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A New Adjustable Localization Operator Method to Compute Local
Stresses and Strains at Notched Bodies under Multiaxial Cyclic

Loading

Ewann Gautiera,∗, Bruno Levieila, Sylvain Callocha, Cédric Doudarda

a2 rue François Verny, ENSTA Bretagne, UMR CNRS 6027, IRDL, F-29200 Brest, France

Abstract

Simplified methods for elastoplastic calculations offer a cost-effective and time-saving solution to
determine the mechanical state at the notch tip of a structure. Recently, a method using an
Adjustable Localization Operator (ALO) has been developed, drawing inspiration from Eshelby’s
inclusion problem. This method has demonstrated its efficiency in addressing various engineering
challenges owing to its robustness and inherent ability to handle multiaxial conditions. This paper
aims to propose an alternative non-linear formulation of the ALO method to improve the accuracy
of mechanical state predictions. To achieve this goal, Buczynski-Glinka’s heuristic, which provides a
non-linear plasticity correction, is expressed within the framework of the ALO method to highlight
the ingredients required for a non-linear plastic correction. Subsequently, the parameters of the
ALO method are adjusted based on these findings. To validate the approach, two cases are studied:
a notched structure under plain strain conditions, and a more complex saddle notched structure
subjected to local multiaxial proportional loadings. In both cases, the non-linear ALO method has
shown a greater capability to reproduce the finite element reference results compared to the linear
version of the method or to energetic methods.

Keywords: Nonlinear plastic correction, Energetic methods, Cyclic plasticity, Confined plasticity,
Neuber’s rule

Nomenclature

σ Stress tensor for an elasto-plastic be-
havior

ε Strain tensor for an elasto-plastic
behavior

εe Elastic strain tensor for elasto-plastic
behavior

εp Plastic strain tensor for elasto-plastic
behavior

Σ Stress tensor for an elastic behavior E Strain tensor for an elastic behavior
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S Deviatoric stress tensor for an elastic
behavior

E Deviatoric strain tensor for an elastic
behavior

dλ Plastic multiplier ENij
Neuber’s energy

s Deviatoric stress tensor for an elasto-
plastic behavior

e Deviatoric strain tensor for an elasto-
plastic behavior

J Deviatoric projector ∆ Difference with a memory point

E Young modulus ν Poisson’s ratio

µ Shear modulus I Identity matrix

LALO Adjustable Localization Operator β Eshelby’s parameter

zij Parameters of the adjustable localiza-
tion operator

δij Kronecker symbol

LBG Buczynski-Glinka operator FBG Buczynski-Glinka tensor

LBG

mod
Modified Buczynski-Glinka operator σVM von Mises equivalent stress

X
i

i-th kinematic hardening Ci Parameter for i-th kinematic hardening

J2 Second invariant of the deviatoric stress
tensor

γi Parameter for i-th kinematic hardening

f Yield surface σy Yield stress

1. Introduction

During service life, industrial parts experience cyclic loads that can lead to fatigue failure. The
presence of concentrated stress areas exacerbates this phenomenon, contributing to the development
of limited scale yielding or confined plasticity. Such cyclic plastic behavior in these specific areas
can cause premature failure, in the Low-Cycle Fatigue domain. Consequently, accurately knowing
the stress state is crucial for determining the appropriate structural dimensions and estimating the
lifespan of these structures.

Although finite element analysis (FEA) is suitable for performing elastic calculations on struc-
tures, it may not be the optimal approach for studying confined plasticity. This is mainly due
to the considerable computational cost associated with simulating each cycle by considering the
elastoplastic behavior at critical locations in the structure. Additionally, a significant number of
cycles needs to be simulated to achieve a stabilized behavior, further adding to the computational
cost. Consequently, several alternative methods have been proposed to estimate the stress state
[1–22] for various application [23–30].

Among the various methods proposed, two distinct approaches that specifically focus on the
stress and strain state at critical points have gained particular interest: energetic methods [1, 4]
and more recently, methods based on an adjustable localization operator (ALO) [31–33]. Figure 1
illustrates these two types of methods. By using elastic calculations, these methods allow for the
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implementation of plastic corrections to determine the elastoplastic behavior at critical points of
structural parts.

Figure 1: Diagram of energetic méthods and ALO methods with Σ and E the stress and strain tensor for an elastic

simulation, σ and ε the stress and strain tensor for an elastoplastic simulation, LALO the adjustable localization

operator, and S, E, s and e the deviatoric parts of the previous tensors.

In 1961, Neuber [1] established that the energy density remains independent of plastic flow,
making it equivalent for both elastic and elastoplastic behavior. This rule was initially demonstrated
in the case of shear force applied to a prism. However, Neuber’s rule is limited to uniaxial loading
conditions and cannot be directly extended to cases involving multiaxial loading. For instance, when
considering an axisymmetric notched specimen, a total of nine variables are required to describe
the material state in the principal stress and strain space at the critical point on its surface. These
variables are listed in table 1.

