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Abstract—In this work, we develop a robust method to retrieve
the shape of a metallic object from partial electromagnetic
measurements containing noise. The numerical resolution of the
inverse problem is tackled through parametric shape optimiza-
tion. To make the method robust, the expectation of the Kohn-
Vogelius cost function is minimized here: the key point is to
use the so-called Karhunen-Loève expansion in order to obtain
an explicit deterministic shape gradient. Then, the optimization
problem is solved using a Nesterov gradient scheme. Numerical
tests are provided to highlight the advantages and the efficiency
of the proposed method.

Index Terms—inverse scattering, shape optimization, ro-
bust method, Karhunen-Loève decomposition, Nesterov scheme,
Kohn-Vogelius functional

I. INTRODUCTION

Retrieving the shape of an obstacle using electromagnetic
measurements is a topic of major interest for many appli-
cations in defense, health monitoring, or geoscience. Many
techniques have been developed to tackle this inverse problem
(see, e.g., [1]–[4]).

For example, inverse synthetic-aperture radars use the
Doppler effect introduced by the movement of the target to
compute a high-resolution image of the latter [1], [3].

More recently shape optimization techniques have received
more attention from the inverse scattering community (see,
e.g., [5]–[7] in acoustics and [2], [4], [8] in electromagnetics).
The idea is to modify the shape of an initial object iteratively
to minimize an objective functional and obtain the field that
induced the observed measurements. The accuracy of the
reconstruction is measured by a suitable metric. Most of
the results have been obtained considering a least squares
functional, using for example topological [6] or level-set [4],
[7] shape optimization methods. Usually, the shape of the
object is modified using a conventional gradient descent
scheme, after the computation of the shape gradient. Notice
that the robustness (which means the sensitivity of the method
with respect to some errors on the data) has only been tested
numerically by adding noise to the measurements.

This paper aims to provide a robust inverse scattering
method based on shape optimization. We highlight the recent
work [9], where a robust method is developed to reconstruct
an obstacle in an elastic medium: here we want to adapt

this procedure in the inverse scattering context. Besides, we
focus here on the so-called Kohn-Vogelius functional (see,
e.g., [10], [11]) in the optimization process since it has been
shown to be more robust. Furthermore, to accelerate the
reconstruction a Nesterov gradient scheme (see [9]) is used
instead of a conventional gradient descent.

The remainder of this paper is organized as follows. Sec-
tion II focuses on the inverse model. First, some notations
and the direct problem are introduced. Second, the inverse
scattering problem with noisy measurements we are studying
is introduced. In Section III, we derive a robust shape op-
timization technique to retrieve the shape of the target. To
do so the inverse problem is rewritten as an optimization
one, where the expectation of the Kohn-Vogelius functional
is used as the cost function. Using the Karhunen-Loève
expansion, a deterministic expression of the functional is then
calculated. The latter is then minimized using a Nesterov
gradient scheme. Section IV highlights the advantages of
the proposed robust method through numerical tests under
different scenarios. Section V concludes the paper and gives
perspectives for improvements and future works.

II. THE INVERSE MODEL CONTAINING UNCERTAINTIES

A. Notations and direct problem

Throughout this paper, the following notations are used.
The vectors are denoted in bold, such as V . In particular, the
exterior unit normal vector of a domain is denoted by n. We
denote by ∂nu the normal derivative for a smooth function u.

For z ∈ C, its real and imaginary parts are denoted by
ℜ(z) and ℑ(z), respectively. Its complex conjugate is denoted
by z̄. Besides, we denote by j the imaginary unit here. For u
and v two complex-valued functions the usual scalar product
is used:

< u, v >=

∫
uv̄.

In this paper, we assume an exp(jΦt) time dependence,
with Φ = 2πf the angular frequency and f the frequency.
The wave number is denoted by k with k = 2πf

c , and c is
the speed of light in the considered media.

Let D ⊂ R2 be a nonempty connected bounded Lipschitz
domain. We assume that its boundary ∂D is divided into two



nonempty open subdomains (with a strictly positive measure)
as follows: ∂D = Γm ∪ Γc, Γm the part where we can make
some measurements and Γc its complementary in ∂D.

