
HAL Id: hal-04267641
https://ensta-bretagne.hal.science/hal-04267641v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Learning Adaptive Control of a UUV using A
Bio-Inspired Experience Replay Mechanism

Thomas Chaffre, Paulo Santos, Gilles Le Chenadec, Estelle Chauveau, Karl
Sammut, Benoit Clement

To cite this version:
Thomas Chaffre, Paulo Santos, Gilles Le Chenadec, Estelle Chauveau, Karl Sammut, et al.. Learning
Adaptive Control of a UUV using A Bio-Inspired Experience Replay Mechanism. IEEE Access, 2023,
pp.1-1. �10.1109/ACCESS.2023.3329136�. �hal-04267641�

https://ensta-bretagne.hal.science/hal-04267641v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Learning Adaptive Control of a UUV using
A Bio-Inspired Experience Replay Mechanism
THOMAS CHAFFRE2,4, PAULO E. SANTOS2,4, GILLES LE CHENADEC1, ESTELLE CHAUVEAU3,
KARL SAMMUT2,4 (Senior Member, IEEE), and BENOIT CLEMENT1,2,4
1Lab-STICC UMR CNRS 6285, ENSTA Bretagne, France
2Centre for Defence Engineering, Research and Training, College of Science and Engineering, Flinders University, Adelaide, Australia
3Naval Group Research, Ollioules, France
4CROSSING IRL CNRS 2010, Adelaide, Australia

Corresponding author: Thomas Chaffre (e-mail: thomas.chaffre@ensta-bretagne.org).

ABSTRACT Deep Reinforcement Learning (DRL) methods are increasingly being applied in Unmanned
Underwater Vehicles (UUV) providing adaptive control responses to environmental disturbances. However,
in physical platforms, these methods are hindered by their inherent data inefficiency and performance
degradation when subjected to unforeseen process variations. This is particularly notorious in UUV ma-
noeuvring tasks, where process observability is limited due to the complex dynamics of the environment
in which these vehicles operate. To overcome these limitations, this paper proposes a novel Biologically-
Inspired Experience Replay method (BIER), which considers two types of memory buffers: one that uses
incomplete (but recent) trajectories of state-action pairs, and another that emphasises positive rewards. The
BIER method’s ability to generalise was assessed by training neural network controllers for tasks such as
inverted pendulum stabilisation, hopping, walking, and simulating halfcheetah running from the Gym-based
Mujoco continuous control benchmark. BIER was then used with the Soft Actor-Critic (SAC) method on
UUV manoeuvring tasks to stabilise the vehicle at a given velocity and pose under unknown environment
dynamics. The proposedmethod was evaluated through simulated scenarios in a ROS-based UUVSimulator,
progressively increasing in complexity. These scenarios varied in terms of target velocity values and the
intensity of current disturbances. The results showed that BIER outperformed standard Experience Replay
(ER) methods, achieving optimal performance twice as fast as the latter in the assumed UUV domain.

INDEX TERMS Deep reinforcement learning, machine learning, adaptive control, underwater robotics.

I. INTRODUCTION

AUTOPILOTS for unmanned systems are usually de-
signed based on the feedback provided by velocity and

orientation sensors. In the specific case of Unmanned Un-
derwater Vehicles (UUVs), the main objective of this design
is to compensate for waves and current-induced disturbing
forces acting on the vehicle’s body. Existing UUV autopi-
lots are however only able to compensate for low-frequency
components of sea-induced disturbances. It seems natural to
assume that UUV performance could be improved by taking
into account the nature of disturbances in autopilot design.
Adaptive control [3] provides an ideal framework to cope
with this issue. The objective is to automatically adjust the
control parameters when facing unknown or time-varying
processes such that a desired performance threshold is met.
The motivating hypothesis is that robust designs with fixed
parameters are too limited to handle complex regimes.

This work falls under the umbrella of learning-based adap-

tive control methods, in which machine learning algorithms
are used to compensate for the unknown (or unmodelled)
part of a process, while robust control of its known part
is maintained using traditional control methods. The distur-
bances in the UUV environment (such as marine currents)
are considered the unknown part of the process, whereas the
maneuverability of the vehicle in the absence of disturbances
constitutes its known part. In this context, the present paper
proposes a novel Bio-Inspired Experience Replay method
(BIER) that aims to incorporate concepts from the biological
Replay Mechanism [21] in the context of Deep Reinforce-
ment Learning (DRL) algorithms [33]. The BIER method
extends the traditional Experience Replay (ER) strategy by
incorporating two new buffers representing distinct memory
management strategies:

(i) the sequential-partial memory uses incomplete se-
quences of state-action pairs (trajectories) to train the

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

machine learning algorithm, while providing more em-
phasis on recently learned policies in the ER process;

(ii) the optimistic memory emphasises the use of positive re-
inforcement, by increasing the probability of transitions
associated with high-reward regions in ER training.

A. LEARNING-BASED ADAPTIVE CONTROL
Real-world systems are, in general, non-linear, and their
motion equations, parameters, and system measurements are
affected by uncertainty. A realistic scheme is to consider the
fact that the process model is partially available. In learning-
based adaptive controllers, model-free algorithms are used to
mitigate this lack of a complete description of the process
by finding (learning) an approximate representation of the
unavailable process model, or by fitting (tuning) the best
control parameters for a target behaviour. Let t represent
time, x the state variable, and u and p the input variables, the
dynamics of such systems can be represented as the sum of
their known (f1) and unknown (f2) parts:

ẋ(t) = f1(t, x, u) + f2(t, x, p), (1)

y(t) = h(t, x, u), (2)

where classical model-based control methods can be used to
efficiently control f1, while f2 can be approximated by model-
free learning algorithms. Current approaches for learning-
based control design estimate the unknown part of the model
by Artificial Neural Networks (ANN), whose weights are
obtained using some form of optimisation procedure. Another
prominent solution is to use DRL to find the optimal control
parameters bymaximising the agent’s future rewards. In DRL
learning occurs through the interaction between an agent and
the environment, whereas the value of states and actions (and
consequently the policy) are approximated by deep neural
networks [35].

DRL can be defined as a Markov Decision Process (MDP)
expressed as a tuple ⟨S,A,T ,R⟩, in which: S is the set of
possible states; A is the set of actions that can be executed
by the agent; T is the transition function that defines the
probability of reaching a successor state s′ ∈ S from the
application of action a ∈ A in a state s ∈ S; R is the
reward function. In the domain of optimal control, the agent
is identified with the controller, environment is the controlled
system (or plant), and action is the control signal [35].
In this context, the learning process can be summarised by

the following three steps:
• Step 1: at an instant t , an action a ∈ A is chosen by the

agent in a state s ∈ S;
• Step 2: the execution of a by the agent to reach the state
st+1 ∈ S, in return the agent receives a scalar value rt ,
the reward signal, which is a numerical representation
of the action outcomes with respect to a reward function
R(s). The goal of DRL is to maximise this reward func-
tion;

• Step 3: the agent updates the value of executing action
a based on the reward received, according to the learned
policy.

Deep Policy Gradient (DPG) algorithms presented in [12]
are considered suitable for handling robotic tasks due to the
lower dimensionality of searching in the space of policies
compared to searching the state space, and the algorithm’s
proven capacity of dealing with non-observable disturbances
in real environments. These methods rely on the Actor-Critic
architecture [30], where the value and policy functions are es-
timated simultaneously to improve the agent’s performance.
Progress in DPG methods has led to the development of
specialised algorithms, such as the deep deterministic policy
gradients (DDPG) [31], or the twin-delayedDDPG (TD3) [9],
that are efficient against high-dimensional continuous spaces.
Two main approaches, classified as direct and indirect, are

dominating the field of learning-based adaptive control of
UUVs using DPG algorithms. In the former, the PI / PID con-
trol parameters are adjusted directly by a DPG method [28],
[39]; whereas in the latter, the adjusted control parameters are
the result of solving an optimisation problem where the state
and/or unknown parameters of the process are first estimated
and then used to compute the associated optimal parameters
[19]. In this work, a direct learning-based adaptive controller
was designed using a Maximum Entropy DPG algorithm, the
Soft Actor-Critic (SAC) method. Contrary to the algorithms
mentioned above, SAC builds a stochastic policy and aims
at maximising the expected return as well as the entropy of
the policy. This leads to better training and evaluation perfor-
mances compared to DDPG and TD3. A complete description
of the approach is provided in Section III-B.
Off-policy mechanisms, such as the Experience Replay

(ER), have been developed to reduce the variance of the
estimates of the policy and values functions of DPG algo-
rithms using past experience. The performance of Deep Pol-
icy Gradient methods is, however, sensitive to the distribution
shift problem, which is the difference between the training
and evaluation sets of states in the context of DRL. The
biologically-inspired ER strategy proposed in this work aims
to mitigate this issue.