Table 1: Variables of the confined plasticity problem

Definition of variables

Stress tensor variables σ11, σ22, σ33

Strain tensor variables ε11, ε22, ε33

Plastic strain tensor variables εp11, εp22, εp33

Therefore, solving this multiaxial problem requires nine equations. However, only seven equa-
tions are commonly available (table 2) and even with Neuber’s rule providing an additional equation,
one equation is still missing. Consequently, several studies have proposed different heuristics to ex-
tend the application of Neuber’s rule to a more general case, specifically for multiaxial stress states
[34–39]. Amongst these proposals, Buczynski-Glinka [38] introduced an original heuristic that ap-
plies Neuber’s concept to each component of the stress and strain tensors using their deviators.
This solution provides a specific multiaxial formalism for Neuber’s rule.
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Table 2: Equations available with Neuber’s methods for confined plasticity problem

Name Number of equations Equations

Hooke’s law 3 σ = C : (ε− εp)

Plastic flow 3 ε̇p = f(σ, εp, σ̇)

Boundary condition 1 σ11 = 0
(with e⃗1 being the normal)

More recently, a method based on an adjustable localization operator has been developed, as-
suming that under the limited scale yielding assumption, the confined plasticity zone behaves as
an elastoplastic inclusion in an elastic matrix. Different strategies for identifying the operator
have been detailed in the literature [31–33]. The formalism of the adjustable localization operator
is based on the Eshelby tensor, a fourth-order tensor. By drawing an analogy with the Kröner-
Eshelby inclusion problem [40, 41] and with some simplifications and assumptions (detailed later
in the paper), there is only five parameters left to be determined [33, 42].

Several studies have highlighted the effectiveness of these methods in determining the stress
state at critical points. These studies have been conducted on welded joints [43], notched struc-
tures under different load ratios [44], various residual stress states [45], and for multiaxial and
non-proportional loadings [33]. The method has also been extended to materials with anisotropic
yield surfaces [46]. Fatigue lives, as well as predicted stress and strain stabilized states, have been
determined and compared with experimental data and finite element predictions, validating their
reliability and accuracy.

This method is inherently multiaxial, and its formalism enables efficient numerical integration.
Furthermore, this method can be effectively combined with Darlet’s multiaxial heuristic [32, 42],
as demonstrated in previous studies [33, 42], which is essential for the evolution of the stress ratio.
However, it is important to acknowledge a limitation of this method, which lies in its linear plastic
correction, as illustrated in figure 2. The figure showcases the difference between the von Mises
equivalent stress obtained from elastic simulation and elastoplastic simulation for a 2D notched
specimen under plane stress conditions. Although the adjustable localization operator method
provides accurate predictions [33], the plastic correction exhibits a linear evolution, contrasting
with the non-linear behavior observed for finite element analysis and Neuber’s rule.
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Figure 2: Evolution of the difference between the von Mises equivalent stress from the elastic simulation and the
elastoplastic simulation

The objective of this study is to justify a new structure of the adjustable localization operator by
engaging in a dialogue with an energetic method. This connection aims to showcase the feasibility
of introducing a novel operator that can provide a non-linear plastic correction, thereby reducing
the error when compared to finite element analysis.

The paper is divided into four sections. The first section describes the Buczynski-Glinka heuris-
tic and highlights its differences from Neuber’s rule. In the second section, the parameters of the
adjustable localization operator are determined rewriting the Buczynski-Glinka energetic approach
in a similar form. The third section introduces an original adjustable localization operator which
possesses parameters that are not constants. This achievement is made possible by leveraging the
insights provided by the Buczynski-Glinka approach and incorporating Darlet’s multiaxial heuristic.
Finally, this non-linear plastic correction is tested under local proportional multiaxial loadings. The
performance of the method is evaluated by comparing its results with those obtained from finite
element solutions.

2. Energetic methods for local elasto-plastic predictions

2.1. Neuber’s rule and its evolution

As stated in the introduction, nine equations are necessary to determine the three elasto-plastic
tensorial variables in the principal basis (total strain, plastic strain and stress). Classic formulations
provide seven equations sum up in table 2. Neuber’s rule provides an additional equation.

To generalize Neuber’s rule to various configurations, several propositions have been made in
the literature [34–39]. For example, using the second invariant of stress and strain in the deviatoric
space J2

EN = J2(E) J2(Σ) = J2(σ) J2(ε) , (1)

where E and Σ are the variables associated respectively to the strain and stress tensors of an elastic
behavior, and where ε and σ are those assuming an elasto-plastic behavior [1]. The expression of
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the second invariant of stress in the deviatoric space is given by

J2(Σ) =

√
3

2
S : S , (2)

with S the deviatoric stress tensor. The total strain ε is the sum of the elastic and plastic strains
and is written

ε = εe + εp . (3)

It should be noted that, in this paper, the plastic flow is obtained by using the normality rule

dεp = dλ
∂f

∂σ
, (4)

with dλ the plastic multiplier and f the yield surface. Using the modified Voigt notation, the stress
and strain tensors are written in all this article

σ =



σ11

σ22

σ33

σ23

√
2

σ13

√
2

σ12

√
2

 and ε =



ε11
ε22
ε33

ε23
√
2

ε13
√
2

ε12
√
2

 . (5)

However, the equation Eq. 2 is not sufficient to solve the problem completely. As previously
mentioned, in the case of a multiaxial problem solved in the stress principal basis, a ninth equation
is needed. To provide the ninth equation, several propositions have been formulated [34–37, 39].

