
HAL Id: hal-04437759
https://ensta-bretagne.hal.science/hal-04437759

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRL-Based Thruster Fault Recovery for Unmanned
Underwater Vehicles

Katell Lagattu, Gilles Le Chenadec, Eva Artusi, Paulo Santos, Karl Sammut,
Benoit Clement

To cite this version:
Katell Lagattu, Gilles Le Chenadec, Eva Artusi, Paulo Santos, Karl Sammut, et al.. DRL-Based
Thruster Fault Recovery for Unmanned Underwater Vehicles. Australian and New Zealand Control
Conference, IEEE, Feb 2024, Gold Coast, Australia. pp.25-30, �10.1109/ANZCC59813.2024.10432828�.
�hal-04437759�

https://ensta-bretagne.hal.science/hal-04437759
https://hal.archives-ouvertes.fr

DRL-Based Thruster Fault Recovery for Unmanned Underwater
Vehicles

Katell Lagattu1,2,3,4, Gilles Le Chenadec1, Eva Artusi2, Paulo E. Santos3,4, Karl Sammut3,4, Benoit Clement3,4

Abstract— Thruster faults are one of the most common mal-
functions encountered during Unmanned Underwater Vehicle
(UUV) missions. This type of fault can lead to unwanted
behaviour and jeopardise the UUV mission. Successful thruster
fault management depends on accurate diagnostics. However,
some scenarios, particularly instances of thruster faults due to
external factors, pose a hard diagnostic task. This is particularly
challenging in the context of abnormal behaviours that are
detected but no fault diagnosis can be provided by the onboard
fault management system. This type of fault is called non-
diagnosable and it is the main target of this work. The aim of
this paper is to propose a solution for controlling UUVs subject
to non-diagnosable thruster faults using a Deep Reinforcement
Learning (DRL)-based approach. This paper provides a com-
parison between an end-to-end DRL-trained controller and a
standard PID controller to overcome partial and total thruster
faults of a UUV. The consistency and robustness of the proposed
method is verified by simulations. The results demonstrate
the DRL-based controller’s effectiveness in addressing non-
diagnosable thruster faults that would otherwise hinder the
successful completion of the mission.

Index Terms— Unmanned Underwater Vehicle, partial
thruster faults, non-diagnosable faults, thruster fault recovery,
Deep Reinforcement Learning

I. INTRODUCTION

Unmanned Underwater Vehicles (UUVs) are increasingly
used in both civil and military applications, such as underwa-
ter exploration, mapping of the seabed, oceanographic data
collection, wreck search and mine counter-measurement.
However, during a mission, UUVs are confronted with
faults due to the potential fragility and obsolescence of
the system and the hostile environment within which the
UUV is embedded. One of the most common types of UUV
faults is thruster malfunction due to external factors such as
collisions. A thruster fault can be partial, which means that
the faulty component remains functional to a lesser extent,
or it can be a failure, which is a permanent shutdown of
the component functionality. If these malfunctions are not
handled, they can lead to loss of control, termination of
mission, or loss of drones. Existing methods for thruster
fault management can’t be effective without an accurate
diagnosis. In this work, a non-diagnosable fault refers to
the type of system anomaly in which, despite the detection
of an abnormal behavior of the UUV, no fault diagnosis
can be provided by the onboard sensors or analytical fault
diagnosis methods. This occurs when the detected fault, in

* This work is supported by French Defence Innovation Agency (AID)
1 Lab-STICC UMR CNRS 6285, ENSTA Bretagne, Brest, France
2 Naval Group Research, Ollioules, France
3 Flinders University, Adelaide, Australia
4 CROSSING IRL CNRS 2010, Adelaide, Australia

this case, a thruster fault due to external factors, does not
match with any known faults of the system. The aim of this
article is to focus on non-diagnosable UUV thruster faults
and to propose a method based on DRL to control faulty
UUVs, thereby facilitating a successful mission completion.
This paper is organised as follows. Section II explores UUV
dynamic modelling; then Section III covers existing thruster
fault recovery methods and highlights their limitations and
Section IV presents the innovative proposed solution based
on UUV control with DRL [1]–[3]. The performance and
effectiveness of our approach are evaluated in Section V
through simulation results.