II. EXPERIENCE REPLAY (ER)
Given that an agent’s experience at time step t is defined
as the tuple et = (st , at , rt , st+1), the general ER method
consists of storing (at each time step) the experience et in
a memory unit D = {e1, . . . , et} of fixed size, the replay
buffer [32]. Then, ANNs are trained by performing mini-
batch gradient descent of past experiences randomly pooled
over the replay buffer in order to approximate the optimal
policy. The estimators are hence trained on Independent and
Identically Distributed (IID) samples that are generated by
various trajectories and policies. This general formulation
relies on various parameters that impact the algorithm’s per-
formance. One such parameter is the replay buffer size, which
determines the amount of data available for the agent to learn
from. A larger buffer results in more IID data, leading to
optimised gradient iterations. If, however, the buffer becomes
too large, important state transitions may have less chance
of being selected during the policy update process, which

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

can hinder the learning process. On the other hand, if the
replay buffer is too small, the learned policy may be biased
towards recent transitions, resulting in poor performance.
Another parameter to consider is the age of a transition,
which measures the number of gradient steps taken by the
agent since the transition was generated. This age tells us
how different the oldest policy stored in the replay buffer is
from the current one. Additionally, the replay ratio, which is
the number of gradient updates per transition, can reflect the
balance between learning from existing data and collecting
new experiences. A higher replay ratio implies that the agent
is relying more on existing data for learning, while a lower
ratio indicates a higher reliance on new experiences.

A solution to the negative impact of the replay buffer size
on the learning performance consists of adding the latest
transition performed to the pooled mini-batch on the re-
play buffer, as proposed in the Combined Experience Replay
(CER) method [40]. In this case, the most recent transition is
always sampled, which immediately affects the policy. How-
ever, a drop in performancewas observedwhen usingCER for
certain replay buffer sizes. This behaviour was related to the
process itself rather than to the aforementioned parameters
[40]. In this paper, we propose a new ER mechanism aiming
to decouple the performance of the agent from the process
complexity, thus solving the performance issues observed
when applying the CER method.

Recent analysis presented in [21] revealed that increasing
replay capacity while keeping the age of the oldest policy
fixed can enhance performance by reducing overfitting. As
training progresses, spending more time in high-reward re-
gions leads to better estimation of returns and to an improved
performance.

Another finding was that increasing the buffer size with
a fixed replay ratio also improves the learning process, with
the replay ratio remaining constant when the buffer size is
increased due to the replay capacity and the age of the oldest
policy. Modulating these factors independently will change
the replay ratio. In the context of this study, the insights
from biological experience replay (ER) mechanisms [18] are
noteworthy. Biological systems exhibit temporally structured
replay mechanisms, where temporally correlated experience
sequences are used for the combination of learning and mem-
ory. This allows for more combinations of neurons, leading to
a faster emergence of temporal waking experiences. However,
existing machine learning methods often ignore this feature
and only replay static and uncorrelated inputs. Another im-
portant aspect of biological ER is that the replay is modulated
by reward, with only a few selected experiences being used.
It is intuitive to assume that not all experiences are equally
useful for learning a new task, as some may contain more
relevant information than others about the dynamics of the
task. However, the challenge lies in modelling and measuring
the quality of this information. Additionally, replay in biolog-
ical systems is treated differently for novel versus non-novel
inputs, with selective replay being weighted by novelty. This
aligns with the tendency of biological systems to reduce the

attention given to older experiences and prioritise more recent
ones that contain more relevant information for the current
situation.
In this paper, we propose a new ER mechanism that in-

cludes these insights from biological systems, while keeping
in mind the constraints related to the regression problem.

III. UUV MANOEUVRING CONTROL
The application domain of this work is the control of UUV
manoeuvring tasks, which can be summarised as the sta-
bilisation of an underwater vehicle at a fixed velocity and
orientation. Therefore, the state vector is defined as x =
[x y z ϕ θ ψ]T . The vehicle is fully actuated but subject to
external disturbances which consist of:

1) first-order current-induced forces (i.e. zero-mean oscil-
latory motions), and

2) second-order wave-induced forces (i.e. nonzero varying
components).

In the present case, these forces are assumed as non-
observable. The dynamics can therefore be framed as the
combination of its known f1 and unknown f2 parts.
Let the error between the present (x̄i) and the desired (xrefi)

state variable be defined as ei = xrefi − x̄i. The task of
steering the UUV in order to maintain the error signals within
a specific threshold (χ), over a predefined amount of time
(guaranteeing the vehicle stabilization), can be achievedwhen
the following control objective is met:

∀ t ′ ∈ [t − ς, t], ∄ i ∈ Ru such as | ei(t ′) | > χ, (3)

where Ru is the space of control inputs, t is the current time
step and ς is the time period over which all the errors ei are
maintained at a value that is less than a small threshold χ.
This work used the RexROV2 platform, described in [13]

and illustrated in Figure 1, which is a cubic-shaped UUV
whose physical model instantiates themodel-based part of the
controller (f1), as summarised below [7].

FIGURE 1. The RexRov2 platform simulated in Gazebo.

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

A. DESIGN OF THE MODEL-BASED PART OF THE
CONTROLLER
The complete modelling of the RexRov2 platform is chal-
lenging [5], [38], but it can be summarised in the state-space
representation form [22] as:

η̇ = JΘ(η)ν,

M ν̇ + C(ν)ν + D(ν)ν + g(η) = δ + δcable,
(4)

where η and ν are the position and velocity vectors respec-
tively, δ is the control force vector, and δcable is the vector
describing the umbilical forces from the cable attached to
the ROV. RexROV2 is propelled by 6 thrusters, while the
control vector δ is obtained from the following equation
δ = T(α)Ku, where T(α) ∈ Rn×r is the thrust allocation
matrix;K is the thrust coefficient matrix; δ is the control force
vector in n Degrees of freedom (DoF) and u ∈ Rr is the
actuator input vector. Using the thruster allocation matrix, the
vehicle can be directly controlled in the surge, sway, heave,
roll, pitch and yaw dimensions. The UUVSimulator emulates
several current and wave disturbances, thruster dynamics, and
body wrench disturbances. When incorporated into simula-
tions, the induced forces have a real physical impact on the
vehicle and on the dynamics of its surrounding fluid. The sea
current disturbance (which is the main focus of this study)
is modelled as a uniform force acting over the simulated
environment. This force is represented as a linear velocity, vc
(in m.s−1), a horizontal hc and a vertical angle jc (measured in
radians). The UUV is equipped with an Inertial Measurement
Unit (IMU) that returns the velocity and orientation (in Euler
angles). These variables are accessible through ROS topics
[15]. Our software architecture consists of using the simula-
tion meta-data to train the learning algorithms considered in
this work.