2.2. Buczynski-Glinka’s heuristic

Buczynski-Glinka’s proposal [38] is completely different, since it involves writing Neuber’s rule
component by component, using the deviatoric strain and stress tensors. Einstein’s convention is
not used. The equation proposed by Buczynski-Glinka is

∀(i, j) ∈ [[1, 3]],∆ENij
= ∆Sij ∆Eij = ∆sij ∆eeij +∆sij ∆epij (6)

where 

E = J : E
S = J : Σ

e = J : ε

s = J : σ

,

and J is the deviatoric projector. The notation ∆ designates the variation of the variables with

respect to a memory point, necessary when using Neuber’s rule for cyclic loading. This memory
point is updated when the loading direction changes, as illustrated in figure 3.
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Figure 3: Definition of the memory point to apply Neuber’s rule for cyclic loading

Since εp is deviatoric, its deviator ep is directly

ep = εp . (7)

The deviatoric formulation of the elastic strain tensor E (using the elastic behavior) is obtained by
writing the isotropic Hooke’s law

E =
1 + ν

E
Σ− ν

E
Tr(Σ) I

=
1 + ν

E
(S +

1

3
Tr(Σ) I)− ν

E
Tr(Σ) I

=
1 + ν

E
S + (

1 + ν

3E
− ν

E
) Tr(Σ) I ,

(8)

where the deviator of the elastic strain is

E =
1 + ν

E
S =

1

2µ
S , (9)

with µ the second Lamé coefficient (shear modulus), E the Young modulus and ν the Poisson’s
ratio. This also applies to the deviatoric elastic strain calculated using an elasto-plastic behavior
that is written

ee =
1 + ν

E
S =

1

2µ
s , (10)

It should be noted, however, that the proposal of this multiaxial heuristic is slightly different from
Neuber’s rule when applied to a case of uniaxial tension in plane stress. Considering direction 2 as
the direction of loading for a tensile test, the Neuber equation is written

Σ22 E22 = σ22 ε22 = σ22 (εe22 + εp22) . (11)

The Buczynski-Glinka equation is given by

S22 E22 = s22 e22 = s22 (ee22 + εp22) . (12)

and can be rewritten in terms of stresses and strains (and not their deviatoric formulations). The
Eq. 12 then becomes

2

3
Σ22

1

2µ

2

3
Σ22 =

2

3
σ22(

1

2µ

2

3
σ22 + εp22) , (13)
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Σ22
2

3

1 + ν

E
Σ22 = σ22

(
2

3

1 + ν

E
σ22 + εp22

)
, (14)

Σ22
2

3
(1 + ν) E22 = σ22

(
2

3
(1 + ν)εe22 + εp22

)
. (15)

The following relationship is then obtained

Σ22 E22 = σ22ε
e
22 + σ22ε

p
22

3

2(1 + ν)
. (16)

The proposed heuristic by Buczynski-Glinka offers an interesting approach as it enables a multiax-
ial formulation of Neuber’s rule. However, there are slight differences between the two approaches,
particularly when the Poisson’s ratio (ν) is not equal to 0.5. In the Buczynski-Glinka approach,
the plastic strain is multiplied by the term 3

2(1+ν) , which sets it apart from Neuber’s rule.

These energetic methods are also interesting as they directly offer a non-linear correction as it
allows for a better description of the mechanical state in some configurations (figure 2).

The ALO method can offer a linear or non-linear correction. So far, the non-linear correction
has only been explored by Herbland [31] and Chouman [47]. However, in their proposition, the
calibration of the operator requires an elasto-plastic finite element model, which is not always avail-
able. In more recent publications [33, 42], only a linear elastic finite element model is required.
However, so far, only a linear correction has been explored. The objective of the rest of the paper is
to rewrite Buczynksi-Glinka proposition in order to link it to the ALO method and thus to propose
a non-linear version of the ALO method.

3. Dialog between Buczynski-Glinka method and ALO methods

The current section firstly introduces the ALO method before to rewrite Buczynski-Glinka
method with a similar formalism. The two methods are then compared to the finite element
reference results on a case study to show their performance and highlight their linear or non-linear
behaviors within the specific plane depicted in figure 2.

3.1. Adjustable Localization Operator formalism

The localization equation used in this ALO method is

dσ = dΣ− LALO : dεp . (17)

where dεp
loc

is the increment of local plastic strain and LALO is the fourth-order operator used to

apply the plastic correction. Considering the direction 1 as the normal to the surface, the strain
and stress tensors are written

σ =


0
σ22

σ33

σ23

√
2

0
0

 and ε =



ε11
ε22
ε33

ε23
√
2

ε13
√
2

ε12
√
2

 . (18)
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The expression of the ALO operator is

LALO =


L1111 L1122 L1133 L1123 L1113 L1112

L2211 L2222 L2233 L2223 L2213 L2212

L3311 L3322 L3333 L3323 L3313 L3312

L2311 L2322 L2333 L2323 L2313 L2312

L1311 L1322 L1333 L1323 L1313 L1312

L1211 L1222 L1233 L1223 L1213 L1212


(e⃗1,e⃗2,e⃗3)

. (19)

As a confined plasticity zone is considered, the following simplifications and assumptions can be
made:

• The free-edge boundary condition with the normal direction e⃗1 ;

• The plastic incompressibility;

• No couplings between shear and normal stress terms.

