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Abstract—Modeling the atmospheric long-range propagation
is an important step in the development of observation, satellite,
or communication systems. This paper presents a parallelized
version of the two-way split-step wavelet method, designed to
enhance computational efficiency. Numerical experiments in the
UHF band are provided to highlight the benefits of the proposed
method. In the studied cases, we observe a 25%-60% gain in
terms of computation time, depending on the terrain taken into
account. The proposed approach is also leveraged to generate
a dataset for training a machine-learning model based on the
U-Net architecture.

Index Terms—long-range propagation, split-step method,
wavelet, parallel programming, machine learning

I. INTRODUCTION

Accurate modeling of tropospheric long-range propagation
is essential for applications such as predicting system cov-
erage, optimizing antenna placement (e.g., for 5G networks),
and assessing the impact of structures on system performance.
In this context, one should consider the effect of the relief,
refraction, and ground composition to obtain an accurate field
prediction.

A widely used model in this context is the parabolic
wave equation (PWE) [1]–[3]. Indeed, this latter omits the
backward propagation allowing wide steps in the propagation
direction. The split-step Fourier (SSF) [1], [3] or the split-
step wavelet (SSW) [4]–[6] methods can be used to efficiently
solve the PWE while accounting for the relief, the refraction,
and the ground composition.

Both methods rely on computing the field iteratively with
two steps at each iteration. The field is first propagated in
a free-space layer either in the Fourier domain, for SSF [3],
or in the wavelet domain, for SSW [4], [5]. Then, a phase
screen [1], [3] is applied in the spatial domain to take into
account the refraction. The effects of the relief and the ground
composition are also introduced in the spatial domain [2], [3].

Nonetheless, in this case, the reflections, when reaching
obstacles, are omitted. To overcome this problem, a two-
way PWE solved with SSF has been proposed in [7], [8].
This latter has been efficiently introduced in SSW [9], using
the advantage of compression. In this case, when the field
reaches an obstacle both the backward and forward waves
are propagated using either SSF or SSW, leading to a fast
increase of the computation time.

The objective of this article is twofold. First, a parallel
version of two-way SSW is proposed to overcome the compu-
tation time burden. Indeed, our objective is then to hybridize
this method with a Method of Moments as in [10], or to use

it to make reliable artificial data for machine learning models,
see [11], [12] for examples. In both cases, computation time
must be as low as possible. Second, the parallel two-way SSW
method is used as an input to train a machine-learning model.
The latter is based on a modified U-Net architecture [12]–
[14].

The remainder of this article is structured as follows.
Section II focuses on the parallel implementation of the two-
way SSW method. In Section III, some numerical experiments
are performed in the UHF-band in order to highlight the
advantages of the proposed method. Section IV introduces a
machine learning model for predicting path loss over rural
terrain using the proposed two-way SSW method as the
underlying model. Finally, Section V concludes the paper and
gives perspective for future works.

II. A PARALLEL TWO-WAY SPLIT-STEP WAVELET METHOD

A. The two-way PWE model

Throughout the paper, an exp(jωt) time dependence is
assumed, with ω = 2πf the angular frequency and f the
frequency. We also denote by n the refractive index and by
k0 the wave number.

The propagation is computed in a 2D domain, where the
usual Cartesian coordinate system (x, z) is used, with x the
propagation axis and z the altitude. We assume that the
field, denoted by Ψ, is known at x = 0. The propagation is
computed until xmax above the ground, i.e., z ≥ 0. Therefore,
the objective is to obtain Ψ in [0, xmax]× [0, zmax].

Under these conditions, the field can be decomposed into
its transverse magnetic (TM) and transverse electric (TE)
components. Since for both computations remain the same,
here we study the TE case. Indeed, they are both solutions of
a scalar Helmholtz equation.

