
HAL Id: hal-04195953
https://ensta-bretagne.hal.science/hal-04195953

Submitted on 5 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Planning Algorithms For Unmanned Aerial
Vehicle: Classification, Performance, and

Implementation
Ali Haidar Ahmad, Oussama Zahwe, Abbass Nasser, Benoit Clement

To cite this version:
Ali Haidar Ahmad, Oussama Zahwe, Abbass Nasser, Benoit Clement. Path Planning Algorithms For
Unmanned Aerial Vehicle: Classification, Performance, and Implementation. International Conference
on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2023), Jul 2023,
Tenerife (Canaries), Spain. pp.1-6, �10.1109/ICECCME57830.2023.10252168�. �hal-04195953�

https://ensta-bretagne.hal.science/hal-04195953
https://hal.archives-ouvertes.fr

Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2023)
19-20 July 2023, Tenerife, Canary Islands, Spain

Path Planning Algorithms For Unmanned Aerial

Vehicle: Classification, Performance, and

Implementation

Ali Haidar Ahmad

Lab-STICC UMR CNRS 6285

ENSTA Bretagne

Brest, France

ali.haidar@ensta-bretagne.fr

 Oussama Zahwe

ICCS-Lab, Computer Science

Department

 American University of Culture

and Education

Beirut, Lebanon

osamazahwi@auce.edu.lb

Abbass Nasser

ICCS-Lab, Computer Science

Department

 American University of Culture

and Education

Beirut, Lebanon

abbassnasser@auce.edu.lb

Benoit Clement

Lab-STICC UMR CNRS 6285

ENSTA Bretagne

Brest, France

benoit.clement@ensta-bretagne.fr

Abstract—— Path planning and obstacle avoidance form the

basis of the UAV operations. The objective of an Unmanned Aerial

Vehicle (UAV) is to navigate an optimal path towards its

destination while ensuring the avoidance of the obstacles along the

way. Several algorithms have been proposed by many researchers

to achieve this objective. In this paper, we focused on Global path-

planning algorithms for UAVs with obstacle avoidance. We

compare various algorithms by highlighting their characteristics,

advantages, and limitations. In addition, this paper implements

four of the most well-known methods that tackle environmental

challenges. Our results offer practical insights and guidance for

researchers seeking to develop more effective path planning

algorithms for UAVs.

Keywords— UAV, Obstacle Avoidance, Path planning

algorithms, Classification, Global path planning

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) has gained
popularity in various industries such as search and rescue,
environmental tracking, mapping, surveillance, military
operations, and more.[1]

One of the major challenges facing UAVs operations is path
planning, which directly affects their power consumption. As a
result, the primary objective is to ensure that the UAV arrives
safely and in the shortest time possible. To this end it is
necessary to use efficient path planning algorithms that can
optimize the UAV's direction while avoiding obstacles and
conserving energy. UAV path planning can be classified into
two categories: global path planning and local path planning [2].
In addition, each of these categories can be further divided into
subcategories. Moreover, we can distinguish two types of the
flying environments a static environment where all conditions
(obstacles, destination, weather…) remain constant over time,
and a dynamic environment, where these conditions are subject
to change [3]. However, the adopted path planning method
should be adapted to the environment conditions so as the UAV
can accomplish its mission successfully.

To ensure that the aerial vehicle is adequately tested prior to
physical experimentation, simulation has been proposed as a
reliable and efficient technique.. One such simulator, JSBSIM,
is a versatile and object-oriented Flight Dynamics Model (FDM)
that has been integrated into our approach, as suggested by [4].

In this paper, we classify UAVs path planning, while
mentioning the optimal environment which they can be used for.
To better illustrate the practical utility of these methods, we
conduct experiments on four different path planning algorithms,
each tailored to a specific environment and task. For example,
one of the tasks is docking of a UAV on a mobile landing station.

II. UAV GLOBAL PATH PLANNING

The task of identifying the optimal direction while avoiding

obstacles relies heavily on the algorithm's ability to optimize the

route. For instance, compared to wheeled mobile robots,

planning a path for UAVs is much more intricate due to their

high-speed operating environment and significant dynamic

challenges, which include obstacles, wind, and rain.