This work also assumes that the controlled UUV is fully
observable and controllable. This means that each of the
vehicle’s DoFs is measurable, and the desired vehicle states
(within the operating regimes) are supposed to be accessible.
In the present case, only the vehicle’s IMU feedback is avail-
able, thus the characteristics of the current disturbance can
neither be measured directly nor estimated. In this context, a
PID-type control law can be considered [2]. The PID state-
space is given as state feedback Ẋ = (A−BK)X , whereas its
control law is given by Eq. (5), where kp, ki and kd ∈ R+, anti-
windup is added on the integral term, and a low-pass filter is
applied on the derivative term to reduce oscillations induced
by process noise.

u = kpe+ kiσ + kd ẋ. (5)

To ensure the stability of the control law (in terms of output
boundness), the poles of Eq. (5) must be placed in the com-
plex left half-plane. For this, we only consider as eigenvalue
candidates the solutions of λ3+λ2kd+λkp+ki = 0. In order
to maintain the dimension of the gain space, the pole-value
candidates τi ∈ R+ can be the following terms:

λ1 = −1/τ1;λ2 = −1/τ2; λ3 = −1/τ3. (6)

The resulting gains of the control law (Eq. (5)) are obtained
by a resolution and transformation fully explained in [7].
From this, the bounds for the controller parameters can be
defined on the basis of control constraints that are easier
to derive in the pole domain. In the present case, with the
design represented in Eq. (6), for any τi > 0, the poles of
the feedback loop are placed on the x-axis of the complex
left half-plane. According to the control objective (Eq. (3)),
the desired maximum settling time of the closed-loop control
ς = 10 seconds is defined as the maximum time after which
we want the system outputs to stay around χ = 5% of its
desired values.We set τmin = 0.025 because, for lower values,
the control inputs are too expensive in terms of control efforts
and too aggressive for our control objective. Thus, the bounds
of the poles are chosen as:

0.025 ≤ τi ≤ 3.338. (7)

The stability of the control loop must also be taken into
account when contemplating its implementation on actual
UUVs, especially due to their substantial operating expenses
and the elevated risk of vehicle loss in a real maritime envi-
ronment. Prior work [29] has shown that Lyapunov stability
analysis can be conducted for the proposed learning-based
adaptive control design in the context of UUVs.

When having access to limited information about the en-
vironment disturbances, and under time-varying processes,
model-free adaptation can be exploited. To take into account
the uncertainties in pole selection, we propose to use DRL to
build a stochastic predictive model πµ that maps a state vector
st into the pole values. The objective of the learning agent is
to build a predictive model that directly maps the UUV state
to the pole values τi used to compute the PID control inputs
Ti which regulate the vehicle velocities and orientations:{

πθ : S ⊂ Rdim(S) → A ⊂ R3×dim(u)

x = [st]
T 7→ [λi, µi] ,

(8)

where the probability distribution of τi is modelled by a
Normal distribution N (τi):

N (τi) = (2πµi)
−1/2 exp{− 1

2µi
(x − λi)

2}, (9)

where λi ∈ R and µi ∈ R+ are the mean and variance of
N (τi) estimated by the policy network. The outputs of the
policy network are the 18 pairs of (λ, µ) representing the
normal distributions N (τi) used to sample the poles for each
control input ui. In practice, the action Ti(t) is sampled from
N (τi) after applying an invertible squashing function (i.e.
tanh) to N (τi) (in order to bound the Gaussian distribution)
and after using the change of variable to compute the likeli-
hoods of the bounded action distribution [25].

B. DESIGN OF THE DRL-BASED MODEL-FREE LEARNING
PROCEDURE
This work builds upon the Soft Actor-Critic (SAC) [16],
which is an efficient Deep Policy Gradient method known

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

to be more robust to uncertainties and suitable to partially
observable processes. SAC has three key components:

(i) an improved exploration and stability in performance
due to entropy maximisation [24];

(ii) an Actor-Critic architecture [30] with separate Value
and Policy networks;

(iii) an off-policy formulation enabling the use of past col-
lected data within an Experience Replay method [32].

Instead of optimising only the expected sum of rewards, the
objective function of SAC also maximises the entropy of the
behaviour policy (weighted by a constant) α:

J(πµ) =
T∑
t=1

E(st ,at)∼ρπµ
[r(st , at) + αH(πµ(.|st))], (10)

where H(πµ(.|s)) is the Shannon entropy of the policy π,
which is represented by an ANN parameterised by µ. By
trying to maximise the entropy of the policy and the reward at
the same time, the search is driven by the best actions while
remaining as exploratory as possible, resulting in improved
robustness to uncertainty in terms of process variation [1],
[24].

For this purpose, the entropy term is explicitly incorporated
in the State-Value function V (st) as:

V (st) = E[Q(st , at) + αH(πµ(.|st))], (11)

= E[Q(st , at)− α log πµ(at |st)],

In order to reduce the Actor-Critic value overestimation,
the state-value function is estimated by an ANN parame-
terised by Ψ using the minimum of two different Q-Value
estimates represented by two ANNs parameterised byΥ1 and
Υ2 [23], [26]. TD-Learning [34] is used to iteratively build
an estimate of the state-value function (Eq. (12)) and the Q-
Value function (Eq. (13)).Ψ is thus optimised to minimise the
TD-error (Eq. (12)) of the state-value function:

JV (Ψ) =Vπµ

Ψ (st)−
(
min

[
Qπµ

Υ1
(st , at),Q

πµ

Υ2
(st , at)

]
(12)

− log πµ(.|st)
)
.

Similarly, the parameters Υi of the estimator of the ith Q
value function are optimised to minimise the TD-error (Eq.
13):

JQ(Υi) =Q
πµ

Υi
(st , at)−

(
r(st , at) + γ× (13)

Vπµ

Ψ′ (st+1)
)
.

where Ψ′ represents the target value network and γ = 0.99
is the discount factor. The parameters µ of the policy net-
work are then optimised in order to minimise the expected
Kullback-Leibler divergence (DKL) between the current pol-
icy (πµ) and the exponential of the Q-Value function that is
normalised by a function ZΥ (cf. Eq. 14) [25].

Jπ(µ) = Est∼D

[
DKL

(
πµ(·|st)

∣∣∣∣Q∗(st , ·)
ZΥ(st)

)]
, (14)

where

Q∗(st , at) = exp
(
min

[
Qπµ

Υ1
(st , at),Q

πµ

Υ2
(st , at)

])
. (15)

When using the distribution expressed in Eq. (15) as a
target for the policy shown in Eq. (14), the agent is forced to
explore actions according to their associated exponential Q-
Values. This implies a better exploration-exploitation trade-
off as negative Q-Values are transformed into small but pos-
itive ones, forcing the policy to make progress along sub-
optimal strategies until the optimal policy is reached.
An unbiased estimator of the gradient in Eq. (14) [25] is:

∇̂µJπ(µ) = ∇µ log πµ(at |st) +
(
∇at log πµ(at |st)− (16)

∇at min
(
Qπµ

Υ1
(st , at),Q

πµ

Υ2
(st , at)

)
∇µfµ(ϵt , st)

)
.

The derivative in Eq. (16) allows the use of Gradient
Descent to optimise the parameters µ of the policy neural
network. Considering Eq. (11), the parameters µ are opti-
mised for the desired maximum entropy objective (Eq. (10)).
The soft Q-update (Eq. (13)) guarantees that Qπnew(st , at) ≥
Qπold (st , at) and the repeated policy updates (16) ensure con-
vergence toward the optimal policy π∗ [25].
In order to avoid the instability of chasing a constantly

moving value function, it is common practice to have a sepa-
rate copy of the value network whose parameters are tracking
the parameter of the state value function using an exponential
moving average∆. In this work, a target state-value network
VΨ′(s) was defined with∆ = 0.005, which was then used to
compute the Q-Value TD error (Eq. (13)).
The SAC algorithm builds a stochastic policy in which the

action distributions are modelled by Gaussian distributions
[25]. There are several advantages of considering a stochastic
policy: it prevents early convergence of the policy variance, it
encourages exploration in the value function by increasing the
value of regions of state space that lead to high-entropy policy,
and the resulting policy tends to perform more consistently
compared to its deterministic counterpart, with improved ro-
bustness to uncertainties.
The present implementation of SAC has five fully con-

nected ANNs: two Q-value networks (with shared architec-
tures), one value and one target-value network (with shared
architectures), and one policy network. We used analogous
ANN architectures and hyperparameters to those proposed
in [25], where each network was composed of two hidden
layers of 256 hidden units each. Therefore, no exhaustive
hyperparameter tuningwas required. The PyTorch framework
and CUDA toolkit were used to implement this architecture
along with an Nvidia RTX 2070 GPU card for gradient and
simulation processing. The ANNs were optimised using the
standard Adam method and regularisation techniques were
used to prevent overfitting. It has been demonstrated that
regularisation does matter for Policy Gradient methods [20].
Following these results, we added regularisation to the critic
NN only by means of a weight degradation of 0.001. Given
that this work uses the maximum entropy framework, no

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

further regularisation was applied to the actor NN. The learn-
ing rate for all networks was set to lr = 3e−4. The Leaky
ReLU activation function was applied to all hidden layers and
gradient descent was performed using a mini-batch of size
256. Layer normalisation [4] was added before the activation
function of all hidden layers. The weights and biases were
initialised from theGaussian distributionN (0,

√
2/f), where

f is the input of the layer.