We consider the scattering of a given Perfectly Metallic
Conductor (PEC), denoted by O, with a smooth boundary ∂O,
strictly included in the domain D. We assume that in D\O
(which is assumed to be open and simply connected), the per-
mittivity and the permeability are respectively given by ε = ε0
and µ = µ0: it corresponds to the free-space.

The incident and scattered waves are denoted by ui and us,
respectively. The incident wave is assumed to be a plane wave
with an angle of incidence from the x-axis denoted by θi, and
an amplitude of ui0 . The total field u corresponds to the sum
of both such that

u = ui + us.

The notations are pictured in Fig. 1, with the target O in red.
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Fig. 1: Example of the considered domain D with the scat-
terer O (in red) inside.

Since the object is considered to be a PEC, the mathemat-
ical formulation of the forward problem is as follows: ∆u+ k2u = 0 in D\O,

∂nu+ jku = h on ∂D,
u = 0 on ∂O.

(1)

In this problem, we define

h = j(k − ki(θi) · n)ui0 exp(−jki(θi) · r),

where ki corresponds to the incident wave vector given by

ki = −k (cos(θi), sin(θi)),

and r = (xX , yX) is the position of a point X ∈ D. This
problem corresponds to the bounded formulation of the open
scattering problem, where the boundary condition on ∂D is an
absorbing boundary condition introduced such that the field
respects the Sommerfeld condition.

B. The studied inverse scattering problem

The aim of this work is to numerically solve the corre-
sponding inverse obstacle problem, from boundary measure-
ments. More precisely, we assume that a measurement u = g
is known on Γm and we want to reconstruct the PEC O. Thus,
the inverse problem can be formulated as:

Find O and the solution u ∈ H1(D\O) such that
∆u+ k2u = 0 in D\O,
∂nu+ jku = h on ∂D,

u = g on Γm,
u = 0 on ∂O.

In view of concrete applications, the main aim and novelty
of this work (which follows our previous work [11]) is to take
into account the uncertainties contained in the measurement g
and in the incident wave (and thus in h). More rigorously,
let (Ω,S,P) be a complete probability space. We assume
that g : Γm × Ω −→ R and h : ∂D × Ω −→ C are
two random fields belonging to the space L2

P(Ω,H
1/2(Γm))

and L2
P(Ω,H

−1/2(∂D)), respectively. Then, for a given ω ∈
Ω, the inverse problem can be rewritten as

Find O and the solution u(ω) ∈ H1(D\O) such that
∆u(ω) + k2u(ω) = 0 in D\O,
∂nu(ω) + jku(ω) = h(ω) on ∂D,

u(ω) = g(ω) on Γm,
u(ω) = 0 on ∂O.

(2)

Notice that u(ω) is thus a random field.
The objective is to ensure a robust reconstruction of the

PEC, even if the measurements contain errors. To do so, the
strategy is to, as usual, consider an optimization problem but
instead of minimizing a well-chosen cost function we aim to
minimize its expectation. The following section explains in
more detail this procedure.

III. A ROBUST SHAPE OPTIMIZATION METHOD

A. An optimization reformulation

In order to numerically solve the above inverse problem (2),
we have in mind the classical and natural idea which consists
in minimizing a cost functional. We here focus on the so-
called Kohn-Vogelius functional (as studied in [11]) which
is, in this context, a random process given, for ω ∈ Ω, by

K(O, ω) =
1

2

∫
D\O

|∇(uD(ω)− uR(ω))|2,

where the random fields uD(ω) and uR(ω) respectively solve
∆uD(ω) + k2uD(ω) = 0 in D\O,
∂nuD(ω) + jkuD(ω) = h(ω) on Γc,

uD(ω) = g(ω) on Γm,
uD(ω) = 0 on ∂O,

and  ∆uR(ω) + k2uR(ω) = 0 in D\O,
∂nuR(ω) + jkuR(ω) = h(ω) on ∂D,

uR(ω) = 0 on ∂O.