Consequently, the fourth-order ALO operator can be rewritten as follows

LALO =


0 0 0 0 0 0
0 L2222 L2233 0 0 0
0 L3322 L3333 0 0 0
0 0 0 L2323 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(e⃗1,e⃗2,e⃗3)

, (20)

or

LALO = 2µ(1− β)


0 0 0 0 0 0
0 z22 z23 0 0 0
0 z32 z33 0 0 0
0 0 0 z44 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(e⃗1,e⃗2,e⃗3)

, (21)

where β is the Eshelby’s parameter, µ the shear modulus and z22, z33, z23, z32 and z44 are five
parameters to identify.

The parameters zij are the key parameters to be determined [31, 33, 42]. These parameters
are dependent on the geometry, loading directions, and material properties. In the most recent
version of the method [33], the shape of the confined plasticity zone is also considered to enhance
the predictive capabilities. However, for the purpose of this paper, which focuses on establishing
a dialogue between the ALO method and the Buczynski-Glinka heuristic, the version proposed by
Darlet is more appropriate. As demonstrated in this paper, when the Buczynski-Glinka heuristic
is reformulated using the same formalism as the ALO method, it is observed that z22 and z33 are
equal, as in Darlet’s proposition, which is not the case in the more recent version of the method.

The following two sections aim to introduce a tensorial notation of the Buczynski-Glinka heuris-
tic, resulting in a fourth-order tensor that is similar to the ALO operator.
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3.2. Expression of the components of the stress and strain tensor for Buczynski-Glinka heuristic

To implement the Buczynski-Glinka heuristic in the formalism of an adjustable localization op-
erator as presented above, it is necessary to express each component of the stress tensor dσ

ij
in

function of ds
ij
, the component of the deviatoric stress tensor.

Differentiating the Buczynski-Glinka expression (Eq. 6) in each direction, the expressions of the
elastic solution (Sij and Eij) and the elasto-plastic solution (sij and eij) are obtained

dENij
= dSij ∆Eij +∆Sij dEij

= ∆sij deeij +∆sij depij + dsij (∆eeij +∆epij) .
(22)

In the elastic prediction, only dENij
is imposed by the loading. The yield surface, f , is then

calculated. If the latter remains negative or zero, the elastic prediction is verified and the next
increment is processed. Otherwise, a plastic correction is applied. The relationship between dENij

and the elastic solution can be summarised as

dENij
= 2

∆Sij

2 µ
dSij =

∆Sij

µ
dSij . (23)

On the other hand, the relation between dENij and the elasto-plastic solution is reduced to

dENij
= ∆sij deeij + dsij (∆eeij +∆εpij)

= (
∆sij
2 µ

+∆εpij +
∆sij
2 µ

) dsij

= (
∆sij
µ

+∆εpij) dsij ,

(24)

where depij is removed from the equation, as the increment is a purely elastic prediction. Using
these two equations yields an expression for the incremental deviatoric stress, dsij

dsij =
∆Sij

∆sij + µ∆εpij
dSij . (25)

Then, in order to obtain a formulation based only on the terms Sij and εpij , the following relationship
is obtained from Eq. 6

∆S2
ij

2 µ
=

∆s2ij
2 µ

+∆sij ∆εpij

∆S2
ij = ∆s2ij +∆sij (2 µ∆εpij)

∆S2
ij + (µ∆εpij)

2 = (∆sij + µ∆εpij)
2 .

(26)

Thanks to the previous equation, equation Eq. 25 is rewritten

dsij = dSij
1√

1 + (
µ∆εpij
∆Sij

)2
. (27)
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The Eq. 22 can be rewritten in a general case (i.e. without removing dεpij)

dENij
= ∆sij deeij +∆sij dεpij + dsij ∆eij

=
∆sij
2 µ

dsij +∆sij dεpij + dsij ∆eij

= (
∆sij
2 µ

+∆eij) dsij +∆sij dεpij .

(28)

Hence the following expression for dsij as a function of dεpij

dsij =
dENij

∆sij
2 µ +∆eij

−
∆sij dεpij

∆sij
2 µ +∆eij

. (29)

Subsequently, the stress increment is determined by adding the spherical part, to return to the
stress-strain space. The stress increment is

dσij = dsij +
1

3
Tr(dσ)δij , (30)

with δij the Krönecker symbol. Writing this equation for σ22 and assuming that direction 1 is the
normal to the surface, one can obtain

dσ22 = ds22 +
1

3
(dσ22 + dσ33) , (31)

yet

ds11 = dσ11 −
1

3
(dσ11 + dσ22 + dσ33)

= −1

3
(dσ22 + dσ33) ,

(32)

hence
dσ22 = ds22 − ds11 . (33)