II. UUV DYNAMIC MODELLING

RexROV2 (Fig. 1) is a hovering-type remotely operated
vehicle designed for underwater exploration missions which
require high manoeuvrability. RexROV2 possesses six de-
grees of freedom and is propelled by 6 thrusters, including 3
vertical thrusters, T0, T4 and T5, and 3 horizontal thrusters,
T1, T2 and T3 as shown in Fig. 2.

Fig. 1: RexROV2 design
[4].

Fig. 2: RexROV2 thrusters
configuration [5].

The complete modelling of the RexRov2 platform is
challenging [5], [6], but it can be summarised in the state-
space representation form [7] as:

η̇ = JΘ(η)ν

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ
(1)

Where, in the first equation, η denotes the position and
orientation vector with coordinates in the earth-fixed frame,
ν denotes the linear and angular velocity vector with coor-
dinates in the body-fixed frame and J(η) is the kinematic
transformation matrix. In the second equation, M is the
inertia matrix, C(ν) is the matrix of hydrodynamic Coriolis
and centripetal terms, D(ν) is the vector of hydrodynamic
damping effects, g(η) is the vector of gravity and buoyancy
effect and τ is the control input, used to describe the forces
Fx,y,z and moments Mx,y,z acting on the vehicle in the body-
fixed frame:

τ =
[
Fx Fy Fz Mx My Mz

]T
(2)

The forces are distributed among the thrusters as proposed
in [7]:

τ = Bu ∈ Rn (3)

Where u = [u1, u2, ...ur]
T ∈ Rr is the vector of actuator

commands, or thruster input, and B the Thruster Control
Matrix (TCM) of size (n, r).

This UUV is also equipped with an Inertial Measurement
Unit (IMU) that returns the velocity and orientation (in Euler
angles). These variables are accessible through ROS topics
[8]. Our software architecture consists of using the simula-
tion meta-data to train the learning algorithms considered in
this work.

III. UUV THRUSTER FAULT RECOVERY

As this study is centred on the topic of thruster fault
management, the present section elucidates UUV thruster
faults and reviews the methodologies presented in existing
literature for mitigating these faults.

A. Origins and types of UUV thruster faults

Diverse sources can give rise to UUV thruster faults,
rendering the task of pinpointing their origins challenging.
For instance, during a mission described in [9], a UUV
encountered a propeller blockage due to ice, which led to
the servo-amplifier operating in current limitation mode. The
ingress of saltwater during the same mission resulted in
electrical dispersion, disrupting feedback signals and causing
an increase in blade rotation speed. In [10], collisions with
solid surfaces caused damage to the thruster blades, resulting
in a reduction in efficiency. Cavitation, another challenge de-
scribed in [11], triggers corrosion and erosion in propellers,
progressively reducing their effectiveness. Due to these types
of unexpected events, UUVs can experience a wide variety of
thruster faults that are identified in the literature and grouped
into different types [12], [13]: UUV thruster faults can be
either failures, such as zeroing or constant output (Eq. 4), or
partial, like constant biases (Eq. 5), or time-dependent biases
(Eq. 6) altering thrust efficiency. In the equations below, Tf

is the faulty thruster output, and T the desired thruster output.
Due to this variety, a fault recovery strategy for UUV thruster
faults has to be set up. The next section details some existing
strategies.

Tf = a, with a ∈ R (4)
Tf = αT + β, with α, β ∈ R (5)
Tf = α(t)T + β(t) (6)

B. Fault recovery strategy

In most cases, fault recovery involves a series of four steps
[14]: fault detection, fault isolation, fault identification and
fault control. Fault isolation and fault identification can be
grouped as fault diagnosis.

The first step is fault detection, which is a binary indicator
that recognises the presence of faults. The next step is fault

isolation, which consists of determining the location of the
fault within the system’s components. The subsequent step
is fault identification, which is to describe the fault. Finally,
the last step is fault control, also known as fault-tolerance or
fault-tolerant control. This step aims to modify the system’s
control mechanisms to overcome the fault, on the basis of
fault detection and diagnosis. Effective methods for UUV
thruster fault detection, based on model-based observers, can
be found in [15]. Efficient methods for UUV thruster fault
control such as thruster reallocation or trajectory redesign
have also been explored in the literature, relying on fault
diagnosis [12], [16]. However, thruster fault diagnosis can
be challenging, impeding effective fault control. The next
subsection provides an overview of UUV thruster fault
diagnosis to better understand the limits of existing methods.