The aim is to come back to a deterministic problem, in order
to avoid stochastic methods which can be very costly in a
shape optimization process. To do this, we choose to minimize
the expectation of the shape functional K. Thus, we now want
to minimize the following functional

K(O) = E(K(O, ω)).

Notice that all the results presented in this work can be easily
adapted to the classical least squares functional.

The key point is to assume that the measured Dirichlet
data g and the Robin boundary condition h are perturbed by
a finite-dimensional noise of the form

g(x, ω) = g0(x) +

M∑
i=1

gi(x)Yi(ω)

and

h(x, ω) = h0(x) +

M∑
i=1

hi(x)Yi(ω),

where M > 0 is a given integer, where gi ∈ H1/2(Γm)
and hi ∈ H−1/2(∂D), i = 0, · · · ,M , are deterministic, and
where the random variables Yi are independent and identi-
cally distributed random variables, Yi ∼ Y , are centered,
E(Y ) = 0, and normalized, V(Y ) = 1.

Notice that this assumption concerning g is natural having
in mind several independent measurements from which we
can derive the sample mean and the sample covariance. Then,
such an expression can be derived from by means of the
Karhunen–Loève expansion (see, e.g., [9] for details). The
same remark holds for the incident wave, and then for h.

Then, the linearity of the Helmholtz equations and the
superposition principle lead

uD(x, ω) = uD0
(x) +

M∑
i=1

uDi
(x)Yi(ω)

and

uR(x, ω) = uR0
(x) +

M∑
i=1

uRi
(x)Yi(ω),

where, for all i = 0, . . . ,M , uDi
and uRi

solve respectively
∆uDi

+ k2uDi
= 0 in D\O,

∂nuDi
+ jkuDi

= hi on Γc,
uDi

= gi on Γm,
uDi

= 0 on ∂O,

(3)

and  ∆uRi
+ k2uRi

= 0 in D\O,
∂nuRi + jkuRi = hi on Γc,

uRi = 0 on ∂O.
(4)

B. Estimation of the expected value

The aim is first to find an expression of the expected value
that is of the functional K(O). Since |∇(uD − uR)|2 is a
positive function, we can use Fubini’s theorem to obtain

K(O) =
1

2

∫
Ω

∫
D\O

|∇(uD(ω)− uR(ω))|2dxdP(ω)

=
1

2

∫
D\O

∫
Ω

|∇(uD(ω)− uR(ω))|2dP(ω)dx.

Then some computations give

|∇(uD(ω)− uR(ω))|2 = |∇(uD0
− uR0

)|2

+ 2

M∑
i=1

∇(uD0
− uR0

) · ∇(uDi
− uRi

)Yi(ω)

+

M∑
i,j=1

∇(uDi
− uRi

) · ∇(uDj
− uRj

)Yi(ω)Yj(ω).

Taking into account that Yi are independent, identically dis-
tributed random variables centered and normalized, we obtain

K(O) =
1

2

∫
D\O

|∇(uD0
− uR0

)|2

+
1

2

M∑
i=1

∫
D\O

|∇(uDi − uRi)|2. (5)

This expression is now deterministic and thus we can follow
some classical shape optimization strategies to minimize it.
It should be noted that when minimizing (5), the second
part of the expression intends to eliminate all components of
the noise (except its mean), thereby leading to more robust
results.

C. Shape gradient and optimization algorithm

In order to minimize the above Kohn-Vogelius functional
K, we aim to use a gradient type algorithm and thus we
have to compute its shape gradient. Roughly speaking,
the shape gradient of K at O is obtained by comput-

ing lim
η→0

K(Oη)− K(O)

η
, where Oη = (I + ηV )(O) is a

perturbation of the domain O, with η ̸= 0 and V a direction
perturbation (see, e.g., [12], [13] for details on the notion of
shape derivatives). Note that results on the existence of the
shape derivatives concerning our problem have been proven
in [2].