IV. A BIO-INSPIRED EXPERIENCE REPLAY (BIER)
The Biologically-Inspired Experience Replay (BIER)
method, proposed in this work, assumes two distinct mem-
ory units: the sequential-partial memory (B1), which stores
incomplete temporal sequences, and the optimistic memory
(B2), that emphasises the best transitions as measured by the
reward with respect to the current policy. As illustrated in
Figure 2, BIER takes advantage of the resilience of the on-
policy sampling while maintaining the efficiency of the data
from the off-policy formulation.

Buffer B1 has a similar function to the memory buffer used
in the original definition of ER in reinforcement learning.
In a robotic domain, the optimal behaviour is highly tem-
porally correlated, since early action sequences have a more
pronounced effect on future gains. In addition, a vehicle’s
behaviour is bounded by the natural constraints of its actu-
ators. Thus, the shape and number of possible transitions are
also limited to the same extent. From these observations, it
is possible to hypothesise that learning a limited set of tem-
porally correlated sequences can lead to optimal behaviour
efficiently. Therefore, recent, successive temporal transitions
are sampled with the highest priority from this buffer. In the
present work, the maximum size of B1 was set to 1, 000, 000
items representing old and new transitions.

The replay procedure seems appropriate for a biological
system, but for an ANN the data has to be I.I.D. to guarantee
generalisation. The temporal sequence of interactions con-
sists of highly correlated samples; thus, using such samples
for the gradient-based optimisation of ANNmay compromise
the learning process. In order to reduce the correlation of
these transitions, we propose not to consider the complete
trajectory but only one out of every two transitions. This
causes two main effects on the learning procedure: (i) it adds
a regularisation effect in the ANN fitting process; and (ii) it
reduces the age of the oldest policy contained in this buffer,
improving the learning performance (cf. [21]).

The optimistic memory represented by the buffer B2 is in-
spired by the observation that positive reinforcement is more
efficient in biological systems than the usual combination of
positive and negative rewards [36]. It has also been shown that
trying to estimate values of high-quality regions (as measured
by the rewards) results in better performance [21]. However,
in the traditional ER, as the replay buffer size increases given
the agent’s experience, the probability of selecting positive
transitions decreases, slowing down performance improve-
ment [40]. The goal of B2 is to be optimistic by increasing

the probability of using past transitions associated with high-
quality regions in the solution space.

Buffer B2 stores the upper outliers of the reward distribu-
tion that are considered to be the best transitions. Outliers
can be defined according to various metrics, depending on
the nature of the variable distribution. The challenge here
is that the shape of this distribution cannot be predicted a
priori. For instance, with the reward function defined in this
work, the closer the vehicle gets to the set point, the higher
the maximum value of possible reward becomes (hence, the
optimal policy should lead to a reward distribution of Pearson
shape). In practice, however, the closer the vehicle is to the set
point, the more difficult it is to physically reduce the errors
(which is more akin to a Gaussian distribution). Depending on
the system, the operating conditions, and the reward function
(among other factors), the reward distribution can assume
various shapes, potentially making the predefined metric not
robust to different distribution assumptions. Thus, this work
considers a transition as an outlier of interest that is stored in
B2 if its associated reward r(st) is greater than the expected
future rewards: r(st) ≥ E[r(st)], where the expected value
E[r(st)] is computed over the previous 50,000 rewards gen-
erated that are stored as an additional variableM . The size of
M was chosen to compute the expected reward over a moving
window of 100 episodes to give more importance to new
inputs, which is similar to the ER mechanism in biological
systems [18].

This choice of expected value as a metric is related to
the subtracted baseline in Eq. (16) that is the value function,
resulting in the advantage function: A(s, a) = Q(s, a)−V (s).
This function represents the benefits of changing the current
policy as a positive value of A(s, a) indicating that the eval-
uated pair of state-action is associated to a Q-value higher
than the expected one. Thus, positive values of A(s, a) are
associated with an optimistic memory, that should lead to a
faster discovery of successful trajectories.

The maximum size ofB2was set to 10, 000, which is much
smaller than B1 since, as the agent’s performance improves
over the course of training, what was considered a positive
transitionmay not be the case in a later situation. This reduced
buffer size ensures that the agent focuses on the current best
transitions. Contrary to B1, uncorrelated items are sampled
from B2 as single transitions that are iteratively stored in this
buffer. Finally, a mini-batch is constructed of n samples from
each memory unit.

The objective of the learning agent is to use SAC to build a
predictive model that directly maps the UUV state to the pole
values for a PID controller to regulate vehicle velocities and
orientations. Therefore, in the following sections, we refer to
the test results related to BIER as PID+BIER, and to those
related to CER as PID+CER. The baseline results, referred to
as PID, are related to the tests conducted with the off-the-shelf
PID controller provided by the UUV simulator.

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 2. Illustration of the BIER procedure. This procedure takes
advantage of the resilience of the on-policy sampling while keeping the
data efficiency of the off-policy formulation.

V. TRAINING
The training iteration limit was set to 3000 episodes. This
value was obtained based on the observation that there was
no further notable improvement in set point regulation after
approximately 2500 episodes. The maximum length of a
training episode was set at 500 time steps (equivalent to 25
seconds). In this work, the following characteristics define a
training episode: (i) the UUV starts at a depth of 40 meters
with a random orientation (ψ, θ, ϕ) ∈ [−π4 ; π4] and with
zero velocity; (ii) the value of the sea current variables were
randomly chosen such that vc ∈ [0.1, 0.5] and [hc, jc] ∈
[−π4 ; π4] and a random vector of set points was generated
xref = [vx , 0, 0, 0, 0, 0]T with vx ∈ [0.1, 0.5] (m.s−1); (iii) the
off-policy πµ(a|s) behaviour was used; (iv) an episode ends
when the control objective (3) is met or when the episodic
step number exceeds 500.

A. REWARD SHAPING
The control objective considered here can be defined as:

rsuccess = 1000 if ∀ t ∈ [t−100, t], |ei(t)| ≤ χ. (17)

In other words, the goal state (or control objective) receives a
reward of 1000 when the error reading is less than a small
constant χ for 100 consecutive steps (the value 100 was
chosen in accordance with the control requirements defined
in Section III-A and the simulation sampling rate). The value
of rsuccess was chosen in order to make sure that, for all
trajectory lengths, the maximum sum of returns is obtained
only by stabilising the vehicle. Otherwise, the reward r(st) is
generated.

Let us define the Euclidean norm of the error vector as
eL2(t) =

√∑i=dim(u)
i=1 e2i (t), for a time point t , and its deriva-

tive (denoted as drate(t)) as computed over the previous two
frames. The reward r(st) can be defined as:

r(st) = C1 × exp
[
−(eL2(t)× C2)

2
]
. (18)

The performance of SAC is highly dependent on the choice
of the reward scale (or amplitude) which, in the case of the re-
ward function in Eq. (18), is regulated by the constantC1. The

reward scale can be interpreted as the inverse of the tempera-
ture parameter α in Eq. (10) which controls the stochasticity
of the resulting policy. Here, we empirically chose C1 = 40,
obtained from the best performances, in accordance to [17].
The reward signal, Eq. (18), is equal to its maximum possible
value per step (that is C1) only when all current errors are
equal to zero. As the UUV moves slowly, successive states
display error signals ei(t) ofminor and similar amplitude. The
factor C2 = 10 made it easier for the critic to differentiate
the state-value of successive states without altering the reward
scale as limx→0 C×e−x = C . The reward function (Eq. (18))
encourages the agent to reduce the errors as much and as fast
as possible. The vehicle stabilisation is further promoted by
generating the maximum possible reward per step.