C. UUV thruster fault diagnosis

Analytical redundancy is the most common method used
to diagnose UUV thruster faults. It aims to compare the
inputs and/or outputs of components with prior knowledge
of the behaviour of these components. The result of this
comparison is called residual. The characteristics of the
residual are then used to detect and diagnose faults. The
subcategories of analytical redundancy methods consist of
Model-based, Signal-based, and Data-driven approaches.

• Model-based methods rely on precise models or mod-
els that closely approximate the system. Model-based
methods are widely used to diagnose thruster faults, and
can be categorised into three distinct groups: Observer-
based methods as in [17], [18], Parameter estimation
methods as in [19], and Parity space methods as in [20].

• Signal-based methods involve analysing output sig-
nals obtained from the system to identify abnormal
behaviour or deviations from expected patterns. This
method relies on comparing measured signals with
reference signals or predefined thresholds to detect the
presence of faults. In [21], a wavelet transform method
was used for thruster fault diagnosis.

• Data-driven methods refer to the use of data analysis
techniques and algorithms to identify and analyse pat-
terns, trends, and anomalies in the data collected from
various systems or processes. For example, in [22], a
Deep Neural Network (DNN) was trained to identify
UUV thruster faults.

The downside of all these approaches is that they require
pre-existing knowledge of faults, which may not be feasible
in some situations. For example, damage to the blades or
the entanglement of foreign objects in the thrusters prove to
be unpredictable and challenging to model accurately. In the
absence of effective diagnostics, current approaches fall short
of overcoming these issues, jeopardising the UUV’s mission.
This creates an opportunity to investigate the application of
DRL methods, as presented in the next section.

IV. DRL-BASED PROPOSED SOLUTION

DRL is a machine learning approach that combines rein-
forcement learning and deep neural networks [23]. A DRL

agent learns optimal decision-making by interacting with its
environment. The agent takes actions at in environment at
time t, receiving a new state st+1 and a reward rt+1. The
goal is to maximise the expected cumulative reward J(π):

J(π) = Eπ

[∞∑
t=0

γtrt+1

]
(7)

Where γ is the discount factor that balances future rewards.
The agent aims to find the optimal policy π∗ that maximises
this expected return. Existing methods are based on mod-
elling the problem as a Markov decision process, notably
relying on the probabilistic framework and the Markov
assumption that the future state transition and rewards de-
pend only on the current state and action. DRL leverages
deep neural networks to approximate the policy and value
functions. The policy network πθ(a|s) outputs the probability
distribution of actions a given state s, while the value
network V (s) estimates the expected cumulative return from
state s. The policy is optimised by gradient ascent, and the
value function is updated through the Bellman equation:

V (s) = max
a

(∑
s′

P (s′|s, a)
(
r(s, a, s′) + γEπ [V (s′)|s′]

))
(8)

Here, maxa denotes the maximum over all possible ac-
tions. The equation expresses the value of a state s as the
maximum expected sum of rewards when taking the best
action a in state s and then following the optimal policy
π. These concepts are used in this work to deal with non-
diagnosable faults.

A. DRL-based method to overcome non-diagnosable thruster
faults

To overcome non-diagnosable thruster faults, the proposed
idea is to bypass the diagnosis step and proceed directly to
the fault control stage. For this purpose, a DRL-based method
is proposed. This approach is motivated by the need for a
controller capable of adapting to undiagnosed faults, based
exclusively on the drone’s behaviour. A description of the
strategy is given here.

During training, the agent learns to overcome non-
diagnosable thruster faults, thus acquiring the ability to
address them during its mission. To achieve this, the agent
will consistently encounter non-diagnosable faults and will
be rewarded for successfully completing the mission, while
facing penalties for failing to accomplish the mission.

The proposed strategy unfolds as follows: during the
mission, the drone operates under an optimal model-based
controller and when a fault is detected, two scenarios (as
shown in Fig. 3) arise:

• If the fault is diagnosable, conventional control methods
can handle the situation in an optimal way.

• If diagnostic methods onboard fail, a controller switch
occurs, transitioning to the DRL-based controller previ-
ously trained on cases of undiagnosable faults.

To assess the efficacy of the proposed method, the focus
is on scenarios where the fault has been detected yet remains
non-diagnosable.

