categories) outputs.
More specifically, given an input image x from the incremen-

tal dataset Dt, the feature vector ϕ of the model becomes the
concatenation of both feature extractor outputs:

ϕ = {φt−1(x), φt
new(x)} (1)

In order to mitigate the forgetting of past classes, the previ-
ous feature extractor φt−1 as well as the statistics of its batch

normalization layers [45] are frozen for this expansion training
step. On the other hand, in order to encourage the model to
adapt the extracted features to new classes, the weights of φt

new
are initialized with those of φt−1 but optimized along with the
classification layer on the incremental datasetDt.

The feature vector ϕ is then fed into the dense classification
layer H t

big and softmax is applied to the output logits of this
classifier to make the prediction for each class:

pH t
big

(y|x) = Softmax(H t
big(x))

Finally, the weights of the new classifierH t
big corresponding

to the old classes are initiated with those of Ht−1 to retain old
knowledge while the newly added weights are randomly initial-
ized.

Feature adaptation to new classes. During the expansion step,
the model Φt

big is trained on the incremental dataset Dt to clas-
sify correctly both new and old classes by minimizing a cross
entropy loss function :

LH t
big
= −

1
B

B∑
i=1

log(pH t
big

(y = yi|xi)) (2)

where B is the size of the batch of images sampled from Dt, xi

is one image of the batch and yi is its label.
However, training solely with this loss function would lead

the new feature extractor φt
new to learn features that discriminate

between past classes. These features are not only redundant
with those of the feature extractor φt−1 kept frozen but used by
the model, but also tend to over-fit on the memory data, which
negatively impacts performance as demonstrated in [20].
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For this reason we enforce the model to learn discriminating
features only for new classes by employing the auxiliary clas-
sifier H t

a introduced in DER. The features from φt
new are fed

intoH t
a made with Cnew + 1 outputs in order to classify all new

classes and treat all past classes as one category. Initialized ran-
domly, this classifier is then trained with a cross-entropy loss
LH t

a
:

LH t
a
= −

1
B

B∑
i=1

log(pH t
a
(y = ỹi|xi)) (3)

where ỹi is the modified one-hot target vector of size Cnew + 1.
This classifier’s only purpose is to moderate the training of φt

new
and is therefore discarded at the end of the training step.

Our total loss for the expansion training phase therefore be-
comes the following linear combination of the previously ex-
plained losses:

Lexp = LH t
big
+LH t

a

3.3. Feature compression

Upon completion of the feature expansion phase, our model
Φt

big composed of two feature extractors obtains excellent per-
formances, as will be demonstrated in section 4. This perfor-
mance gain comes at the cost of an increased number of param-
eters that we solve by compressing Φt

big back to its original size
while controlling the loss of information.

Specifically, a model Φt composed of only one feature ex-
tractor φt and a classifierH t is initialized with Φt−1 and trained
on Dt with the standard knowledge distillation loss using Φt

big
probability distributions as a soft targets:

qH
t

c (x) =
eoc(x)/τ∑Ct

i=1 eoi(x)/τ

LD(x) =
Ct∑

c=1

−q
H t

big
c (x) log(qH

t

c (x))

(4)

with qH
t

c (x) the softened softmax probability obtained from out-
put node oc of the model, τ a temperature hyper-parameter,

and q
H t

big
c (x) the equivalent softened softmax probability but ob-

tained from the outputs of the big model Φt
big.

Due to the imbalance of Dt, however, such a compression
scheme performs better in new than past classes [21], leading
to a compressed model with poor performances on previous
classes. We therefore devise a new method called Rehearsal-
CutMix to improve the distillation of past classes.

Rehearsal-CutMix. CutMix [27] is a data augmentation strat-
egy building upon the famous Mixup augmentation [28] by
mixing patches of different samples to generate synthetic train-
ing samples. This augmentation has been shown to enhance the
model generalization and robustness and alleviate its overcon-
fidence when making predictions.