Consequently, more sophisticated and precise algorithms are

necessary to tackle the obstacle avoidance and path planning

difficulties for UAVs Fig 1. focuses on Global Path Planning

(GPP) algorithms, GPP aims to identify the optimal route for a

UAV to travel from its starting point to its destination within a

given environment, while avoiding obstacles and complying

with any constraints, such as restricted airspace or minimum

altitude requirements. As mentioned by Fig. 1, Four subgroups

Figure 1 UAV Path Planning Classification Categories

of GPP can be distinguished: optimization methods, geometric

methods, grid methods, and differential games.

A. Optimization based methods

The optimization-based methods form a subgroup of GPP
that uses optimization techniques to find the best path through a
given environment. They formulate the path planning problem
as an optimization problem with an objective function that
reflects desired characteristics of the path. Optimization is
carried out using mathematical programming [5]or numerical
optimization techniques [6]. These methods are useful in
handling complex environments with multiple constraints and
can generate optimal or near-optimal paths. In the following, we
will present some Optimization-based methods.

Nonlinear programming (NLP): a method for optimizing
solutions to problems that have nonlinear objective functions
and/or constraints. It involves techniques such as quadratic
programming, mixed-integer programming, and nonlinear least
squares optimization [7]

Linear programming (LP): a mathematical optimization
method used to find the optimal solution to a problem that
involves linear objective functions and linear constraints [8]

Genetic algorithm (GA): an optimization method inspired by
the process of natural selection. It involves generating a
population of potential solutions to a problem, evaluating their
fitness, and iteratively improving the solutions through a process
of selection, crossover, and mutation [9]

Nature-inspired: methods use mathematical models to
simulate the collective behavior of natural systems such as
swarms of birds or colonies of ants. Particle Swarm
Optimization (PSO) [10] and Ant Colony Optimization (ACO)
which is inspired by the behavior of ants are examples of nature-
inspired methods.

Simulated annealing: a probabilistic optimization method
inspired by the process of annealing in metallurgy. It involves a
random search through the solution space that allows for
occasional "uphill" moves to avoid getting stuck in local minima
[10].

Tabu search: is a metaheuristic optimization method that
involves a search through the solution space while avoiding
previously visited solutions by using a 'tabu list' to keep track of
previous solutions and prevent revisiting them [11].

Figure 2 Subcategories of Optimization and Geometric based methods.

B. Geometric based methods

A subcategory of global path planning in which the
environment is represented as a geometric space consisting of
obstacles and free areas. It emphasizes the use of geometric
concepts and algorithms to facilitate effective and safe
autonomous navigation [12]. The following methods are
considered subcategories of geometric based methods.

Voronoi diagram based: Generate a graph of the
environment by constructing a Voronoi diagram based on the
distance to obstacle positions. The graph consists of nodes
representing the obstacles and edges connecting adjacent
regions. The method finds a path between the start and goal
positions while avoiding obstacles by searching this graph[13].

 Visibility graph-based: the visibility graph-based method
involves constructing a graph that represents the visibility
relationships between the obstacles in the environment, and then
using graph algorithms to find the shortest path between two
points in the environment [14].

The Delaunay triangulation-based: A geometric path
planning approach that uses a triangulation of the environment's
free space. Each point in the triangulation is equidistant to its
three nearest neighbor points, and the edges of the triangles form
a network of potential paths. A pathfinding algorithm is then
used to find the shortest path.

 Medial axis-based: A method that generates a skeleton that
represents the centers of the largest circles that can be inscribed
within the obstacles in the environment. This skeleton can also
be used as a basis for path planning algorithms to find the
shortest path while avoiding obstacles.

Cell decomposition-based: A method for path planning
called cell decomposition divides the environment into simpler
cells, which can be connected to form a path. The cells can be of
any shape but squares or rectangles are commonly used [15].

C. Grid based methods

Grid-based are a type of UAV path planning that divide the
planning space into a grid and create a graph to find the shortest
or most optimal path for the UAV to follow while avoiding
obstacles and meeting objectives. They are commonly used
because of their computational efficiency and ability to handle
complex environments. The following sections will provide
more information on these methods Fig 3.