Fig. 3: Decision-making process when a fault occurs.

B. Environment setup

In this context, the chosen UUV’s mission involves reach-
ing a designated waypoint. For the evaluation of the proposed
method, the drone’s initial position is set at coordinates (0,
0, -9) and the target waypoint is positioned at (1, 1, -10).
Non-diagnosable thruster faults, such as propeller damage
or blocking, result in a reduction of thruster efficiency. This
loss of efficiency can take various forms, but is considered
in this paper for simplicity as a constant multiplicative bias
in the thruster’s output.

While all thrusters are susceptible to faults, the initial
focus is directed towards the two thrusters with the most
significant impact on the mission, as has been shown exper-
imentally, namely T0 and T5 (Fig. 2). Empirical evidence
indicates that when efficiency falls below 50%, i.e., when
β = 0 and α = 0.5 in Eq. 5, the drone faces challenges
in reaching the designated waypoint. Hence, the idea is
to train the agent on partial faults of these two thrusters,
encompassing the cases outlined by Eq. 9:

T0f = αT0, 0 ≤ α ≤ 0.5

T5f = αT5, 0 ≤ α ≤ 0.5
(9)

The agent is trained with a series of episodes, with a
maximum number of steps denoted as nb step max. At
each step, a partial thruster fault is applied as indicated in
Algorithm 1. An episode ends either when the waypoint is
reached or when the number of steps reaches nb step max.

Algorithm 1 Partial Thruster Fault Choice

1: for each episode do
2: Randomly choose a thruster, T0 or T5
3: Randomly choose α between 0 and 0.5
4: Apply partial thruster fault using the chosen thruster

and α
5: end for

At each step, the agent chooses an action and receives
a new state vector and a reward. As the UUV’s goal is to
reach the designated waypoint, the reward takes into account
the position x, y and z of the drone. With the aim of
maintaining a low rotation rate for the drone, a constraint
is imposed on the rotation speed (θ̇x, θ̇y , θ̇z) to be kept

close to zero. The UUV’s rotation angles θx, θy and θz
are not considered, enabling the agent to freely choose the
appropriate orientation considering the faults. The UUV’s
linear speed is implicitly maximised within the reward, as a
longer time taken to reach the waypoint results in a lower
reward. The drone’s linear speed is also not explicitly taken
into account. As a result, the state parameters selected are
the drone’s position and its rotation speed. The state vector
s is defined in Eq. 10. For simplicity, it is supposed that the
position and rotation speed are measured accurately during
the mission.

s =
[
x y z θ̇x θ̇y θ̇z

]⊺
(10)

The reward function for each step is described in Algorithm
2, with xd, yd and zd the desired position, i.e. the waypoint
position, and θ̇xd, θ̇yd, θ̇zd the desired rotation speeds, i.e.
zero. The error limit below which the waypoint is considered
to have been reached is denoted by ϵ.

Algorithm 2 Reward function

1: for each step do
2: if nb step > nb step max then
3: End of episode
4: end if
5: if waypoint reached, ie e ≤ ϵ then
6: r = 100
7: End of episode
8: else
9: e = |xd − x|+ |yd − y|+ |zd − z|+ |θ̇xd − θ̇x|+

|θ̇yd − θ̇y|+ |θ̇zd − θ̇z|
10: r = − exp(e)
11: end if
12: end for

The action vector of the agent is the control input τ
described by Eq. 2, consisting of the forces and torques
applied to the drone. Action values are continuous and
bounded according to the values acceptable to the drone.
To measure the performance of the proposed method, a
performance index γ is introduced. This index is defined
as the integral of the error e over an episode, which starts at
t = 0 and ends at t = tend:

γ =

∫ tend

0

e(τ) dτ (11)

The DRL-based controller chosen here is the Soft Actor-
Critic (SAC) algorithm [24], because it is well-suited for
underwater drone control due to its proficiency in continuous
actions and adaptive exploration in unpredictable environ-
ments as shown in [2].

C. Soft Actor Critic algorithm

Soft Actor-Critic (SAC) has the following key features:
1) Actor-Critic Architecture: SAC uses two neural net-

works, an actor network to approximate the policy,
and a critic network to estimate the state-action value
function.

2) Stochastic Policy: the policy is modelled as a proba-
bility distribution over actions.