B. EXPLORATION STRATEGY
For improved exploration, an adaptive parametric noise was
used which consists of adding random Gaussian noise to the
parameters of the policy network during each episode k+1 as
a proportion (α) of the Gaussian noise applied in the previous
episode (k), as shown in Eq. 19 [14].

σk+1 =

{
ασk , if d(π, π̃) < δ,

1
ασk , otherwise.

(19)

The noise standard deviation σ was adapted according to
a distance measure d(·) between the non-perturbed pol-
icy π and perturbed policy π̃ [14], given by: d(π, π̃) =√

1
N

∑N
i=1 Es[(π̃(s)i − π(s)i)2]. Setting δ = σ results in an

action space noise that is analogous to a regular Gaussian
action space noise [14]. In this work, the values used in this
process were the initial σ = 0.60, δ = 0.10, and α = 1.01.

C. PROCESS OBSERVABILITY
At each time step, the agent obtains an observation vector ot
representing the process dynamics defined as:

ot = [at−1 ; Θ; V ; Ω; ut ; et ; eL2 ; drate ; δχ], (20)

where at−1 ∈ R18 is the last action estimated (i.e. the
pole value); Θ = [ϕ; θ;ψ] are the Euler orientation of the
vehicle (roll, pitch and yaw respectively); V = [vx ; vy; vz]
and Ω = [ωϕ;ωθ;ωψ] are the vehicle’s linear and angular
velocities; ut ∈ R6 are the most recent control inputs applied;
et ∈ R6 are the error values at each set point; eL2 and drate
are as described in Section V-A; and δχ ∈ [0, 1] is a variable
which keeps track of the number of successive steps, where all
the errors are within the threshold (i.e. if δχ = 1, the control
objective is achieved). The dimension of the observation vec-
tor ot is therefore equal to 42. It is worth noting that the current
disturbance characteristics are not included in the observation
vector in Eq. (20). The state vector st was defined according to
the current and past observation vectors along with their two-
by-two differences. This results in a 126-dimensional state
space defined as st = [ot ; ot−1; ot−1 − ot].

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 3. Training curves for the ER methods BIER and CER.

D. TRAINING PERFORMANCE

Figure 3 shows the normalised mean return (top), the root
mean square error (RMSE) on the set point (middle), and
the standard deviation of the normalised mean, normalised
standard deviation (STD) (bottom), per episode of the training
curves of the PID+BIER and the PID+CER methods. The
yellow dashed lines represent the performance of the baseline
PID controller. It should be noted that these three methods
have the same fundamental structure (based on the PID con-
troller), differing on the pole values used to compute the PID
control inputs.

Figure 3 (top) shows that both PID+CER and PID+BIER
methods were able to converge toward the maximum value
of the reward, with a set point RMSE that was lower than
the baseline PID controller (Figure 3 (middle)). However,
PID+BIER presented a smoother (and lower) normalised
STD than PID+CER, according to the curves in the bottom
graph of Figure 3. PID+CER, on the other hand, presented
a higher STD in general, showing spikes that represent an
agent’s performance that was much lower than the baseline
PID controller. It is worth pointing out also that the PID
controller achieved the lowest STD, owing to the model infor-
mation incorporated in the sequential model-based algorithm
configuration method [27].

The vertical dashed lines in Figure 3 show the episode num-
ber in which PID+BIER (green dashed line) and PID+CER
(blue dashed line) outperformed the PID controller. We can
see that PID+BIER converged to the optimal values in 500
episodes, whereas PID+CER needed around 1200 episodes to

achieve this. Therefore, DRL with BIER learned twice as fast
as the original CER method, thus providing improved data
efficiency and learning stability for training a physical agent.

VI. ABLATION STUDY
The results presented in Section V-D above suggest that the
BIERmethod outperforms CER in the context of the adaptive
control of a UUV. The present section provides evidence of
the generalisation abilities of the method proposed in this
work with respect to other continuous control environments.
For this purpose, an ablation study was conducted to show the
benefits of BIER during training and to support the choice of
its components. This study was conducted on multiple con-
tinuous control benchmark environments [10] based on the
Mujoco physics engine [37] by OpenAI Gym [6]. The tasks
represented in this benchmark do not include an underwater
environment but still represent complex control tasks, with
continuous domain variables, where the agents face multiple
challenges of real-world reinforcement learning [11]. We ar-
gue that these tasks are general enough to represent analogous
processes involved in UUV control, such as sensor noise,
sensor occlusion, or partial observability. More specifically,
the considered Mujoco environments incorporate [10]:

• Limited sensors: the state vectors are restricted to only
provide positional information, including joint angles,
excluding joint velocities. This forces the agents to learn
to infer velocity information in order to recover the full
state information. This is also the case for UUVs which
have limited sensor abilities due to restricted space for
onboard sensors and autonomy concerns. For instance,
we often do not have measurement ability of the process
disturbance, namely sea current for UUVs, which is
therefore excluded from the vehicle state.

• Noisy observation and delayed actions: sensor noise
is simulated by the addition of Gaussian noise to the
states. A time delay is also introduced between taking
an action and the action being effective, which accounts
for physical latency. As a result, the agents must learn
to integrate both past states and past actions to infer the
current state. UUV processes are particularly exposed
to comparable delays as they are on the slow spectrum
compared to other robotic domains (such as aerial or
wheeled vehicles). In the UUV context, the effects of
actions may take a notable amount of time to be fully
manifested, making it hard for a DRL-based policy to
learn the correlation between an action and the associ-
ated reward.

• System identification: the fundamental physical model
parameters are varied across different episodes. There-
fore, the agents have to learn to generalise throughout
differentmodels, as well as to infer themodel parameters
from the agents’ states and actions history. UUVs are
similarly subject to such process variations including
variations in velocities, depth, or water temperature and
salinity. These changes impact the process dynamics and

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

the UUV controller is therefore required to adjust its
response to multiple operating conditions.

For these reasons, we argue that the use of this benchmark
provides an appropriate illustration, not only to the proposed
algorithm, but also to the algorithm characteristics in solving
the task of UUV control. This work used the neural net-
work architecture and hyperparameters from the original SAC
paper [25], which was tested with the Experience Replay
methods investigated in this paper, CER andBIER. Therefore,
the only difference between the CER and BIER agents is how
the past experience of the agent is used for the optimisation of
the neural networks. A Google Colab notebook guaranteeing
the reproducibility of this study is accessible with this link.

The following five OpenAI Gym environments were con-
sidered in this study:

• Inverted pendulum: This is the CartPole environment,
a scenario in which a cart is capable of linear movement
and, affixed to one end of it, is a pole, while the other
end remains unfettered. The cart has the capacity to be
displaced to the left or right, and the primary aim is to
maintain the equilibrium of the pole atop the cart through
the application of forces. The ultimate objective is to
achieve stability for the inverted pendulum, allowing
it to remain in an upright position (within specified
angular constraints) for as extended duration as possible.
A reward of +1 is generated for every time step during
which the pole remains in an upright orientation.

• Double inverted pendulum: in this environment a lin-
early movable cart bears a fixed pole and a secondary
pole attached to the unoccupied end of the first pole.
The cart moves laterally, and the primary objective is
to achieve equilibrium for the second pole atop the first.
This equilibrium is sought through the continuous appli-
cation of forces to the cart. The reward structure within
this environment comprises three components: Firstly, a
reward of +10 is granted for each time step during which
the second pole remains in an upright position. Secondly,
a reward is assigned based on the extent to which the tip
of the second pendulum is displaced from its equilibrium
point. Finally, a negative reward mechanism is used to
penalise the agent for excessively rapid movements.