Specifically, considering an image x ∈ RW×H×C with W rep-
resenting the width, H the height, and C the number of channels

(3 for RGB images); and its label y from the sampled mini-
batch in onehot format, CutMix generates a training sample
(x̃,ỹ) by cropping and replacing patches of one image xi with
patches of another image x j :

x̃ = M ⊙ xi + (1 −M) ⊙ x j

ỹ = λyi + (1 − λ)y j
(5)

where M ∈ {0, 1}W×H×C represents a binary mask, 1 a similar
mask but filled with ones, and ⊙ is the element-wise multiplica-
tion. The parameter λ controls the ratio of combination between
the two images and is sampled for each generated sample (x̃, ỹ)
from a beta distribution λ ∼ Beta(α, α) defined by the hyper-
parameter α. In order for M to crop a patch of xi and replace it
with a patch of x j according to the ratio parameter λ, a bound-
ing box defined by its center (Cx, Cy) and its size (rw, rh) is
uniformly sampled in the following manner :

Cw ∼ Unif(0,W), rw = W
√

1 − λ

Ch ∼ Unif(0,H), rh = H
√

1 − λ
(6)

Since the area of such a bounding box is rwrh
WH = 1 − λ, filling

M with 0 inside of this box and 1 elsewhere makes λ control
the strength of the combination of both the images (xi, x j) and
labels (yi, y j).

While the original implementation of CutMix considered
mixing samples within the same training mini-batch [27], we
here propose instead to sample xi from the training mini-batch
taken from the incremental datasetDt and x j randomly sampled
from the rehearsal memoryMt. We call this variant Rehearsal-
CutMix or R-CutMix in short.
Dt already containsMt, however, Dt is biased towards new

classes, resulting in mini-batches sampled from it that contain
more images from new than past classes. By taking x j from
a second mini-batch sampled solely from Mt, we ensure the
generated images are either a new class mixed with a previous
class, or two previous classes mixed together which gives three
main benefits for our compression step.

On one hand the benefits of the original CutMix augmenta-
tion are retained, training on mixed images partly cropped im-
proves the model generalization and robustness [28, 38, 27].
On the other hand, specifically in our incremental context, R-
CutMix rebalances the training labels and the overall dataset
towards past classes which reduces the bias that is learned by
the classification layer. Most importantly, it ensures that most
training samples contain information about both new and past
classes which allows the knowledge distillation loss to transfer
better the overall knowledge of the model and especially at the
boundaries between each old and new class.

4. Experiments

This section provides an extensive evaluation of our approach
within three datasets that are widely used in class incremental
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CIFAR-100 B0 CIFAR-100 B50
5 steps 10 steps 20 steps 5 steps 10 stepsMethods

Avg Last Avg Last Avg Last Avg Last Avg Last
Joint Training 80.41 - 81.49 - 81.74 - 79.89 - 79.91 -
iCaRL [14] 71.14 - 65.27 50.74 61.20 43.75 65.06 - 58.59 -
BiC [15] 73.10 - 68.80 53.54 66.48 47.02 66.62 - 60.25 -
WA [18] 72.81 - 69.46 53.78 67.33 47.31 64.01 - 57.86 -
DER [20] 75.55 - 74.64 64.35 73.98 62.55 72.60 - 72.45 -
DER w/o P [20] 76.80 - 75.36 65.22 74.09 62.48 73.21 - 72.81 -
DyTox [46] - - 73.66 60.67 72.27 56.32 - - - -
DyTox+ [46] - - 75.54 62.06 75.04 60.03 - - - -
FOSTER B4 [21] 78.01 68.96 75.74 62.03 73.04 57.3 74.14 66.14 69.82 58.9
FOSTER [21] 77.47 68.68 75.19 62.08 72.36 57.67 74.61 66.36 70.21 59.07
FECIL B4 (ours) 79.16 71.52 78.48 67.31 76.12 61.51 75.48 68.23 71.18 61.3
FECIL (ours) 78.32 69.35 77.49 66.1 75.0 60.41 73.99 66.53 70.07 60.63

Table 1: Results on the CIFAR-100 B0 and B50 benchmarks averaged over three different class orders. The Best and second best methods are displayed respectively
with gray and light gray background color. FOSTER was run with the official released implementation, changing only the backbone architecture to a 18-layers
ResNet (which increases performance) for fair comparison with other methods. Dytox [46] performances are grayed out because it is the only method that cannot
be run with a 18-layer ResNet and instead uses a Vision Transformer.

learning, namely, CIFAR-100, ImageNet-100, and ImageNet-
1000. We first present the details of our implementation and the
hyper-parameters used for our experiments and then compare
the performance of our method against several state-of-the-art
algorithms (see sections 4.2 and 4.3) using popular evaluation
protocols and incremental datasets. Finally, in section 4.4, we
conduct ablation studies so as to assess the contribution of each
component of our method.