To obtain the two-way parabolic equation (PWE), the field
Ψ is decomposed into two components as

Ψ(x, z) = exp(jk0x)uF(x, z) + exp(−jk0x)uB(x, z), (1)

with uF and uB, the forward and backward reduced fields [7],
respectively. The two are solutions of
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The latter correspond to the forward and backward propaga-
tions, respectively, and are different only by the sign of k0. In



the usual PWE model, only the first equation is used, since
only the forward propagation is accounted for, whereas here
the backward propagation is used when we reach an obstacle.

In the following sections, we introduce a parallel method
to efficiently solve these two equations.

B. An overview of one-way SSW

In this section, the one-way version of SSW [5] is ex-
plained, since it is used as the core of the parallel two-way
SSW method.

First, let us introduce the discretization and the notations
we use. The domain is discretized along the z-axis with a
step size ∆z and along the x-axis with a step size ∆x. With
pz ∈ [0, Nz], we have zpz

= pz∆z, where Nz = zmax/∆z.
The field at a position x is denoted by ux[·].

Second, the SSW algorithm is quickly reminded, for more
details see [4], [5]. This latter computes iteratively the field
by going back and forth in the wavelet and spatial domains.
One step of propagation from x to x + ∆x is performed as
follows:

1) The sparse vector of wavelet coefficients Ux, associated
with the field ux is obtained as

Ux = CVs
Wux,

where W corresponds to the fast wavelet transform
(FWT), and CVs

to compression with hard threshold
Vs.

2) The field is propagation, assuming a free-space layer,
in the wavelet domain as

Ux+∆x = PVp
Ux,

where PVp
corresponds to a sparse wavelet-to-wavelet

propagator [5]. The latter contains the compressed
(threshold Vp) wavelet coefficient associated with the
propagation of each wavelet of the basis.

3) We come back in the spatial domain, using an inverse
FWT , to take into account the effect of the refraction,
and the relief

ux+∆x = RLW−1Ux+∆x,

with W−1 the inverse FWT, L the phase-screen op-
erator [1], [3] to take into account the effect of the
atmosphere, and R that accounts for the relief (staircase
model [3]).

Finally, the effect of the ground is efficiently accounted for
using the local image method [4]. This latter allows us to
model the ground through the Fresnel coefficient with a
reduced number of points.

C. The parallel two-way SSW method

Now that the one-way SSW method has been reminded,
we can focus on its recursive two-way counterpart.

As the equations for uF and uB are the same within the
sign before k0, and the fact that we are propagating the first
toward +x and the second toward −x, both propagators are
the same [7]. Therefore, the idea is to use recursively the one-
way SSW to solve back and forth the forward and backward
propagation equations when reaching obstacles [7]–[9]. A
schematic representation of the method is pictured in Fig. 1.

Fig. 1: Example of a two-way propagation.

First, the field is propagated forward, pictured in green
arrows in Fig. 1, until an obstacle is encountered at position
xo. Here, we compute the initial field for the backward
propagation using

Ψ(xo) = t exp(jk0xo)uF(xo) = exp(jk0xo)uF(xo)

+ exp(−jk0xo)uB(xo), (3)

where t is the transmission coefficient. This condition aligns
with the transverse field condition due to the utilization of
a staircase model. For example, in the case of a PEC, we
have Ψ(xo) = 0. Then the backward field, pictured with red
arrows in Fig. 1, is computed from xo until 0 using uB(xo) as
the initial field. These steps are repeated at each encountered
obstacle.

It is important to note that the computational burden of this
method increases rapidly with the number of staircases needed
to represent the relief, since at each one a backward propa-
gation needs to be computed. To address this, we propose a
parallel version of the method in this paper, that drastically
reduces the computation time by leveraging multiple cores
for handling the multiple reflected propagations.

The primary challenge lies in establishing the connection
between forward and backward propagations. Specifically,
at each relief point, the reflection is computed from the
incident forward field, as outlined in Eq. (3). For now, let’s
consider a scenario where only the backward propagation
is considered. This approach can be extended for multiple
reflections, requiring numerous cores.