Using the expression (5), the computation of the shape
gradient of K becomes analogous to what we have done
in [11]. After some tedious computations, for given admis-
sible shape O and admissible perturbation V , we obtain the
following useful expression:

∇K(O) · V = ℜ

(∫
∂O

(V · n)
M∑
i=0

(
1

2
|∇(uDi

− uRi
)|2

+ ∂nuDi

(
∂nzi − ∂n(uDi

− uRi
)
)
− ∂nwi∂nuRi

))
, (6)



where, for all i = 1, . . . ,M , uDi and uRi respectively solve
the above systems (3) and (4), and wi and zi are the solutions
to the respective following adjoint problems ∆wi + k2wi = −k2(uDi − uRi) in D\O,

∂nwi + jkwi = −jk(uDi
− uRi

) on ∂D,
wi = 0 on ∂O,

(7)

and
∆zi + k2zi = −k2(uDi

− uRi
) in D\O,

∂nzi + jkzi = ∂n(uDi
− uRi

) on Γc,
zi = 0 on Γm,
zi = 0 on ∂O.

(8)

Notice that, in order to compute its shape gradient, we have
to solve, at each iteration, 4M partial differential equations
of the same type. Indeed, only the source term is different,
thus it is not too expensive numerically.

D. Numerical inversion strategy

From now on, the aim is to approach the solution to the
following optimization problem

min
O∈Uad

K(O),

on a set Uad of admissible shapes.
We follow the same strategy as in [11], that is we consider

a truncated Fourier series parametrization for the boundary of
the object O:

∂O =
{
(xc, yc)

t + r(cos(Θ), sin(Θ))t

+

N∑
n≥1

(an, bn)(cos(nΘ), sin(nΘ))t(cos(Θ), sin(Θ))t,

Θ ∈ [0, 2π[
}
,

where the upper script t denotes the transpose, (xc, yc) is
the center, r is the radius, and where N ∈ N∗. Moreover,
we have performed a Nesterov gradient descent scheme with
restart (see [9] for details on the algorithm, see also [7]),
using the shape gradient given by (6). Finally, to overcome
the instability of the inverse problem, the Fourier coefficients
are added one after another, after a given number of iterations.

IV. NUMERICAL TESTS

To conclude this work, we perform some numerical tests
in order to highlight the efficiency of the proposed method,
using the PDE solver Freefem++ (see [14]). For those tests,
artificial data are computed from the direct problem (1) using
a P2 finite element method on a coarse mesh. In order to avoid
the so-called inverse crime, Problems (3), (4), (7) and (8),
needed in the optimization process (to compute the descent
direction using the above shape gradient expression), are
solved using P1 finite elements on a less coarse mesh.

A. Framework of the simulations

In all the simulations, D is the square ]− 1, 1[× ]− 1, 1[
and the initial guess O0 is a disk of center (−0.1, 0.1)
and radius 0.4 pictured in yellow line below. We assume
that the measurements are performed on the top, bottom,
and right boundaries of D, pictured in green below (which
represent Γm). We aim to retrieve the real PEC given by

∂O =
{(

x = 0.15 + 0.65 cos(Θ)− 0.25 cos2(Θ)

− 0.15 sin(Θ) cos(Θ) + 0.08 cos(3Θ) cos(Θ) ;

y = 0.05 + 0.65 sin(Θ)− 0.25 cos(Θ) sin(Θ)

− 0.15 sin2(Θ) + 0.08 cos(3Θ) sin(Θ)
)
, Θ ∈ [0, 2π[

}
,

pictured in black below.
The incident field ui is assumed to come from θi = 45◦ (in-

side the convexity of the target), with a frequency of 3 MHz.
The maximal number of iterations for the optimization loop
is fixed to 200. One could also adjust a stopping criterion
on the accuracy of the results. Here the center is searched
for 5 iterations, then the radius is modified, and a Fourier
mode is added each Np = 15 iterations.

B. With a noisy measurement g

In these first tests, we consider the case of a perfectly
known h but a noisy measurement g. More precisely, we
consider g of the following form :

g(ω) = gdir +

4∑
i=1

βg sin(iϕ)Yi(ω), (9)

where gdir corresponds from artificial measurements com-
puted through the direct problem (1), ϕ to the angle at the
position (xX , yX), and βg to a noise scaling function with
respect to the real data gdir. This latter obviously meets the
assumptions introduced in Section III.