It is thus possible to formulate this equation as

dσij = dsij − δijdskk , (34)

with δij the Kronecker symbol and k the direction normal to the surface, which in this paper is the
direction 1. The stress increment dσij is then given by

dσij =
1

∆sij
2 µ +∆eij

dENij − δij
1

∆skk

2 µ +∆ekk
dENkk

+ dσij

∣∣∣∣
Plast Corr

(35)

where

dσij

∣∣∣∣
Plast Corr

= −
∆sij dεpij

∆sij
2 µ +∆eij

+ δij
∆skk dεpkk

∆skk

2 µ +∆ekk
(36)

It is important to note that dσij is a function of dεpij like the expression obtained for the ALO
methods. However, dσij is also a function of dENij

and not dΣij , unlike the ALO methods. In
order to reconstruct the localization operator, it is therefore necessary to combine the terms that
depend on εpij .
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3.3. Proposition of a tensorial notation for Buczynski-Glinka heuristic

The following notation is adopted

Yij =
∆sij

∆sij
2 µ +∆eij

(37)

to simplify the reading of the equations. Taking the equation Eq. 35, the components of the stress
tensor of directions ii are written

dσ11 = − ∆s11 dεp11
∆s11
2 µ +∆e11

+
dEN11

∆s11
2 µ +∆e11

− δ11

[
− ∆s11 dεp11

∆s11
2 µ +∆e11

+
dEN11

∆s11
2 µ +∆e11

]

= −Y11dε
p
11 +

dEN11

∆s11
2 µ +∆e11

− δ11

[
−Y11dε

p
11 +

dEN11

∆s11
2 µ +∆e11

]
= 0 ,

(38)

dσ22 = − ∆s22 dεp22
∆s22
2 µ +∆e22

+
dEN22

∆s22
2 µ +∆e22

− δ22

[
− ∆s11 dεp11

∆s11
2 µ +∆e11

+
dEN11

∆s11
2 µ +∆e11

]

= −Y22 dεp22 + Y11 dεp11 +
dEN22

∆s22
2 µ +∆e22

− dEN11

∆s11
2 µ +∆e11

,

(39)

dσ33 = − ∆s33 dεp33
∆s33
2 µ +∆e33

+
dEN33

∆s33
2 µ +∆e33

− δ33

[
− ∆s11 dεp11

∆s11
2 µ +∆e11

+
dEN11

∆s11
2 µ +∆e11

]

= −Y33 dεp33 + Y11 dεp11 +
dEN33

∆s33
2 µ +∆e33

− dEN11

∆s11
2 µ +∆e11

.

(40)

For the other directions, a similar expression is obtained

dσ23 = − ∆s23 dεp23
∆s23
2 µ +∆e23

+
dEN23

∆s23
2 µ +∆e23

− 0

= −Y23 dεp23 +
dEN23

∆s23
2 µ +∆e23

,

(41)

dσ13 = 0 , (42)

and finally
dσ12 = 0 . (43)

When the plastic correction is implemented, the variable dENij is zero since it has already evolved
during the elastic prediction. The relation between the stress increment and the strain increment
is therefore written

dσ

∣∣∣∣
Plast Corr

= −


0 0 0 0 0 0

−Y11 Y22 0 0 0 0
−Y11 0 Y33 0 0 0
0 0 0 Y23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 : dεp (44)
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By considering the assumption of plastic strain incompressibility, written as

dεp11 = −dεp22 − dεp33 , (45)

it becomes possible to reorganize the components of the operator in a manner that resembles the
shape of the ALO operator, i.e.

dσ

∣∣∣∣
Plast Corr

= −


0 0 0 0 0 0
0 Y22 + Y11 Y11 0 0 0
0 Y11 Y33 + Y11 0 0 0
0 0 0 Y23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 : dεp (46)

The equation involving the plastic correction with the Buczynski-Glinka heuristic takes the following
final form

dσ

∣∣∣∣
Plast Corr

= −LBG : dεp . (47)

Nevertheless, the formulation of the components of this new operator can be simplified to facilitate
the identification, by factorizing by 2 µ

LBG = 2 µ



0 0 0 0 0 0
0 (Y22 + Y11)

1
2 µ Y11

1
2 µ 0 0 0

0 Y11
1

2 µ (Y33 + Y11)
1

2 µ 0 0 0

0 0 0 Y23
1

2 µ 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 (48)

The previous equation allows to rewrite Buczynski-Glinka heuristic under the same formalism as
the ALO method (Eq. 17). In this expression, LBG is written as a function of the various Yij

components, which can be expressed as

Yij
1

2 µ
=

∆sij
1

2 µ

∆sij
2 µ +∆eij

=
∆eeij

∆eeij +∆eij

=
∆eeij

2 ∆eeij +∆epij

=
1

2 +
∆epij
∆eeij

.

(49)

It should be noted that the form of LBG operator obtained after the different operations is similar

to the form of the adjustable localization operator method, although the path to justify it is very
different : Buczynski-Glinka method relies on an energetic approach whereas the ALO method is

13



based on a scale transition approach. Looking closer, the same zero components are obtained and
LBG operator is necessarily symmetric whereas this is not mandatory with the ALO. Another main

difference is that the components of LBG are non-constant, even for proportional loading.