In this case, the idea is to obtain the relief map in
the propagation axis, i.e. where the reflections need to be
computed. This corresponds to the position of the rising
steps here. The forward propagation is executed until each
ascending step, where it is then split into the forward and
backward propagation, each assigned to different cores. The
backward part is propagated towards 0, while the forward
propagation continues until the next ascending step. Finally,
all the backward propagations are combined with the forward
propagation to yield the total field. For instance, in Fig. 1, one
core would handle the forward propagation (green arrows),
while each backward propagation (red arrows) would be
assigned to different cores.

III. NUMERICAL TESTS

In this part, some numerical tests are performed to high-
light the advantages of the proposed parallel two-way SSW
method. Those tests are carried out at f = 300 MHz in the



UHF band (more precisely in the C-band). Besides, all the
computations are performed using a desktop computer with
a 10-core i5 processor.

A. A canonical test

First, the method has been tested on a simple canonical
case, where some knife-edge reliefs are accounted for. Indeed,
we consider two knife-edge and one triangular obstacles
located at 10 km, 16 km, and 50 km of respective heights
100 m, 300 m and 200 m.

The propagation is computed for x ∈ [0, 100] km and z ∈
[0, 1024] m. The antenna is modeled by a complex source
point (CSP) [15] placed at xs = −50 m and zs = 120 m,
with a width of 5 m. The ground is assumed to be a PEC, and
the refractive index to be constant n = 1. For the thresholds
in SSW, we set them to have an error of at most −30 dB with
SSF at the last iteration, using the theoretical formula given
in [16].

In Fig. 2, we plot the field obtained with the parallel two-
way SSW in (a), and the normalized absolute difference with
the non-parallel version [9] in (b).

(a) Field computed (dB) with parallel two-way SSW.

(b) Normalized difference in (dB).

Fig. 2: Results for the canonical test.

As expected, the same results are obtained with the parallel
and non-parallel methods, see Fig. 2 (b). Indeed, the reflec-
tions at each obstacle are visible. Besides, the computation
for the parallel version is 16 s, while for the usual method

it is 24 s. In this context, we thus observe a gain of 33% in
terms of computation time compared to using only one core.

B. Application: propagation from Toulouse to Montauban

Second, we study a scenario closer to reality. Indeed, we
want to obtain the coverage of the antenna placed in Toulouse
(France), in one direction. This could be useful to optimize its
location, for example for the Toulouse airport radar antenna.

Therefore, we aim to compute the electromagnetic propa-
gation from Toulouse to Montauban, two cities distant from
50 km. The terrain between both is obtained through the IGN
data [17]. The parameters remain the same as the previous
test, except that a tropospheric duct is accounted for. The
latter is modeled using a tri-linear refractive profile [18] with
parameters : M0 = 330 M-units, c1 = 0.118 M-units/m and
c2 = −0.5 M-units/m for the gradients, and zb = 300 m and
zt = 250 m.

As before, in Fig. 3 (a) we plot the field computed with the
proposed parallel two-way SSW. The normalized difference
with the non-parallel method is presented in (b).

(a) Field computed (dB) with parallel two-way SSW.

(b) Normalized difference in (dB).

Fig. 3: Predicted coverage from Toulouse to Montauban.

Here, the propagation is computed in 174 s with the parallel
code, while it took 464 s with the non-parallel version. This
corresponds to an acceleration of more than 60%. Indeed,
compared to the canonical test, the model of the relief is
more complicated leading to more reflections to account for.



Besides, as expected, the result with both methods is the same,
see Fig. 3 (b).

Therefore, the parallel two-way SSW allows a drastic
reduction of the computation time, in particular when the
terrain considered becomes closer to reality.

IV. A DEEP TWO-WAY SSW METHOD

In this part, we present an application where the accelera-
tion provided by the parallelization is useful: implementing a
deep two-way SSW method. The objective here is to predict
the path loss at the height of the antenna given an input
terrain, as in [12].