• Hopper: this environment has a two-dimensional rep-
resentation of a one-legged entity with four anatomical
segments. The uppermost component is the torso, situ-
ated centrally; the middle segment is the thigh; beneath
that is the leg; and the structure ends in a solitary foot,
serving as the base for the entire body. The primary
objective involves executing forward hops through the
application of torques upon the trio of joints that connect
the aforementioned body sections. The reward structure
encompasses three key elements: Firstly, a fixed reward
is generated for each time step in which the hopper
maintains a state of "health". Additionally, a reward is
granted for successful forward hopping, its magnitude
determined by the extent and direction of the hopper’s

movement. Finally, a cost is imposed to penalise the
hopper for undertaking excessively substantial actions.

• Walker: in this domain a two-dimensional two-legged
figure (the walker) has to learn how to move. The figure
consists of four main body parts, a single torso at the top,
two thighs in the middle below the torso, two legs in the
bottom below the thighs, and two feet attached to the
legs on which the entire body rests. The goal is to make
coordinate both sets of feet, legs, and thighs to move
in the forward (right) direction by applying torques on
the six hinges connecting the six body parts. The reward
consists of three parts: a fixed reward generated at every
time step that the walker is alive, a reward for moving
forward which is measured as the distance and direction
the figure is moving to, and a cost for penalising the
hopper if it takes actions that are too large.

• HalfCheetah: the HalfCheetah is a 2-dimensional agent
consisting of 9 links and 8 joints connecting them (in-
cluding two paws). The goal is to apply torque on the
joints to make the agent run forward (right) as fast as
possible. A positive reward is generated in accordance
with the distance moved forward, while a negative re-
ward is generated for any backward movement.

FIGURE 4. Training performance for the inverted pendulum V2
environment. The state dimension is 4 and the action dimension is 1.

Figures 4 to 8 show the learning curves for the aforemen-
tioned environments with the mean reward represented in
bold, which is computed at every 100th episode, over a mov-
ing window of 100 episodes. The shaded regions represent
the standard deviation.
In Figures 4-5 we can see that for the simple and double

inverted pendulum environments there was no difference in
performance between the CER and BIER methods. In these
environments, the reward is always equal or close to a con-
stant value and, therefore, every transition is stored in B2 due
to the proposed metric (Section IV). In this context, we would
expect the effect of the optimistic buffer B2 (Section IV) to
be reduced, or negatively affect the learning process as B2
replays the best transitions (as measured by their associated
rewards). In contrast, we can see that the BIER agent was able
to solve the environment, as well as its competing method.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://colab.research.google.com/drive/1762uKlkzv-gxLaQQV_BHznkfiWSw7Dv-?usp=sharing

FIGURE 5. Training performance for the double-Inverted pendulum V2
environment. The state dimension is 11 and the action dimension is 1.

FIGURE 6. Training performance for the hopper V2 environment. The state
dimension is 11 and the action dimension is 3.

FIGURE 7. Training performance for the walker V2 environment. The state
dimension is 17 and the action dimension is 6.

In domains of higher complexity with respect to the dimen-
sion of the action space, the benefits of the BIER method
are more prominent, as can be seen at Figures 6-8. In these
cases, the mean reward related to the BIER method has a
steeper increase compared to that observed in the CER agent.
In Figure 6 we can see that the CER agent seems to have

FIGURE 8. Training performance for the halfcheetah V2 environment. The
state dimension is 17 and the action dimension is 6.

converged to a local minima while the performance of the
BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training, the
performance of the BIER agent is approximately four times
greater. Figure 9 shows the performance of CER, BIER, and
each of the components of the latter (i.e. B1 or B2) in the
Hopper environment, where it is possible to observe that the
combination of B1 and B2 (composing the BIER method)
presents the best performance. It is worth noting also that
using B2 alone presented the worst performance overall, this
is due to the fact that In domains of higher complexity with
respect to the dimension of the action space, the benefits of the
BIERmethod aremore prominent, as can be seen at Figures 6-
8. In these cases, the mean reward related to the BIERmethod
has a steeper increase compared to that observed in the CER
agent. In Figure 6 we can see that the CER agent seems to
have converged to a local minima while the performance of
the BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training, the
performance of the BIER agent is approximately four times
greater. Figure 9 shows the performance of CER, BIER, and
each of the components of the latter (i.e. B1 or B2) in the
Hopper environment, where it is possible to observe that the
combination of B1 and B2 (composing the BIER method)
presents the best performance. It is worth noting also that
using B2 alone presented the worst performance overall, this
is due to the fact that In domains of higher complexity with
respect to the dimension of the action space, the benefits of the
BIERmethod aremore prominent, as can be seen at Figures 6-
8. In these cases, the mean reward related to the BIERmethod
has a steeper increase compared to that observed in the CER
agent. In Figure 6 we can see that the CER agent seems to

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

have converged to a local minima while the performance of
the BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training, the
performance of the BIER agent is approximately four times
greater. Figure 9 shows the performance of CER, BIER, and
each of the components of the latter (i.e. B1 or B2) in the
Hopper environment, where it is possible to observe that the
combination of B1 and B2 (composing the BIER method)
presents the best performance. It is worth noting also that
using B2 alone presented the worst performance overall, this
is due to the fact that In domains of higher complexity with
respect to the dimension of the action space, the benefits of the
BIERmethod aremore prominent, as can be seen at Figures 6-
8. In these cases, the mean reward related to the BIERmethod
has a steeper increase compared to that observed in the CER
agent. In Figure 6 we can see that the CER agent seems to
have converged to a local minima while the performance of
the BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training, the
performance of the BIER agent is approximately four times
greater. Figure 9 shows the performance of CER, BIER, and
each of the components of the latter (i.e. B1 or B2) in the
Hopper environment, where it is possible to observe that the
combination of B1 and B2 (composing the BIER method)
presents the best performance. It is worth noting also that
using B2 alone presented the worst performance overall, this
is due to the fact that In domains of higher complexity with
respect to the dimension of the action space, the benefits of the
BIERmethod aremore prominent, as can be seen at Figures 6-
8. In these cases, the mean reward related to the BIERmethod
has a steeper increase compared to that observed in the CER
agent. In Figure 6 we can see that the CER agent seems to
have converged to a local minima while the performance of
the BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training,
the performance of the BIER agent is approximately four
times greater. Figure 9 shows the performance of CER, BIER,
and each of the components of the latter (i.e. B1 or B2)
in the Hopper environment, where it is possible to observe
that the combination of B1 and B2 (composing the BIER
method) presents the best performance. It is worth noting also
that using B2 alone presented the worst performance overall,
this is due to the fact that B2 overfits on the best actions
(which also explains why it is the best at the beginning of
the training). However, these best actions are not enough to
solve the more difficult trajectories that the agent faces, as
its behaviour becomes more complex with further training.

In other words, with B2 alone the agent only sees the best
actions at each instance, but it is not aware whether or not
this leads to future gains in general. B1 works by providing a
compromise to this.
In complex environments, with a large action space, the

likelihood of executing a favourable action decreases, which
in turn increases the time required for it to influence the
policy. In contrast, the combination of the B1 and B2 buffers
allows the best transitions to affect the policy with minimum
delay, while reducing the negative impact of large and small
replay buffers. Thus, the benefits of the BIER method are
directly proportional with the environment complexity, since
the probability of a transition t to be replayed within k steps
(k ≤ m) is monotonically decreasing with respect to the
replay buffer size m [40]. BIER can be applied to any off-
policy DRL algorithm to help explore the Q-Value spacemore
efficiently, leading to higher learning performance.
In conclusion, our findings demonstrate that the utilisation

of the BIERmethod consistently enhances performance. This
approach is characterised by its straightforward implementa-
tion and scalability, making it a valuable avenue to explore a
wide range of problems.

FIGURE 9. Training performance for the hopper V2 environment. The state
dimension is 11 and the action dimension is 3.

The next section assesses the impact of distribution shift in
PID+CER and PID+BIER concerning set point and velocity
control of a simulated UUV on distinct scenarios.

VII. TESTS AND RESULTS
To evaluate the effect of distribution shift in PID+CER and
PID+BIER with respect to set point and velocity control of a
simulated UUV, the following scenarios were considered.