Dijkstra's algorithm: used to solve the shortest path problem
of a graph with non-negative edge costs, it gives the shortest path
tree. For a given vertex of the graph, the algorithm starts by
finding the costs of the shortest path between a source vertex and
a destination vertex. Once the shortest path to the destination
vertex has been found, the algorithm stops [16].

A* algorithm: An algorithm finds the shortest path between
two nodes in a graph by assigning tentative distance to each node
and calculating a heuristic value based on the estimated distance
to the goal node. It then selects the node with the lowest total
distance and explores its neighbors until the goal node is reached
or all possible paths have been explored. A* algorithm is faster
than Dijkstra's algorithm because it uses a heuristic function. (1),
where f(n) is the estimated path to reach the goal node throw the

node n, g(n) is the cost to reach node n from the starting point,
h(n) is the heuristic cost to reach goal node from node n.
However, the quality of the heuristic function greatly influences
the algorithm's performance. The A* algorithm is guaranteed to
find the shortest path if the heuristic function is admissible and
consistent. In [17], the authors utilized the A* algorithm in
conjunction with GA (Genetic Algorithm) to find the minimum
path and for obstacle avoidance. They also utilized ray tracing
for calculating coverage.

 f(n) = g(n) + h(n) (1)

Dynamic A* (D* lite): A real-time planning algorithm that
updates the path as the environment changes. It uses a graph
search approach and maintains a local map of the environment
to update the cost of the path. The algorithm is efficient and can
handle real-time planning applications.

Iterative Deepening A* (IDA): A search algorithm that uses
depth-first search memory efficiency and A* optimality. It
gradually increases the depth limit until it finds the goal node,
using a heuristic function to estimate the cost at each depth limit.
The algorithm terminates when the goal node is found, or the
depth limit exceeds a pre-determined threshold.

Breadth-First Search (BFS): Graph traversal algorithm used
to explore all the vertices or nodes of a graph in breadth-first
order, i.e., visiting all the nodes at a given depth before moving
on to the nodes at the next depth. BFS can be used to find the
shortest path between two nodes in an unweighted graph.

Depth-First Search (DFS): An algorithm used to traverse and
search through a graph or tree data structure. It starts at a given
node and explores as far as possible along each branch before
backtracking. The algorithm does this recursively until all nodes
have been visited, marking each visited node as it progresses.
DFS uses a stack data structure to keep track of the nodes to be
visited and is commonly implemented using recursion.

D. Differential games based methods:

A mathematical framework for analyzing strategic
interactions between multiple decision-makers over time. It
models the dynamics of the system as a set of differential
equations and studies the optimal strategies of each player under
various conditions. The objective is to find a solution that
maximizes each player's gain while taking into account the
actions of the other players. In the following sections, we discuss
methods that are considered as Differential games methods Fig
3.

Homicidal chauffeur (HC): A car with small turning radius
with target to catch a pedestrian who tries to escape. Of course,
the car can move faster than the pedestrian, but the pedestrian
has better maneuverability. The main idea is what is the ideal
strategy that each player can use to increase their own score?
The car must choose a strategy that will ensure the capture of the
pedestrian under different circumstances and the Pedestrian use
a strategy to escape and in case that he can’t escape he will try
to maximize the capture time on the other hand the car want to
minimize this time. This simple game considered as a classical
1-persuer-1- evader problem used in many military applications
so for example we can assume that the car is anti-aircraft missile,
and the pedestrian is the enemy plane.

Target interception (TI): A method used to calculate the
future position of a moving object and direct a UAV to intercept
it at that position. This is achieved by utilizing the target's
heading angle and speed to determine its future location.