4.1. Experimental Setup and Implementation Details

Datasets and protocols. The CIFAR-100 dataset [47] is com-
posed of 32x32 pixel color images representing 100 classes
with 500 training images and 100 evaluation images for each
class. The ImageNet-1000 dataset [4] on the other hand is
a large scale dataset containing 1.2 million training images
and 50,000 validation images representing 1000 different cate-
gories. Lastly, the ImageNet-100 dataset consists of a subset of
the large scale ImageNet-1000 dataset containing only 100 ran-
domly sampled classes. Following standard practice, we val-
idate the proposed method on CIFAR-100 and ImageNet-100
with two widely used [20, 21, 46] protocols :

B0 (base 0) : In this protocol, all the classes of the dataset
are separated equally in 5, 10 or 20 incremental steps and the
model uses a rehearsal memory of 2000 exemplars.

B50 (base 50) : The model is first trained on 50 initial classes,
the remaining 50 classes are then separated equally in 5 or 10
incremental steps and the model is trained with a memory of 20
samples per class in each incremental step.

We compare the top-1 accuracy obtained after the last in-
cremental step as well as the average incremental accuracy as
defined in [14] for all methods trained with these protocols.

For ImageNet-1000, we validate our approach with the pro-
tocol known as ImageNet-1000 B0 [14, 20, 21] that trains the
model on all 1000 classes in 10 incremental steps of 100 classes
using a memory size of 20000 samples. Moreover, following

[21], we report the top-1 and top-5 last step and average incre-
mental accuracies on this protocol.

Implementation details. Our method is implemented in Py-
Torch [48] with the framework PyCIL [49]. Following [20, 46]
we chose the 18-layers ResNet [5] backbone architecture to
evaluate our model on all the considered datasets.

We note that some previous works [14, 15, 18, 21] instead
used a modified 32-layers ResNet [14] for the CIFAR-100
dataset which has been shown in [20] to underestimate their
performance because it cannot achieve competitive results on
CIFAR100 compared with the standard 18-layers ResNet [20].
Authors from [20], re-implemented or used the officially re-
leased implementations when possible for all the baseline meth-
ods [14, 15, 18] to obtain their performances with a standard
18-layers ResNet architecture. We therefore follow [46] and re-
port these published results in our tables, and use the official
FOSTER implementation to compare all methods using a the
same 18-layers ResNet model.

Following standard practice, we used the optimizer SGD
with a momentum of 0.9, a weight decay of 0.0005 and use
a batch size of 128 for CIFAR-100 and 256 for ImageNet. Dur-
ing each training step, our models where trained for 200 epochs,
with a learning rate starting at 0.1 and gradually decaying to
0 with a cosine annealing schedule [50]. Following [21], the
data augmentation applied to training images consists in ran-
dom cropping, horizontal flip, AutoAugment [51], and nor-
malization. For the compression phase we add our rehearsal-
CutMix augmentation, set the beta distribution parameter α to
0.2, and set τ to 2 for the distillation loss. Finally, the exem-
plars stored in rehearsal memory are selected via the Herding
selection strategy [39] following previous works [14].

4.2. Evaluation on CIFAR-100

In order to properly evaluate the effectiveness of our method
we compare it to several state-of-the-art methods including
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Figure 3: Performance evolution on CIFAR-100. The top-1 accuracy (%) is reported after each incremental step. Left is evaluated with 5 steps, middle with 10
steps, and right with 20 steps.

other dynamic network based approaches such as DER [20],
FOSTER [21], and Dytox [46], and several methods that do not
rely on dynamic networks such as iCarL [14], BiC [15], and
WA [18].

DER uses a pruning mechanism to ensure the number of pa-
rameters does not grow too much and DER w/o P denotes the
performance obtained without the pruning part. Our method
and FOSTER, on the other hand, use a compression step instead
and we therefore denote by FECIL B4 and FOSTER B4 the per-
formances obtained before the compression step. Finally, the
method Dytox is the only method that does not use a 18-layers
ResNet model and instead leverage a transformer architecture
with a similar number of parameters that allows them to control
the expansion of parameters during the incremental training.

Table 1 summarizes the main results obtained on the CIFAR-
100 dataset. As can be seen in this table our method surpasses
significantly the other methods in most experimental settings.
When compared to the other expansion and compression-based
method FOSTER, our method generally achieves both a higher
average incremental accuracy and accuracy after the last step,
which demonstrates the effectiveness of our R-mixup compres-
sion step. Particularly under the incremental setting B0 10
steps, our FECIL model surpasses FOSTER by 2.3% points
of accuracy in average and up to 4% in the last incremental
step, demonstrating that our R-CutMix compression scales bet-
ter with the number of incremental steps.