This succession of equations makes it possible to rewrite the formalism of the plastic correction
equation of the Buczynski-Glinka method. A mathematical operator is introduced to facilitate the
writing of the equation in this particular case. The term-to-term product of two matrices of the
same dimension is defined by the sign ” ∗ ”. Let (A,B) be two matrices of dimensions (i, j), the
term-to-term product is defined by

C = A ∗B , (50)

such that
Cij = Aij Bij . (51)

Moreover, the FBG tensor is defined, using Eq. 27, such that

Fij =
1√

1 + (
µ∆εpij
∆Sij

)2
. (52)

Hence, for the Buczynski-Glinka method, the evolution of the increment dσ is written

dσ = FBG ∗ dΣ− LBG : dεp . (53)

This equation (Eq. 53) shows that the Buczynski-Glinka approach differs from the ALO approach
in two ways:

• First, the coefficients of the localization operator LBG are variable;

• Second, the presence of the tensor FBG linked to the stress tensor under elastic assumption
Σ.

Thereafter, a simple plane strain test simulation is run to highlight the influence of the tensor FBG

on the predicted mechanical response. The simulation without this tensor is noted BGmod and the
equation then becomes

dσ = dΣ− LBGmod : dεp . (54)

This method is not meant to be used as an alternative method for mechanical predictions but only
to understand the role of this part of the equation.

3.4. Plane strain simulation on a double notched specimen

Two simulations are carried out in order to study the influence of the FBG tensor. These
simulations are run on a double-notched specimen (figure 4), under the assumption of plane strain.
In this simulation, the behavior is assumed to be perfect elastoplastic, with a yield stress of 300
MPa and a Young modulus E of 210 GPa.

14



Figure 4: Quarter of a double-notched specimen for finite element modelling

Figure 5 compares the response of the different simulations to the FEA reference in different
spaces. Figure 5a which is a classical stress/strain graph shows that the two responses of the ana-
lyzed method (BG and BGmod) appear relatively close. The two curves overlap for both direction
2 and direction 3. However, while it is interesting to observe the stress/strain response, this graph
is not suitable for comparing the methods. The next two graphs provide a clearer illustration of
the differences between the two methods.

In figure 5b, the correction, which represents the difference between the von Mises stress pre-
dicted under elastic assumption and the stress obtained using an elastoplastic assumption, is plotted
(similarly to figure 2). Both methods predict a non-linear evolution; however, the BGmod method
deviates from the BG method. This graph also reveals that a larger plastic deformation is obtained
when the FBG tensor is removed from the equation.

In the last graph, figure 5c, it becomes apparent that neither of the two proposed methods
captures the evolution of the loading path as predicted by the FEA reference, specifically the σ33/σ22

stress ratio. Previous studies have demonstrated that the ALO method is capable of representing
this evolution. This observation emphasizes that a non-linear version of the ALO method would
combine the advantages of both the introduced methods: a nonlinear correction with an adaptive
loading path.
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Figure 5: Comparison of the numerical predictions of Buczynski-Glinka (a) stress-strain curves, (b) deviation from
the von Mises equivalent stress of the elastic simulation, (c) evolution of the stress ratio
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The non-linear evolution of the BG method is enabled by the plasticity-induced variation of the
zij coefficients, whereas in the classic ALO method, these parameters are fixed.

The graph provides a visualization of the parameter evolution during the numerical simulation.
Several observations can be made. The first one is that z22 and z33 parameters are equal . Then,
as soon as plasticity occurs, the values of z22 and z33 decrease. While a similar trend is observed
for z22 and z33, the graph also demonstrates a consistent factor of 2 in relation to the evolution of
the parameter z23.
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Figure 6: Evolution of Buczynski-Glinka parameters

One last important observation that can be seen in figure 5, is that the ratio σ33/σ22 remains
constant with the BG and BGmod methods. This behavior is a direct consequence of the method’s
formulation. In equation Eq. 17, assuming the plastic flow strain tensor is normal to the von Mises
surface, it can be replaced by

dεp =
3

2
dλ

1

σVM
J : σ . (55)

Here, dλ represents the cumulated plasticity, σVM
loc is the von Mises equivalent stress, and J denotes

the deviatoric projector. This substitution leads to the equation

dσ = dΣ− 3

2
dλ

1

σVM
LALO : J : σ . (56)

The doubly contraction product between LALO et J can be expressed as

LALO : J =
2

3
2µ(1− β)L′ , (57)

where

L′ =


0 0 0 0 0 0

− z22+z23
2 z22 − z23

2 z23 − z22
2 0 0 0

− z33+z32
2 z23 − z33

2 z33 − z32
2 0 0 0

0 0 0 3
2z44 0 0

0 0 0 0 0 0
0 0 0 0 0 0


(e⃗1,e⃗2,e⃗3)

. (58)
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Figure 6 shows that a factor 2 exists between the parameters z22, z33 and the parameter z23 and
which implies that z23 − z22

2 = 0 and z32 − z33
2 = 0. Therefore, the stress ratio is constant as

illustrated in figure 5. The components that appeared in the first column of L′ are not of interest

in the rest of this work, because the stress is equal to 0 on the free surface (σ11 = 0).