Two cars Two cars with the same turn radius limitation
engaged in a pursuit evasion game, each car want to catch the
other, according to Isaacs the two cars Differential game it is just
like the HC except the evader too suffers the constraint of
bounded curvature [18]

Lady in the lake: A man runs around a circle and a woman
moves from the circle center to the boundary of the circle. When
the woman reaches the boundary, the distance between the man
and the woman is measured by the angle between the segments
connecting their position and the circle center. The man tries to
minimize this angle, but the woman tries to maximize it. The
objective of the game is to design policies for both players[19]

Figure 3 Subcategories of Grid and Differential game based methods

III. IMPLEMENTATION

The choice of path planning techniques depends on the
required task [2], so to cover most known scenario that can face
a UAV during the path planning, we make two implementations.
The first one deal with static environment and fixed destination
using two-grid methods (Dijkstra and A*), both methods use
offline calculation to provide an optimal path, so we can
compare their results. The second implementation deal with
dynamic environment with moving destination using two
Differential games methods (HC and TI), both methods can be
used in a dynamic environment and apply to the scenario where
a drone is trying to catch a moving landing station.

Grid-based Implementation:
In the Grid-based implementation, we use python scripts,

and 2D map in presence of static obstacles. The used map was
divided into 900 cells, with 30 columns and 30 rows. The aim of
this implementation is to monitor the limitation of these two
methods by comparing their performance in terms of number of
searched nodes and the path length. We change the location of
obstacles and the cartesian location of the destination.

We use the Euclidean distance between the current node and
the destination node (goal node) as the heuristic function. In both
Dijkstra and A* methods, the UAV will choose the offline path
before starting the journey due to the static destination and the
absence of moving obstacles or any other influencing factors on
the UAV.

In the first implementation, we use an obstacles-free map,
and we use a destination node with Cartesian location (12, 12)

(see Fig 4) in order to compare the number of searched nodes
between the two methods. The results show that both methods
generate the same path which is the optimal path. However,
there is a huge difference between the numbers of the searched
nodes between the two methods. With A*, only 12 nodes were
searched, while 237 nodes were searched by Dijkstra to get the
same path as A*. This difference refers to that A* use heuristic
function to estimates the distance from each explored node to
the goal node while Dijkstra explores all the neighbors of each
node.

In the second implementation of Fig 5, we add obstacles to
the map and change the destination Cartesian location to (14,
12). The results show that the length of the path is the same in
the two methods (18 nodes). However, the path itself is different
and the number of searched nodes in Dijkstra equal to 215 and
204 in A*. The difference between the number of nodes
searched is significantly lower than the first implementation.
These results indicate that the heuristic function used is not ideal
for this map.

In the third implementation of Fig 6 we change the
destination Cartesian location to (14, 18). The A* failed to find
a path to the destination due to the inefficiency of using
Euclidean distance as a heuristic function in a complex
environment., while Dijkstra was able to find the path in 50 steps
and the number of searched nodes is 593 nodes.

The three implementations show that the effect of the
heuristic function on path generation is direct, and that the
heuristic function does not always generate the optimal path.

A. Differential gameImplementation:

The second implementation focuses on two differential
game-based methods: HC and TI. This implementation is
designed to address the challenge of docking a drone onto a
mobile station in a 2D dynamic environment with wind effects
and no obstacles. We consider this use case as a cooperative
scenario, meaning that neither the landing station nor the drone
would take any premeditated actions to prevent the goal from
being reached.

For this implementation, we used a Python script to generate
paths based on differential game algorithms (HC, TI). We also
used JSBSIM FDM [4], to simulate the wind effects on a real
airplane. We select a Cessna c172 airplane for the simulation,
with an altitude hold autopilot set to 4000 feet (1219 meters) to
simplify the implementation to a 2D environment. To simulate
the wind effects, we added a wind speed of 23 feet per second,

which is considered above average at 4000 feet. During the
implementation, we varied the heading angle and starting
location of the landing station (with the UAV starting
coordinates used as a reference point at (0, 0), and we changed
the wind direction to cover different possibilities (east, west),
allowing for variations in the aircraft's path. In all
implementations, we maintain a constant landing speed of 15
m/s for the landing station and 51 m/s for the aircraft. We
considered the plane to have caught the landing station when the
remaining time to catch it became less than 1 second and the
distance was less than 51 meters.