A. The architecture

The idea of the machine learning model is to approximate
the function f , by a function f̂θ, which maps the input
physical phenomena (Φ) – such as terrain data, the refraction,
or ground composition– to a path loss prediction (ŷ). In this
definition, θ corresponds to network’s weight, and |θ| denotes
the dimension of the network parameters.

In this context, the input Φ considered is the 1D vector of
size Nx containing the terrain data, i.e. the altitude at each
step ∆x. Therefore, we have Φ ∈ RNx . The objective here is
to map this latter to a path loss prediction ŷ at the transmitter
altitude, thus ŷ ∈ RNx , through the function f̂θ.

In this work, we use supervised machine learning. Indeed,
we use data computed with the parallel two-way SSW method
to train the network. Thus, the function f : Φ 7→ y
corresponds here to the proposed parallel SSW method.

For this study, supervised machine learning is employed.
The network is trained using data generated through the paral-
lel two-way SSW method, thus corresponding to f : Φ 7→ y.

Since it has shown good results in related areas [12], [14],
a modified U-Net architecture is used here.While U-Net was
originally designed for image processing [13], we adapt it by
using 1D convolutions in place of the 2D convolutions.

This network consists of two main parts: the descending
part that allows the feature detection, and the ascending part,
in charge of the regression1.

In more detail, the first part seeks to extract useful infor-
mation from the input vector – the terrain profile, in this
case. To do so undergoes 5 levels of convolution, batch
normalization, ReLU activation windows, and subsampling
to condense the information into a latent space containing
only the essential terrain features. To limit |θ| the convolution
kernels are of size 5, and they are widened with a dilation
rate as in [14]. This latter is amplified throughout the feature
detection part to capture details further away for lower scales
without increasing the number of parameters θ.

Moving to the second part, the network focuses on con-
structing the path loss prediction from the features obtained
in the initial stage. The second stage also consists of 5 levels,
where we go from the lowest scale – or details about the
terrain – to the largest one through transpose convolutions,
convolutions, batch normalization, ReLU activation, and up-
sampling using skipped connections. All the convolution
kernels are of size 2, except the last which is of size 1 to
retrieve ŷ ∈ RNx .

1Note that this architecture reminds of SSW where CVsW could be seen
as the descending part and W−1PVp as the ascending part

B. Training of the network
In order to train the network, we first need to define an

appropriate objective function, referred to as the loss function.
This metric quantifies the proximity of predicted data ŷ to the
actual observations y. For this regression problem, we opt for
the widely-used mean square error (MSE) [12]. This leads to
the following empirical risk to be minimized:

inf
θ∈R|θ|

E
ϕ∼Lϕ

{
∥f(ϕ)− f̂θ(ϕ)∥22

}
, (4)

where Lϕ corresponds to the distribution of the samples ϕ
used to train the network.

Ideally, we want the latter to uniformly cover the manifold
of the physical phenomena while remaining memory and
computationally efficient. In this case, since a staircase model
is employed to describe the terrain, the dataset consists of
obstacles of triangular and rectangular shapes. To ensure a
well-distributed representation of the associated manifold, we
employ a Latin Hypercube Sampling (LHS) strategy. This
creates triangle and/or rectangle obstacles of different sizes
at varying positions. In more detail, the dataset consists of
1000 samples for terrain containing between 2 to 5 obstacles,
leading to 4000 samples in total. The latter is equidistributed
concerning the number of obstacles. We choose to focus here
on rural environments, with relief altitudes ranging from 0 to
65 m. Finally, we consider the transmitter at zs = 70 m and
a domain of size x ∈ [0, 80] km with ∆x = 50 m, leading to
Nx = 1600. For all the samples, we compute the target data,
i.e. the field in dB, with the proposed parallel two-way SSW
method. An example of a sample and the associated target is
given in Fig. 4.

For the training procedure, this dataset is divided into two
sets: the training set consisting of 80% of the samples and
the test set consisting of the rest, i.e. 20%, of the samples.
This partitioning is carried out for each subset associated with
a specific number of obstacles, thereby preventing potential
misrepresentation.