• Scenario 1: the set point range was the same as during
training, but no current disturbance was applied.

• Scenario 2: the process was the same as during training
but with different setpoint and current values.

• Scenario 3: the set point was increased to the range of
[0.5,1.0], that was not considered during training. The
current remained as defined in Scenario 2.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

• Scenario 4: the set point was the same as during training
but the speed of the current vc was increased to [0.5,1.0]
(m.s−1) and (hc, jc) ∈ [−π, −π2 [∪]π2 , π].

• Scenario 5: both set point and current speed were set to
the new values defined in Scenarios 3 and 4.

• Scenario 6: the maximum value of the set point and
the current velocity were increased to the values used in
Scenarios 3 and 4. In addition, at a random time between
the 100th and 400th time step of the episode, the current
characteristics (velocity and orientation) changed to val-
ues chosen at random.

Table 1 shows the root-mean-square error (RMSE) per step
and the normalised mean return for each scenario, as com-
puted over 500 distinct episodes. These results are also de-
picted in Figure 10, where the RMSE is represented as dashed
curves, whereas the normalised mean return is represented as
bars. The line "Baseline" denotes the agent’s performance at
the end of the training.

These results show that the PID+CER and PID+BIER
agents were able to stabilise the vehicle over the first 3 scenar-
ios with a performance akin to that shown during training. In
these cases, the RMSE values had a slight degradation when
compared to the training values but the agent’s performance
remained satisfactory.

A steep loss in performance was, however, observed with
respect to the sea current disturbance applied in Scenarios 4,
5, and 6, where there were an increase in the RMSE and a
degradation in the mean return obtained by the agent. This
sensitivity to disturbance is further depicted by the sharp
changes in values observed between Scenarios 3 and 4 when
compared with the more modest difference between Scenar-
ios 5 and 6. We believe that the cause is the current charac-
teristics not being explicitly included in the state vector. The
PID+BIER agent outperformed the other methods tested in
Scenarios 1, 2, 3, and 6, showing great resilience to set point
change, and to a combination of changes in set point and dis-
turbances (represented in Scenario 6). However, PID+BIER
presented a better performance only against PID+CER in
Scenarios 4 and 5, where the simple PID controller obtained
the highest returns with the lowest RMSE compared to the
other two methods. This was due to the fact that the base-
line PID controller consisted in optimal, but nonadaptive,
model-based poles, which were tuned to ensure satisfying
performance over a wide range of operating conditions but
not against process variations. In Scenarios 4 there was no
process variation, but more aggressive operating conditions,
giving the model-based controller an advantage whereas the
learning-based models had experienced only process varia-
tion analogous to Scenario 2. Thus, it was expected that the
machine learning component of these models would present
some generalisation to unseen scenarios (such as Scenarios 1,
3, and 6), but not to every domain variation. Nevertheless, the
two learning-based methods showed a smooth degradation in
performance with respect to an increase in the complexity of
the domain, as observed by the tendency to convergence on
the RMSE for PID+BIER and PID+CER, whereas the fixed

PID controller showed an exponential degradation from Sce-
nario 5 to Scenario 6. This suggests that the policies obtained
by machine learning methods had greater generalisation and,
therefore, more resilience to unforeseen process variations.
In general, the fixed PID controller has nomargin for future

improvements (as its performance is totally dependent on a set
of fixed parameters) whereas both PID+BIER and PID+CER
should present increasing performances with respect to the
amount and variety of training data.

FIGURE 10. Illustration of the evaluation results presented in Table 1.

VIII. CONCLUDING REMARKS
The development of safe and efficient autonomous vehicles
is a key element in various applications of economic and
societal importance. However, the safe and effective control
of these vehicles is hindered by the inability of classic control
systems to adapt to changing environmental conditions. This
issue is more pronounced in autonomous underwater robots,
that have to operate under extreme conditions (such as low
temperature, high pressure, and turbulent environments).
The present paper investigated the integration of classic

control with state-of-the-art machine learning algorithms,
where the optimal manoeuvring of an unmanned underwater
vehicle was considered as a process model with two com-
ponents: one modelled with classical control, representing
the known part of the process; and another learned by the
SAC algorithm, a state-of-the-art DRL algorithm that was
used to approximate the unknown part of the process (sum-
marising the disturbances in the vehicle’s environment). To
this end, this work introduced a novel Biologically Inspired
Experience Replay (BIER) method for SAC, which was built
using ideas from earlier findings on biological replay mech-
anisms related to the existence of two types of memories
in experience replay: one that uses incomplete (but recent)
trajectories of state-action pairs, and another that emphasises
positive rewards. The combination of classic control with the
proposed BIER strategy in SAC resulted in a novel learning-
based adaptive control method, which is themain contribution
of this paper. Results on manoeuvring tasks in a simulated en-
vironment suggested that BIER had a faster adaptability rate

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 1. Results for the PID+CER method (left) and the PID+BIER method (right).

Scenario Mean RMSE per step Normalised mean return Mean RMSE per step Normalised mean return
Baseline 0.036 0.910 ± 0.046 0.033 0.922 ± 0.025

1 0.037 0.907 ± 0.031 0.037 0.935 ± 0.026
2 0.035 0.911 ± 0.046 0.032 0.924 ± 0.024
3 0.045 0.877 ± 0.045 0.042 0.912 ± 0.027
4 0.148 0.408 ± 0.296 0.121 0.507 ± 0.253
5 0.166 0.356 ± 0.285 0.151 0.429 ± 0.257
6 0.180 0.324 ± 0.222 0.164 0.397 ± 0.217

(represented by its steeper learning curve) when applied in
complex domains. BIER also presented an improved stability
when compared with both the baseline PID controller and the
original SAC algorithm.

In terms of computational needs, contrary to supervised or
unsupervised learning algorithms, DRL takes advantage of
smaller NN architectures (i.e. 2 layers-depth neural networks)
which can be run on standard onboard processing units such
as a Raspberry Pi 3. We used the exact same NN architecture
in previous work for a wheeled robot [8] and others have used
a slightly smaller NN architecture on a real UUV [28]. These
previous works provide evidence that BIER could be applied
to a physical vehicle navigating in a real environment. How-
ever, presenting results of executing the sim-to-real transfer
of policies learned with the methods proposed in this work
was outside of the present paper.

We postulate that the adaptive control method presented
in this work, which combines classical control with learning-
based strategies, plays a pivotal role in advancing real-world
autonomous robotic applications. This method capitalises on
the robustness offered by the underlying process physics,
as represented by its model-based component, while also
harnessing the adaptability to unforeseen or unmodelled tran-
sitions, a characteristic feature of its model-free learning
component. We have argued that the proposed method can
be considered in processes where proportional feedback con-
trol can be derived, which represents the majority of UUV
applications. Future work shall explore the extent to which
this work could generalise to other domains, for the control
of distinct types of vehicles operating under various environ-
mental conditions.

REFERENCES
[1] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans. Understanding

the impact of entropy on policy optimization. In Proc. of International
Conference on Machine Learning (ICML), 2019.

[2] K. J. Åström and R. M. Murray. Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2021.

[3] K. J. Åström and B. Wittenmark. Adaptive control (2nd Edition). Dover
Publications, 2008.

[4] L. J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv,
abs/1607.06450, 2016.

[5] V. Berg. Development and Commissioning of a DP system for ROV SF 30k.
PhD thesis, NTNU, 2012.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] T. Chaffre, G. Le Chenadec, K. Sammut, E. Chauveau, and B. Clement. Di-
rect adaptive pole-placement controller using deep reinforcement learning:
Application to AUV control. Proceedingds of the13th IFAC Conference on
Control Applications in Marine Systems (CAMS), 54(16):333–340, 2021.

[8] T. Chaffre, J. Moras, A. Chan-Hon-Tong, and J. Marzat. Sim-to-real trans-
fer with incremental environment complexity for reinforcement learning
of depth-based robot navigation. In 17th International Conference on
Informatics, Automation, and Robotics, 2020.