For the B0 benchmark, as can be seen in the figure 3 our
method consistently reaches a higher accuracy than FOSTER
and FOSTER B4 after each incremental steps. In fact, only
DER reaches a slightly higher accuracy in the last few incre-
mental steps of the B0 20 steps protocol, which is to be ex-
pected because DER does not compress the model after each
incremental step and instead considers a growing number of
parameters, thus allowing their performance to scale better for
very high numbers of incremental steps.

Results obtained on the CIFAR-100 B50 protocol are dis-
played in the Table 1, where it can be observed that our method
still surpass other methods in most cases.

There are two main differences between the B0 and B50 pro-
tocols; on the one hand, since half of the dataset is trained ini-
tially, remembering the initial classes is much more important
for the B50 setting. On the other hand, the rehearsal memory is
limited to 20 exemplars per class instead of the total size being
limited to 2000 for the B0 protocol. This low number of sam-
ples stored in memory is especially challenging for our method
as it directly impacts the variability of images sampled by our
R-mixup procedure. For this reason our method does not reach
the performance of DER in the B50 10steps setting but still
outperforms FOSTER, demonstrating the effectiveness of our
compression step even with such a limited amount of samples
stored in memory. Moreover, with the B50 5steps protocol, the
memory grows faster to 2000 samples which positively impacts
the performance of our R-CutMix compression and thus allows
our method to surpasses both FOSTER and DER.

4.3. Evaluation on ImageNet

Table 2 summarizes the main results obtained for all ap-
proaches on the ImageNet-100 and ImageNet-1000 datasets.
Similarly to the results obtained on CIFAR-100 with the B0
protocol, both FECIL B4 and FECIL reach higher average and
last step accuracy than FOSTER B4 and FOSTER demonstrat-
ing the effectiveness of our R-CutMix compression across sev-
eral datasets.

On the ImageNet-100 dataset it can be seen that our method
consistently reaches significantly higher performance than most
other methods on both datasets. Specifically, FECIL B4 and
FECIL outperform FOSTER B4 and FOSTER by 2.24% and
1.85% in terms of average top-1 accuracy and 2.17% and 1.71%
in terms of last step top-1 accuracy.
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ImageNet-100 10 steps ImageNet-1000 10 steps
top-1 top-5 top-1 top-5Methods #Params Avg Last Avg Last #Params Avg Last Avg Last

Joint Training 11.22 - 81.20 - 95.1 11.68 - - - 89.27
iCaRL [14] 11.22 - - 83.6 63.8 11.68 38.4 22.7 63.7 44.0
BiC [15] 11.22 - - 90.6 84.4 11.68 62.73 50.1 83.80 72.70
WA [18] 11.22 - - 91.0 84.1 11.68 65.67 55.60 86.6 81.1
DER w/o P [20] 112.27 77.18 66.70 93.23 87.52 116.89 68.84 60.16 88.17 82.86
DER [20] - 76.12 66.06 92.79 88.38 - 66.73 58.62 87.08 81.89
DyTox [46] 11.01 77.15 69.10 92.04 87.98 11.36 71.29 63.34 88.59 84.49
FOSTER B4 [21] 22.44 76.54 67.08 93.12 88.89 23.36 68.34 58.53 89.18 81.77
FOSTER [21] 11.22 76.22 66.70 93.08 88.56 11.68 68.29 58.16 89.22 81.49
FECIL B4 (ours) 22.44 78.78 69.25 95.34 91.31 23.36 70.05 61.23 91.37 83.19
FECIL (ours) 11.22 78.07 68.41 94.76 90.28 11.68 69.11 60.4 90.18 81.72

Table 2: Results on the ImageNet-100 and ImageNet-1000 B0 benchmarks. We report the average and last top-1 and top-5 accuracy obtained and display the Best
and second best methods respectively with gray and light gray background color.“#Params” corresponds to the number of parameters used by the model at the end
of the incremental training (in millions).

Finally, On the Imagenet-1000 dataset it can be observed that
our method performs better only in terms of top-5 accuracy.
In fact, Dytox reaches significantly higher top-1 performance,
however our method reaches higher average and last step top-1
accuracy than DER w/o P while using approximately 10 times
less parameters due to our compression step.

4.4. Detailed analysis of the method

We further evaluate our method and the contribution of each
specific component by conducting a thorough ablation analy-
sis of our method. These ablation experiments were conducted
on the 10 steps CIFAR-100 B0 benchmark following standard
practice [20].