This section has illustrated the energetic method of Buczynski-Glinka and its non-linear plastic
correction. Through the development of equations, it has been shown that it is possible to derive
a localization operator with the same form as the adjustable localization operator. However, the
Buczynski-Glinka method does not allow the stress ratio to evolve because of the relations be-
tween certain parameters (z22 = z33 = 2.z23), which differs from previous methods in the literature
[31, 33, 42].

Based on these findings, a plasticity-dependent adjustable localization operator method, com-
bining Darlet’s heuristic and the non-constant coefficients of the Buczynski-Glinka method, will
be proposed thereafter. For the sake of simplicity, the plasticity-dependent ALO will be called
non-linear ALO and denoted ALONL.

4. Proposal for a plasticity-dependent Adjustable Localization Operator

4.1. Formalism of the nonlinear adjustable localization operator

To maintain the formalism and the writing of the localization law for an adjustable localization
operator, the corrective term FBG derived from Buczynski-Glinka heuristic is not retained. It
has been shown that this factor has a small influence on the predictions and is therefore not
necessary. Following a similar approach as in Eq. 17, the localization law for the nonlinear adjustable
localization operator is proposed as

dσ = dΣ− LALONL

: dεp . (59)

The parameters z22 and z33 of this operator are defined using expressions similar to the operator
LBG (Eq. 48)

zNL
22 .(1− β) = (Y22 + Y11)

1

2 µ
=

1

2 +
∆ep22
∆ee22

+
1

2 +
∆ep11
∆ee11

, (60)

zNL
33 .(1− β) = (Y33 + Y11)

1

2 µ
=

1

2 +
∆ep33
∆ee33

+
1

2 +
∆ep11
∆ee11

, (61)

and the parameter z44 is fixed such that

zNL
44 (1− β) = 0.5 . (62)

As in the rest of the paper, the notation ∆ designates the variation of variables with respect to a
memory point (figure 3).

The parameter z23 is re-evaluated at each loading increment using Darlet’s heuristic [33], with
the equation given below

zNL
23 =

zNL
22 AD − zNL

33 BC + zNL
33

AC
2 − zNL

22
BD
2

AC −BD + AD
2 − BC

2

. (63)
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where the variables A, B, C and D are equal to
A = Σν≈0.5

22

B = Σν≈0.5
33

C = Σν
22

D = Σν
33

. (64)

Σν
22 and Σν

3 are the stress tensor components at the critical point in directions 2 and 3 that are
obtained by performing an elastic simulation that uses the material elastic properties (Young’s
modulus and Poisson’s ratio ν). Σν≈0.5

22 and Σν≈0.5
22 are the same quantities obtained by perform-

ing an elastic simulation with modified material elastic properties. The Young’s modulus is not
modified but the Poisson’s ratio is set to ν = 0.495, to simulate the isochorous behavior of plastic
deformations [32].

The non-linear plasticity-dependent operator ALONL is examined under various loading condi-
tions to assess the impact of the non-linear plastic correction compared with the Buczynski-Glinka
method and the previous linear ALO method [42] denoted as ALOL. The identification of pa-
rameters follows Darlet’s heuristic. The parameter z23 is identified using Equation 63, while the
parameters z22 and z33 are constants and equal

zL22(1− β) = zL33(1− β) = 0.94 . (65)

As the non-linear behavior is accounted for by the z22 and z33 terms, there is no need to modify
the z44 parameter. Therefore, the parameter zL44 is set equal to zNL

44 .

5. Method assessment on multiaxial loadings

5.1. Structure, material properties and loadings

The non-linear ALO method ALONL is applied to a specific structure depicted in figure 7. This
structure exhibits a 3 mm displacement between its rotational axis and the rotational axis of the
groove. As a result, a single stress concentration point is formed on the surface of the structure,
regardless of the combination of tensile and torsional loads applied.
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Figure 7: Notched structure for multiaxial loadings

The simulated fictitious material exhibits an elastoplastic behavior with two combined kinematic
hardenings. The multi-hardening model proposed by Chaboche [39] is used, with the two kinematic
hardenings following the Armstrong-Frederick model [48]. The expressions for these kinematic
hardenings, denoted as Xi, are as follows:

dXi =
2

3
Cidεp − γiXidp . (66)

The yield surface f is governed by the following equation

f(σ,X) = J2(σ −X)− σy ≤ 0 . (67)

The material properties used in the simulation are provided in table 3.

Behavior Parameters Value

Elastic
σy [MPa] 300
E [MPa] 210 000
ν [-] 0.3

Nonlinear kinematic C1 [MPa] 50 000
hardening X1 γ1 [-] 200

Linear kinematic C2 [MPa] 800
hardening X2 γ2 [-] 0

Table 3: Parameters of the constitutive equations

Two distinct simulations are performed to investigate different aspects of the proposed meth-
ods. First, a monotonic and uniaxial tensile test is simulated to highlight the advantages of Darlet’s
heuristic for local multiaxial loading conditions, in comparison to the Buczynski-Glinka method.
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Subsequently, a cyclic simulation is conducted to demonstrate the benefits of the non-linear
ALO method compared to the previous identification strategy proposed by Darlet [42]. This cyclic
loading scenario allows for a comprehensive evaluation of the non-linear method’s performance and
its ability to enhance the material behavior predictions during cyclic loading, in comparison with
the linear approach.