[9] S. Dankwa and W. Zheng. Twin-delayed DDPG: A deep reinforcement
learning technique to model a continuous movement of an intelligent robot
agent. Proceedings of the 3rd International Conference on Vision, Image
and Signal Processing, 2019.

[10] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmark-
ing deep reinforcement learning for continuous control. In International
Conference on Machine Learning, 2016.

[11] G. Dulac-Arnold, N. Levine, D.J. Mankowitz, J. Li, C. Paduraru, S. Gowal,
and T. Hester. An empirical investigation of the challenges of real-world
reinforcement learning. ArXiv, abs/2003.11881, 2020.

[12] A. Ilyas et al. A closer look at deep policy gradients. In Proc. of
International Conference on Learning Representations (ICLR), 2020.

[13] M.Manhães et al. UUV simulator: A gazebo-based package for underwater
intervention and multi-robot simulation. In Proceedings of MTS/IEEE
OCEANS Conference, Monterey, 2016.

[14] M. Plappert et al. Parameter space noise for exploration. In Proc. of
International Conference on Learning Representations (ICLR), 2018.

[15] M. Quigley et al. Ros: an open-source robot operating system. In Proc. of
the ICRA Workshop on Open Source Robotics, Kobe, Japan, may 2009.

[16] T. Haarnoja et al. Soft actor-critic algorithms and applications. arXiv /
CoRR, abs/1812.05905, 2018.

[17] T. Haarnoja et al. Learning to walk via deep reinforcement learning. arXiv
preprint arXiv:1812.11103, 2019.

[18] T. L. Hayes et al. Replay in deep learning: Current approaches and missing
biological elements. Neural Comp., 33(11):2908–2950, 2021.

[19] Z. Chu et al. Motion control of unmanned underwater vehicles via deep
imitation reinforcement learning algorithm. IET Intelligent Transport
Systems, 14:764–774, 2020.

[20] Z. Liu et al. Regularization matters in policy optimization - an empirical
study on continuous control. arXiv: Learning, 2021.

[21] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney. Revisiting fundamentals of experience
replay. In International Conference on Machine Learning, 2020.

[22] T. Fossen. NonlinearModelling And Control Of Underwater Vehicles. PhD
thesis, NUST, 1994.

[23] S. Fujimoto, H. Van Hoof, and D. Meger. Addressing function approxima-
tion error in actor-critic methods. In Proc. of International Conference on
Machine Learning (ICML), 2018.

[24] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning
with deep energy-based policies. In Proceedings of the 34th International
Conference on Machine Learning. JMLR.org, 2017.

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In
Proc. of International Conference on Machine Learning (ICML), 2018.

[26] H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with
double Q-learning. In Proceedings of the AAAI conference on artificial
intelligence, 2016.

[27] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based op-
timization for general algorithm configuration. In Learning and Intelligent
Optimization. Lecture Notes in Computer Science, 2011.

[28] K. B. Knudsen, M. C. Nielsen, and I. Schjølberg. Deep learning for station
keeping of AUVs. OCEANS 2019 MTS/IEEE Seattle, 2019.

[29] H. Kohler, T. Chaffre, G. Le Chenadec, and B. Clement. PID Tuning using
Cross-Entropy Deep Learning: a Lyapunov Stability Analysis. In 14th
IFAC Conference on Control Application on Marine Systems, Denmark,
2022.

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

[30] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural
information processing systems, 12, 1999.

[31] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
In Y. Bengio and Y. LeCun, editors, 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[32] L. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293–321, 2004.

[33] V. et al. Mnih. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015.

[34] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 2005.

[35] R. S Sutton and A. G. Barto. Reinforcement learning an introduction -
Second edition. MIT Press, 2018.

[36] E. L. Thorndike. Animal Intelligence: Experimental Studies. Macmillan
Press, 1911.

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[38] R. Yang, B. Clement, A. Mansour, M. Li, and N. Wu. Modeling of a
complex-shaped underwater vehicle for robust control scheme. Journal
of Intelligent and Robotic Systems, 2015.

[39] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma. Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater vehi-
cle. 36th Chinese Control Conference (CCC), pages 4958–4965, 2017.

[40] S. Zhang and R. Sutton. A deeper look at experience replay. arXiv preprint
arXiv:1712.01275, 2017.

THOMAS CHAFFRE received the M.S. degree
in Data Science and Robotics from ESIEA, Paris,
France, in 2019 and the PhD degree in Deep Re-
inforcement Learning and Underwater Robotics
from ENSTA Bretagne (France) and Flinders Uni-
versity (Adelaide, Australia) in 2022. He is cur-
rently a Research Associate in Maritime Auton-
omy at the ARC Training Centre For Biofilm Re-
search and Innovation at Flinders University.

ESTELLE CHAUVEAU received her PhD degree in
2018, in the field of operational research applied
to ship routing optimisation, from Aix-Marseille
University (Marseille, France). She then joined the
Naval Group Research Center (Ollioules, France)
where she continues her research in optimisation
and artificial intelligence applied to the field of
naval defense.

GILLES LE CHENADEC. received his PhD in un-
derwater acoustics from theUniversité de Bretagne
Occidentale, France in 2004. He is currently an
associate professor with ENSTA Bretagne (Brest,
France) and a research fellow at Lab-STICC re-
search laboratory. His research interests include
topics related to signal processing and machine
learning applied to AUV control and sonar data
processing.

PAULO E. SANTOS received his PhD degree in
artificial intelligence from Imperial College, Lon-
don, UK, working on the development of spatial
reasoning systems for mobile robots. He was also
a research assistant at the School of Computing,
University of Leeds, UK.More recently, Dr. Santos
was part of a leading research group in AI and
Robotics in Sao Paulo, Brazil, conducting a num-
ber of research projects of industrial interest. Since
2019, Dr. Santos has been an Associate Professor

of AI and Robotics at the College of Science and Engineering, Flinders
University, Adelaide, Australia, and also a full member of the CNRS Inter-
national Research Lab CROSSING.

KARL SAMMUT (Senior Member, IEEE) com-
pleted his PhD at The University of Nottingham
(U.K) in 1992 and was employed between 1992
and 1995 as a Postdoctoral Fellow with the Po-
litecnico diMilano (Italy), andwith Loughborough
University (UK). He commenced his appointment
at Flinders University in 1995 and is currently a
Professor in the College of Science and Engineer-
ing. He serves as the co-director of the Centre
for Defence Engineering Research and Training,

College of Science and Engineering, Flinders University, and as the Theme
Leader for the Maritime Autonomy Group. His areas of research specialisa-
tion are concerned with navigation, optimal guidance and control systems,
and mission planning systems for autonomous marine surface and underwa-
ter vehicles.

BENOIT CLEMENT Benoit Clement received his
PhD degree in Physics from the University Paris
XI in 2001 and the “Habilitation a Diriger des
Recherches” in Automatic Control from the Uni-
versite de Bretagne Occidentale in 2015. He is
currently a Professor at ENSTA Bretagne (Brest,
France) and also at Flinders University (Adelaide,
Australia). He has been Head of the Information
Science and Engineering Departement at ENSTA
Bretagne since 2022. He used to serve as deputy

Head of the Lab-STICC (CNRS UMR 6285) from 2016 to 2021, and
as the head of the Ocean Sensing and Mapping Department at ENSTA
Bretagne (2014-2017). He is currently in Adelaide, South Australia, as a
CNRS Researcher at CROSSING IRL CNRS 2010 between CNRS, Naval
Group, Flinders University, University of Adelaide and University of South
Australia. He has served as a member of IFAC technical committees on
Robust Control and also on Marine Systems since 2020.

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3329136

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Learning-based adaptive control

	Experience Replay (ER)
	UUV manoeuvring control
	Design of the model-based part of the controller
	Design of the DRL-based model-free learning procedure

	A Bio-inspired Experience Replay (BIER)
	Training
	Reward shaping
	Exploration strategy
	Process Observability
	Training performance

	Ablation Study
	Tests and results
	Concluding Remarks
	REFERENCES
	Thomas Chaffre
	Estelle Chauveau
	Gilles Le Chenadec.
	Paulo E. Santos
	Karl Sammut
	Benoit Clement