3) Maximum Entropy Reinforcement Learning: SAC max-
imises the expected reward while also maximising
the entropy of the policy. This encourages the policy
to explore more diverse actions and leads to robust
learning.

The objective function of the SAC combines the expected
reward and the entropy of the policy. The policy is updated
by gradient ascent, and the critic is updated by minimising
the Bellman error. The objective function of the SAC which
is to be optimised is given by:

J(θ) = E(s,a)∼D [α log(πθ(a|s))−Qϕ(s, a)] (12)

Where θ and ϕ are the parameters of the policy and critic
networks respectively, D is the replay buffer, and α is the
temperature parameter that controls the trade-off between
exploration and exploitation.

V. SIMULATION RESULTS

To assess the effectiveness of the proposed method, a
comparison between a conventional PID-type algorithm and
a DRL-based algorithm during a non-diagnosable faulty
situation is conducted through simulations, and described in
this section.

A. Simulation setup

The method proposed in this paper has been evaluated
under simulations, by using a model of the RexROV2 drone
included in the UUV Simulator package [4]. It is a ROS-
Gazebo-based simulator, which includes packages needed for
underwater robotics simulation. The evaluation of the two
controllers in the various fault cases described in Eq. 9 is
conducted on episodes where the fault is present throughout
the entire episode. Each type of fault is evaluated over 100
episodes.

B. PID results

The PID controller is the most widely used control struc-
ture, and it is expressed as:

τ = Kp · e(t) +Ki ·
∫ t

0

e(τ) dτ +Kd ·
de(t)

dt
, (13)

where e(t) is the output error at time t and Kp, Ki, Kd

are respectively the proportional, integral, and derivative
gains. The selected gains are the default gains of the UUV
Simulator package. Here, the error vector e is defined as:

e =
[
x̃ ỹ z̃ θ̃x θ̃y θ̃z

]⊺
(14)

The results of the PID controller in the presence of partial
faults of thrusters T0 and T5 are presented in Table I. This
table shows the mean of the performance index over 100
episodes as a function of the considered faulty thruster and
its efficiency rate. In green are the cases where the success
rate is 100%, in orange where the success rate is between
60% and 70%, and in red where the success rate is 0%. It can

then be observed that, in the presence of fault, the controller
mostly fails.

Thruster T0 Thruster T5

Efficiency rate: 0.5 2.69
±0.47

2.54
±0.37

Efficiency rate: 0.4 3.26
±0.42

2.65
±0.43

Efficiency rate: 0.3 4.03
±0.25

2.83
±0.35

Efficiency rate: 0.2 4.30
±0.43

3.20
±0.46

Efficiency rate: 0.1 4.54
±0.44

3.38
±0.43

Efficiency rate: 0.0 4.82
±0.41

3.82
±0.48

TABLE I: Mean of the PID-method performance index γ
over 100 episodes with the associated standard deviation.

C. SAC results

The agent was trained over 2400 episodes, each consisting
of a maximum of 50 steps. The reward curve associated with
the training is shown in Fig. 4, and the performance results
during the evaluation are presented in Table II.

Fig. 4: Mean episodic training reward (averaged over 100
episodes) of the SAC method. The x-axis represents the
number of steps, and the y-axis represents the reward value.

Thruster T0 Thruster T5

Efficiency rate: 0.5 2.03
±0.31

1.75
±0.27

Efficiency rate: 0.4 2.15
±0.34

1.82
±0.36

Efficiency rate: 0.3 2.28
±0.35

1.87
±0.34

Efficiency rate: 0.2 2.56
±0.36

2.02
±0.32

Efficiency rate: 0.1 2.91
±0.43

2.18
±0.33

Efficiency rate: 0.0 4.12
±0.52

2.43
±0.33

TABLE II: Mean of the SAC-method performance index γ
over 100 episodes with the associated standard deviation.

D. Results discussion

In order to evaluate the significance of the result, a
method known as the Two-Sample Mean Comparison Test is
used [25]. This method assesses whether two sample means

differ significantly, considering their standard deviations and
sample sizes. It is performed calculating a statistic test and
comparing it to a critical value to determine significance
(Algorithm 3).