5.2. Results

5.2.1. Comparison between BG and ALONL methods

The first loading scenario investigated in this study is a monotonic uniaxial tension. Figure 8
presents the numerical predictions obtained using both the Buczynski-Glinka (BG) method and the
ALONL method.

Figure 8a shows that the results obtained by the various methods are very close to each other
in the stress/strain space although σ33 is slightly underestimated by the Buczynski-Glinka method.
This suggests that the ALONL method provides more accurate predictions in capturing the behav-
ior of the material under uniaxial tension.

The evolution of the stress ratio is illustrated in figure 8b, highlighting the importance of the
Darlet heuristic. The stress ratio does not remain constant and matches the evolution of the finite el-
ement method, indicating the capability of the ALONL method to capture the stress ratio behavior.

Figure 8c allows us to highlight the deviation from the equivalent von Mises stress between the
elastic simulation and the elastoplastic response obtained with the different method. It shows that
all methods provide a non-linear correction, confirming the improvement of the ALONL method as
compared to the ALOL method. ALONL results evolution is closer to the finite element method
than the energetic method. This is emphasized by figure figure 8d which shows the percentage of
error with respect to the finite element method, made by Buczynksi-Glinka and ALONL methods
in the correction. This percentage denoted as δEF remains small for both methods.

Overall, the analysis of figure 8 demonstrates the effectiveness of the ALONL method, partic-
ularly in capturing the stress ratio behavior and providing accurate predictions compared to the
Buczynski-Glinka method and the finite element method.
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Figure 8: Comparison of the numerical predictions : (a) stress-strain curves, (b) evolution of the stress ratio, (b)
deviation from the von Mises equivalent stress of the elastic simulation, (d) error with finite element method

deviation from the equivalent stress of the elastic simulation
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5.2.2. Cyclic simulation and comparison with the ALOL method

The second loading is a cyclic loading with a load ratio of R = −0.3. The numerical predictions
obtained using the ALONL method and with the previous identification method ALOL [42] are
compared to the FEA method. Figure 9 illustrates the results.

Figures 9a et 9b show that the FEA predicts a slight accommodation during the cyclic load-
ing. This phenomenon is correctly predicted with the ALONL method as no additional ratcheting
phenomenon is observed. This suggests that the ALONL method effectively captures the cyclic be-
havior without excessive plastic deformation accumulation. In addition, it can be seen that despite
a nominal load ratio of R = −0.3, the local load ratio decreases progressively to R = −1. These
two graphs show that the ALO approach can capture this effect properly, specifically in the main
direction of solicitation.

The numerical results obtained with the ALONL method demonstrate an improvement com-
pared to the linear correction of the previous identification method ALOL, as shown in figure 9c.
Again, this result is emphasized in figure 9d that represent the error percentage of the ALO method
correction compared to FEA correction , denoted as δEF . The ALONL method correction exhibits
a smaller error (less than 2%) than the linear version (error close to 10%).

In summary, the analysis of figure 9 demonstrates that the ALONL method performs well in
the context of cyclic loading. It shows improved results compared to the previous identification
method ALOL, as evidenced by the reduced deviation from the elastic simulation and the small
error with respect to the finite element method.
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6. Conclusion

The main objective of this paper was to propose a formulation of the Adjustable Localization
Operator operator inspired by energetic methods to extend the capability of the method to non-
linear correction prediction. The heuristic developed by Buczynski-Glinka to extend Neuber’s rule
to multiaxial loadings was used, leading to the formulation of an ALO method with non-constant
parameters and a non-linear plastic correction. It was pointed out that although the energetic
methods directly provide a non-linear correction, they cannot represent the FEA predicted evolu-
tion of the σ22/σ33 stress ratio.

The advantages of the ALONL method compared to the previous linear version were demon-
strated through the analysis of cyclic tensile loading. The results showed that the proposed method
provides more accurate predictions of the local stress and strain state compared with the previous
linear version. Furthermore, the method’s efficiency, requiring only two elastic simulations, makes
it practical for real-world engineering applications.

Further investigations could be conducted to analyze the behavior of the non-linear ALO method
under more complex loadings, particularly non-proportional tension-torsion loading. While previ-
ous studies have demonstrated the effectiveness of the ALO method with the linear operator in such
scenarios, the specific contribution and performance of the non-linear operator in these cases remain
to be validated. Additionally, it would be valuable to test the non-linear ALO method capability
to predict more complex behavior, such as ratcheting or softening, using adequate behavior laws.

As a final conclusion, it is worth to recall that the ALO method has been developed and refined
by various research teams over the past two decades, addressing different engineering challenges such
as stress ratio prediction, mean stress evolution, visco-plastic behavior, and anisotropic behavior,
among others. The aim of all these research projects was to provide accurate predictions for
structural analysis while significantly reducing computational time compared to the reference finite
element analysis (FEA) method. The success of the ALO method lies in its formalism, which is
based on an analogy between the confined plasticity zone and Eshelby’s work. This analogy provides
a robust and flexible framework that has allowed to address this wide variety of problems, using
variations of the method.
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330 (2002) 703–708.
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