Specifically, our expansion training step is very similar to the
one exhaustively studied in DER[20] apart from the fact that
it is followed by a compression step. We therefore focus our
analysis on the effectiveness of the different components of our
compression step. Specifically, we first remove completely our
R-CutMix augmentation and perform a naive distillation-based
compression after each incremental step. We then compare the
effect of the addition of both the standard Mixup [28] and Cut-
Mix [27] augmentations. Finally, we replace these augmenta-
tions with the rehearsal-based variant used in our method and
explained in detail in section 3.3.

As can be seen in Table 3, when the standard mixup augmen-
tation is used, the performance attained by our FECIL model af-
ter the last incremental step only goes from 61.59% to 61.81%
while going up to 62.98% with the rehearsal variant. This
demonstrates the benefits of training with mixed images repre-
senting samples partly from old and new classes. Furthermore,
while even the regular CutMix augmentation increases perfor-
mance significantly, the gap between CutMix and R-CutMix is
much larger than between Mixup and R-Mixup. In fact, while
replacing Mixup with R-Mixup improves accuracy reached by
our compressed model by 1.17%, replacing CutMix with R-
CutMix improves the accuracy of the compressed model by
2.88%.

Computational overhead. We further evaluate the overhead in-
duced by our R-CutMix procedure by comparing the average
time taken by each ablation to accomplish 1 epoch of the com-
pression step in the table 3. These times are normalized so that
the fully ablated method that took 6.55 seconds on our com-
puter corresponds to 1x and the increase in percentage is noted
for the different ablations. It can be observed that the training
time overhead induced by the regular mixup and CutMix meth-
ods is negligible, however, it is not the case for the rehearsal
variants. This increase comes from the fact that for every mini-
batch sampled from the dataset a second one is sampled from
the rehearsal memory. These two batches, however, are mixed
and merged back into a singular mini-batch before going into
the model. This prevents any impact on the time needed for
the forward and backward pass and therefore explains why the
training time overhead remains limited.

Figure 4: Evolution of the time necessary for an epoch during 10 incremental
steps on the CIFAR-100 dataset. FOSTER exp and FECIL exp represent the
time per epoch during the expansion phase while FOSTER compress and FE-
CIL compress illustrate the time per epoch of the compression step.
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76.12 63.55 75.07 61.59 1x
✓ 76.89 64.53 75.01 61.81 1.01x

✓ 77.83 66.04 76.19 63.22 1.07x
✓ ✓ 77.48 64.47 76.35 62.98 1.22x

✓ ✓ 78.49 67.31 77.49 66.1 1.24x

Table 3: Ablation of different key components of our method. The average and last step accuracy are reported for each ablation. We also normalize and report the
average time taken by one epoch during the compression step. All experiments were done on the CIFAR-100 B0 10 steps benchmark.

Finally, we compare the training time overhead of our
method against FOSTER and DER w/o pruning with the
CIFAR-100 B0 10 step protocol in figure 4. The times reported
are kept normalized in a similar manner than in table 3 for better
readability. As can be observed, since DER w/o pruning does
not use a compression step, the time necessary for an epoch
drastically increases over the incremental steps. Conversely,
our approach introduces a minor overhead in contrast to FOS-
TER, but one that remains constant over time. This ensures
that the epoch duration of FECIL remains stable throughout in-
cremental training, thus preserving scalability even with a high
number of incremental steps.

5. Conclusion

In this work, we introduce FECIL, a novel two-stage training
procedure for class incremental learning. Our method first pro-
ceeds by expanding the features of the model in order to accom-
modate new classes without forgetting past ones; It then com-
presses it back to its original size in order to keep the model size
fixed over the course of the entire incremental training process.
Specifically, we introduce a Rehearsal-CutMix data augmenta-
tion that mixes training images of new classes with images from
the rehearsal memory so as to greatly improve the distillation of
past classes’ information during the compression step. Exten-
sive experiments were performed on three major incremental
datasets and a variety of evaluation protocols where our method
consistently outperformed other state-of-the-art methods.

While the experiments demonstrated the effectiveness of our
compression step, its performance remains bounded by the ac-
curacy reached in the expansion step. As this expansion step is
done on an imbalanced dataset, we believe there is still room
for further improvements. For example, studying the addition
of other Mixup or CutMix-based data augmentations specifi-
cally designed to reduce the bias learned in this expansion step
could be a promising research direction.
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