Algorithm 3 Test Difference of Means

1: function TEST MEANS(µ1, σ1, n1, µ2, σ2, n2, α = 0.05)
2: z0 = (µ1−µ2)√

σ2
1

n1
+

σ2
2

n2

3: zα
2

∼= 1.96
4: if z0 > zα

2
or z0 < −zα

2
then

5: return True ▷ Significant difference
6: else
7: return False ▷ No significant difference
8: end if
9: end function

This algorithm is applied to the results shown in Tables I
and II to compare the PID controller and the DRL-based
controller. It demonstrates that the DRL-based controller
leads to a significant improvement for all the fault cases
considered. Table III shows the result of z0 − zα

2
for all

fault cases.

Thruster T0 Thruster T5
Efficiency rate: 0.5 9.76 15.29
Efficiency rate: 0.4 18.58 12.85
Efficiency rate: 0.3 38.72 17.70
Efficiency rate: 0.2 29.06 19.09
Efficiency rate: 0.1 24.52 20.18
Efficiency rate: 0.0 8.61 21.90

TABLE III: Calculation of the Two-Sample Mean Com-
parison Test z0 − zα

2
for all fault cases, to compare the

PID controller and the DRL-based controller. Positive values
demonstrate the significance of the result.

To better understand the results, the UUV trajectories
were presented in three different scenarios: the first involves
no fault and is controlled by the PID (Fig. 5), the second
simulates a fault in thruster T5, reducing its efficiency to
0.2, while still using the PID control (Fig. 6), and finally,
the third scenario features the same thruster fault but uses
the DRL-based control method (Fig. 7).

The Fig. 6 shows that when the UUV is under PID control
and experiences the considered thruster fault, it fails to reach
the designated waypoint: it can be observed that the drone
is unable to descend sufficiently along the z-axis to reach
the waypoint, and that the trajectory deviates along the x
and y axis. This is attributed to the fact that thruster T5 is
a vertical thruster, involved in both the movement along the
z-axis and the rotation of the drone.

In contrast, the DRL-based method enables it to success-
fully navigate to the waypoint, as shown in Fig. 7, even
if the trajectory does not follow a straight line. This can be
interpreted by the fact that the DRL-based controller employs
dynamic strategies to maintain control and compensate for
the effects of the faulty thruster.

Fig. 5: UUV trajectory controlled by PID in the absence of
fault.

Fig. 6: UUV trajectory con-
trolled by PID, where T5 ef-
ficiency rate is 0.2%.

Fig. 7: UUV trajectory con-
trolled by the DRL-based con-
troller, where T5 efficiency
rate is 0.2%.

VI. CONCLUSION

The development of safe and efficient autonomous vehi-
cles is a key element in several applications of importance,
such as exploration, inspection, delivery of goods and assist-
ing people. However, the safe and effective control of these
vehicles is hampered by the inability of traditional control
systems to adapt to non-diagnosable faults. This problem is
even more pronounced for underwater vehicles that need
to operate in remote conditions. This paper presented a
fault management strategy for non-diagnosable faults using
a DRL-based controller. This strategy has been validated on
two thruster faults for waypoint navigation with a strong
improvement; based on a SAC algorithm, a DRL-based con-
troller for UUV has been compared a classical PID controller.
The evaluation of the results, through a performance index,
shows the superiority of the DRL-based controller over
the PID controller to overcome all the considered thruster
faults. However, work is underway for further validation on
more complex missions, including comparisons of different
DRL algorithms and consideration of multiple simultaneous
thruster faults.

REFERENCES

[1] Y. Sola, T. Chaffre, G. Le Chenadec, K. Sammut, and B. Clement.
Evaluation of a deep-reinforcement-learning-based controller for the
control of an autonomous underwater vehicle. In Global Oceans, 2020.

[2] T. Chaffre, G. Le Chenadec, K. Sammut, E. Chauveau, and
B. Clement. Direct adaptive pole-placement controller using deep
reinforcement learning: Application to AUV control. IFAC Conf. on
Control Applications in Marine Systems (CAMS), 2021.

[3] T. Chaffre, P.E. Santos, G. Le Chenadec, E. Chauveau, K. Sammut,
and B. Clement. Learning Adaptive Control of a UUV using A Bio-
Inspired Experience Replay Mechanism. IEEE Access, 2023.

[4] M. Manhaes, S. Scherer, M. Voss, L. Douat, and T. Rauschenbach.
UUV Simulator: A Gazebo-based package for underwater intervention
and multi-robot simulation. In MTS/IEEE OCEANS Conference, 2016.