Fig. 4: Example of a sample for the dataset. The terrain and
the corresponding field are plotted.

It should be noted that this sampling strategy can be easily
generalized to introduce more obstacles or other physical
phenomena, such as the terrain composition.

Finally, to solve the problem (4), we employ a usual Adam
optimizer [19] for the stochastic gradient descent. In addition,



to mitigate overfitting, some dropout layers with a probability
p = 0.5 are introduced in the descending stage. Furthermore,
the bias of the last layer is set to the mean of the path loss
across the training samples to accelerate the training process.

C. Some numerical results

1) Validation of the training procedure: In this part, the
objective is to validate the training process of the network.

First, in Fig. 5, we show the convergence of the loss with
the number of epochs of the optimization process.

Fig. 5: Convergence of the loss over the training or test dataset
with the number of epochs.

One can see that the training procedure decreases, and
converges. Besides, the use of the mean of the field as the bias
of the last layer allows us to begin with a lower loss. Finally,
the better network, in terms of validation loss, is found at
epoch 38 and kept from now on.

Second, the training is further validated by computing the
path loss with the obtained network on a terrain with 6
obstacles. Indeed, this input is not in the training dataset.
In Fig. 6, we plot the predicted field for a random sample of
the terrain with 6 reliefs. The predicted fields with one-way
and two-way SSW are also presented for comparison.

Fig. 6: Predicted path loss for an input terrain of 6 obstacles.

We can conclude that the training process has worked well.
Indeed, the predicted field is very close to the one computed
with two-way SSW (the target), as can be seen with the loss

of 0.11, and mostly due to the highly oscillating part due to
diffraction near the first obstacle. Besides, one can see that
training with two-way SSW allows us to take into account
the backward propagation since between 40 and 50 km the
predicted field is close to the one computed with two-way
SSW but differs from the one obtained with the one-way
method.

2) Application: propagation from Paris to Chartres: In this
section, the proposed Deep-twoway-SSW method is tested
with true IGN [17] terrain data. The idea is to see how
accurate the method is for real-life applications. Thus, we
compare the machine-learning algorithm to two-way SSW. In
this test, we compute the field from Paris to Chartres, two
French cities distant by around 80 km and with a usual rural
terrain elevation. Nonetheless, to be in between the altitude
bounds of the LHS sampling, we normalize the IGN profile
to 60 m at most. The terrain and the computed fields with
two-way SSW and its Deep version are plotted in Fig. 7.

Fig. 7: Propagation from Paris to Chartres computed with
both SSW and Deep-SSW.

As expected, since the data are completely different from
the ones used to train Deep-twoway-SSW the MSE has
increased but is still low. Nonetheless, the overall variation
of the field has been well retrieved by the machine-learning
method. The main errors come from the very low and rapidly
oscillating extrema due to the diffraction from the rough part
at the beginning of the domain.

Finally, the inference time here is below 0.07 s, almost
in real-time on a conventional desktop computer. Therefore,
Deep-twoway-SSW allows an accurate first glance at the
propagation even with real landform data.

V. CONCLUSIONS AND PERSPECTIVES

In this article, we derived a parallel version of the two-
way SSW, addressing its computational problem. Indeed,
the parallel method allows a drastic reduction in terms of
computation time. In addition, we leverage this enhancement
to train a machine-learning network to predict radar coverage
in rural environments.

Numerical tests have been provided in the UHF band
to highlight the advantages of the parallel two-way SSW
method. In particular, we observe a gain of 25% to 60%
depending on the terrain considered, while, as expected, the
accuracy remains the same.



Furthermore, the derived Deep-twoway-SSW method has
shown promising results using a modified U-Net architecture,
together with a training dataset created in order to respect the
underlying physical model.

In future works, we plan to hybridize the parallel two-way
SSW method with the Method of Moments in order to model
the effect of targets, such as wind turbines or ships, on the
propagation. We also intend to further study the machine-
learning network to optimize and generalize it for 2D inputs.
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