The results are pictured in Fig. 2. First, in (a) we plot the
obtained shapes computed with the robust (in dotted lines) and
usual (in dashed lines) methods, when 0%, 5% and 10% of
noise levels are considered. Second, in (b) the corresponding
value of the cost functionals K (in dotted lines) and K (in
dashed lines) with respect to the iterations are pictured.

In this case, the robust method demonstrates its effective-
ness. As depicted in Fig. 2 (a), even with a 5% noise level,
the results outperform those obtained using the functional
K. The reconstruction is nearly as precise as in noise-free
conditions. Moreover, with a 10% noise level, the robust
method produces results comparable to those achieved with
the classical method under 5% noise conditions. These obser-
vations are supported by the behavior of the functionals K and
K. Notably, as the noise level increases, K exhibits a rapid
escalation, whereas K displays a relatively muted response.

C. With noisy data g and h

In this second test, we consider that both the measurement
and the incident wave, that is g and h, are noisy. More
precisely, we consider the same noisy measurement g as



(a) Real and retrieved objects for different levels of noise

(b) The corresponding value of the cost functional K

Fig. 2: Reconstruction of the PEC with a noisy measure-
ment g.

above (see (9)) with a fixed noise level of 5%. We add here
the assumption that the amplitude contains noise and thus h
is of the following form

h(ω) = j(k − ki(θi) · n)ui0 exp(−jki(θi) · r)

+ j(k− ki(θi) ·n)βh

4∑
k=1

sin(kϕ)Yk(ω) exp(−jki(θi) · r),

where ui0 is the true amplitude, and βh a noise scaling coeffi-
cient with respect to the norm of h. Thus, the assumptions of
Section III are met. Note that taking into account noise on h
has more influence than on g since the boundary condition h
intervenes in the resolution of all the problems solved by uDi

and uRi
(while g only appears in the problems solved by uDi

).
The results are pictured in Fig. 3. As previously, we plot

in (a) the obtained shapes with both the robust (in dotted lines)
and the conventional method (in dashed lines) for different
noise levels on h, i.e., 1% and 3%. In (b), the values of the
cost functions K (in dotted lines) and K (in dashed lines) with
respect to the number of iterations and for the different levels
of noise are pictured.

(a) Real and retrieved objects for different levels of noise

(b) The corresponding value of the cost functional K

Fig. 3: Reconstruction of the PEC with noisy data g and h.

As expected, it can be observed that the reconstruction of
the shape seems to be more sensitive with respect to the noise
on h. Nevertheless, the reconstruction is still suitable, at least
for 3% of noise on h, and the robust method allows a better
reconstruction. We can notice that in practice, the incident
wave is quite well known and thus the level of noise on h is
quite small (less than 3%). One can also note from Fig. 3 (b)
that the functional without using the robust method starts to
increase at 3% of noise on h.

V. CONCLUSION

In this article, we derived a robust method to retrieve
the shape of a metallic target from noisy electromagnetic
measurements. A parametric shape optimization procedure
was used and the expectation of the Kohn-Vogelius functional
was minimized. Using the Karhunen-Loève expansion, we
obtained a deterministic expression for the cost function from
which we computed the shape gradient and obtained a descent
direction. Then, we employed a Nesterov gradient scheme to
tackle the resulting deterministic problem.

Numerical experiments have been performed under differ-
ent scenarios. Firstly, we considered the case where only
the measurements had noise. The robust method showed



promising results, outperforming the non-robust approach in
terms of reconstruction accuracy. Secondly, we assumed that
both the measurements and the incident wave contained noise.
In this case, the results are still better with the robust method,
but the latter seems to be more sensitive to a completely noisy
setup.

In future work, we plan to investigate another objective
robust functional that combines the first and second-order
moments of the random Kohn-Vogelius cost functional. In
addition, the case of multiple sources and multiple receivers
is also being studied to have a more accurate model. Finally,
we will consider the case where the target is not a PEC in a
forthcoming work.
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