[5] V. Berg. Development and Commissioning of a DP system for ROV
SF 30k. PhD thesis, NTNU, 2012.

[6] R. Yang, B. Clement, A. Mansour, M. Li, and N. Wu. Modeling
of a complex-shaped underwater vehicle for robust control scheme.
Journal of Intelligent and Robotic Systems, 2015.

[7] T. Fossen. Handbook of Marine Craft Hydrodynamics and Motion
Control. Wiley, 2011.

[8] M. Quigley et al. ROS: an open-source Robot Operating System. In
Proc. of the ICRA Workshop on Open Source Robotics, Japan, 2009.

[9] M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli,
and G. Veruggio. Experiences on actuator fault detection, diagnosis
and accomodation for rovs. International Symposiyum of Unmanned
Untethered Sub-mersible Technol, 2001.

[10] W. Abed, S. K. Sharma, R. Sutton, and A. Khan. An unmanned marine
vehicle thruster fault diagnosis scheme based on ofnda. Journal of
Marine Engineering & Technology, 2017.

[11] C. Tsai, C. Wang, Y. Chung, Y. Sun, and J. Perng. Multi-sensor fault
diagnosis of underwater thruster propeller based on deep learning.
Sensors, 21, 2021.

[12] E. Omerdic and G. Roberts. Thruster fault diagnosis and accom-
modation for open-frame underwater vehicles. Control Engineering
Practice, 2004. Guidance and control of underwater vehicles.

[13] Y. Sun, X. Ran, Y. Li, G. Zhang, and Y. Zhang. Thruster fault
diagnosis method based on gaussian particle filter for autonomous
underwater vehicles. International Journal of Naval Architecture and
Ocean Engineering, 2016.

[14] M. Tipaldi and B. Bruenjes. Survey on fault detection, isolation,
and recovery strategies in the space domain. Journal of Aerospace
Information Systems, 12(2), 2015.

[15] A. Alessandri, M. Caccia, and G. Veruggio. Fault detection of
actuator faults in unmanned underwater vehicles. Control Engineering
Practice, 7(3), 1999.

[16] S. Ahmadzadeh, M. Leonetti, A. Carrera, M. Carreras, P. Kormushev,
and D. Caldwell. Online discovery of auv control policies to overcome
thruster failures. In IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[17] Zhenzhong C., Fei M., Daqi Z., and Chaomin L. Fault reconstruction
using a terminal sliding mode observer for a class of second-order
mimo uncertain nonlinear systems. ISA Transactions, 97, 2020.

[18] A. Baldini, A. Fasano, R. Felicetti, A. Freddi, S. Longhi, and A. Mon-
teriù. A model-based active fault tolerant control scheme for a
remotely operated vehicle. IFAC-PapersOnLine, 2018. Symposium
on Fault Detection, Supervision and Safety for Technical Processes.

[19] L. Liu, W. Yu, and Z. Yu. Active fault-tolerant control design for a
submarine semi-physical simulation system. International Journal of
Control, Automation and Systems, 2018.

[20] A. Okada, A. Silva de Morais, L.C. Oliveira-Lopes, and L. Ribeiro.
A survey on fault detection and diagnosis methods. In 14th IEEE In-
ternational Conference on Industry Applications (INDUSCON), 2021.

[21] Y. Baoji, Y. Feng, W. Yujia, Z. Mingjun, and Z. Chenguang. Fault
degree identification method for thruster of autonomous underwater
vehicle using homomorphic membership function and low frequency
trend prediction. Proceedings of the Institution of Mechanical Engi-
neers, Part C: Journal of Mechanical Engineering Science, 2019.

[22] D. Stojcsics, D. Boursinos, N. Mahadevan, X. Koutsoukos, and
G. Karsai. Fault-adaptive autonomy in systems with learning-enabled
components. Sensors, 21, 2021.

[23] V. François-Lavet, P. Henderson, R. Islam, M. Bellemare, and
J. Pineau. An introduction to deep reinforcement learning. Foundations
and Trends® in Machine Learning, 2018.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning. PMLR, 2018.

[25] G. Snedecor and W. Cochran. Statistical Methods. Iowa state
University Press, Ames, Iowa, 1989.