Figure 5 A* and Dijkstra Path Planning in presence of obstacles and catching

location (14,12)

Figure 6 Dijkstra Path Planning in presence of obstacles and destination

coordination (14,18)

To implement HC, we assume that the UAV would act as the
pursuer and the landing station would act as the evader, both
modeled as points moving under the following assumptions. The
UAV moves at a constant speed and can change its heading
angle by instantaneously selecting the radius of curvature of its
trajectory above a given threshold. The landing station moves at
a constant speed and with a constant heading angle. The capture
occurs when the distance between the pursuer and the evader
reaches a given threshold. It is typically assumed that the pursuer
has an advantage in speed but a disadvantage in
maneuverability. Fig 7 shows a dynamic model of the
movements of the pursuer (UAV) and evader (landing station).
Let (x1, y1) be the Cartesian coordinates of the UAV with
respect to a fixed frame O, X, Y. Let W1 denote the speed of the
landing station and θ denote its heading angle, measured
clockwise from the Y axis. Also, let R denote the minimum
radius of curvature of the UAV's trajectory and φ denote the ratio
of the minimum radius of curvature to the actual radius of
curvature. Then the motion of the UAV is modeled by (2), (3)
and (4)

Figure 4 A* and Dijkstra Path Planning without obstacles

Table 1 lists specification of some grid and differential games-based methods.

 𝑥̇1 = 𝑊1 𝑆𝑖𝑛𝜃 𝑥̇2 = 𝑊2 𝑆𝑖𝑛𝜃 (2)

 𝑦1̇ = 𝑊1 𝐶𝑜𝑠𝜃 𝑦2̇ = 𝑊2 𝐶𝑜𝑠 𝜃 (3)

 𝜃̇ =
𝑊1

𝑅
∅ |∅| ≤ 1 (4)

In [18], Isaacs provides two examples of the simplest pursuit
game involving two players, P and E, with speeds W and w,
respectively, where W>w. The players move in the plane, each
with simple motion, along a straight line connecting their initial
positions, with E fleeing and P pursuing. The payoff is the time
of capture, and in Isaacs' example, the question was why P
cannot extrapolate E's future position and calculate a collision
point, enabling P to go straight to it and reduce the number of
steps required to catch E in from 15.5 steps to 4.3 steps. Isaacs
points out that P's prediction has no basis since the game allows
E to change direction abruptly. If E remains unaware of P until
two-time units have elapsed, E will belatedly assume their
optimal strategy and flee directly away from P. In our case, the
landing station and the drone will not take premeditated actions,
so we use the simple method Target Interception (TI). In order
detect any external influences on the drone, we compare the
actual location with the assumed location by using a constant
speed and heading to ensure the drone is on the right trajectory.

1) Change landing station heading angle

First implementation we use the same starting location for

the landing station (X=17000, Y=17000) which is 24042 meters

away from the UAV and we change the heading angle

(
 𝜋

3
,

𝜋

4
,

𝜋

5
,

𝜋

6
).We repeat the same experiment but in the second

time we change the direction of wind from west to east.

The implementation results show that TI was the best
method with the shortest distances to reach the landing station
over the four trials, however the HC method results was very

close when the heading angle equal to
𝜋

4
. In addition to the

Algorithm Online/offline

Calculation

Connection between

UAV and destination

Optimal solution Dynamic/static

environment

limitation

Dijkstra Offline Yes Yes Static cannot handle negative edge weights[20]

A* Offline Yes Depend On

Heuristic Function

Static Heuristic function is the key for finding

the optimal solution. [24]

D* Online Yes No Dynamic require a significant amount of

computation time and resources to

update the cost-to-come values for each

cell in the grid[21]

IDA Offline Yes Yes Static Can be slow if branching factor is high or

the heuristic function is not

informative[22].

BFS Offline No Yes Static Very memory-intensive if the branching

factor is high or the search space is large

[23]

DFS Offline No No Static Possible to get stuck in an infinite loop

[23]

HC Online Yes No Dynamic Doesn’t take into consideration the

environment effects (wind,rain,…) [18]

TI Online Yes Depend On

Environment

Dynamic The environment plays a major role in

the success or failure of the method [12].

Figure 7 Dynamic model of the motions of HC

Figure 8 The effect of the heading angle of the landing station

on the total travel distance with a wind direction from the west

Figure 9 The effect of the heading angle of the landing station on the

total travel distance with a wind direction from the east

heading angle of the landing station, the wind direction
influences the travel distance Fig 8 Fig 9

2) Modify the initial distance:
During the second implementation we use the same heading

angle in all the tests, but we change the coordination of landing
station at t0 randomly and incrementally, which leads to
changing in the initial distance d0 between landing station and
the UAV, it is therefore normal to see that the traveled distance
(TD) at evolves incrementally. Table 2. The results show that
the drone using TI reaches the mobile landing station by a
shorter path.

TABLE 2 UAV TRAVELED DISTANCE WHILE CHANGING THE LANDING STATION

START POSITION.

3) Results
The results showed that the TI approach performed better

than the HC method. However, in some cases, there were only
slight differences between the results of the two methods, and
the differences observed were not statistically significant.
Despite this, the overall trend indicates that the TI approach is
more effective than the HC approach.

IV. CONCLUSION

In this paper, we presented the global path planning of UAVs
classification categories and its subcategories, while focusing on
their advantages and limitations and the environment in which
they can be used.

We implemented four methods, two of them considered as
UAV grid based methods whish generate a path offline in static
environment in presence of obstacles, the other two methods
considered as Differential game methods whish deal a dynamic
task which is docking of a UAV on a mobile landing station with
the presence of wind as an external influence factor.

As a future work, we plan to extend our implementation to
include a wider range of trajectory planning methods that
address different environmental challenges. Our goal is to
develop a comprehensive dataset of trajectory planning
solutions that can be used to train a supervised learning model
for UAV trajectory planning using machine learning techniques.

V. REFERENCES

[1] A. Heidari, N. Jafari Navimipour, M. Unal, and G. Zhang, “Machine
Learning Applications in Internet-of-Drones: Systematic Review, Recent
Deployments, and Open Issues,” ACM Comput. Surv., vol. 55, no. 12, pp.
1–45, Dec. 2023, doi: 10.1145/3571728.

[2] Y. Yang, X. Xiong, and Y. Yan, “UAV Formation Trajectory Planning
Algorithms: A Review,” Drones, vol. 7, no. 1, p. 62, Jan. 2023, doi:
10.3390/drones7010062.

[3] Z. Xu, D. Deng, Y. Dong, and K. Shimada, “DPMPC-Planner: A real-
time UAV trajectory planning framework for complex static
environments with dynamic obstacles,” in 2022 International Conference
on Robotics and Automation (ICRA), 2022, pp. 250–256. doi:
10.1109/ICRA46639.2022.9811886.

[4] T. Vogeltanz, “A Survey of Free Software for the Design, Analysis,
Modelling, and Simulation of an Unmanned Aerial Vehicle,” Arch.

Comput. Methods Eng., vol. 23, no. 3, pp. 449–514, Sep. 2016, doi:
10.1007/s11831-015-9147-y.

[5] B. Pérez, R. Mínguez, and R. Guanche, “Offshore wind farm layout
optimization using mathematical programming techniques,” Renew.
Energy, vol. 53, pp. 389–399, May 2013, doi:
10.1016/j.renene.2012.12.007.

[6] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New York:
Springer, 2006.

[7] F. Borrelli, D. Subramanian, A. U. Raghunathan, and L. T. Biegler,
“MILP and NLP Techniques for centralized trajectory planning of
multiple unmanned air vehicles,” in 2006 American Control Conference,
Minneapolis, MN, USA, 2006, p. 6 pp. doi: 10.1109/ACC.2006.1657644.

[8] Y. Chen, J. Han, and X. Zhao, “Three-dimensional path planning for
unmanned aerial vehicle based on linear programming,” Robotica, vol.
30, no. 5, pp. 773–781, Sep. 2012, doi: 10.1017/S0263574711000993.

[9] R. Shivgan and Z. Dong, “Energy-Efficient Drone Coverage Path
Planning using Genetic Algorithm,” in 2020 IEEE 21st International
Conference on High Performance Switching and Routing (HPSR),
Newark, NJ, USA, May 2020, pp. 1–6. doi:
10.1109/HPSR48589.2020.9098989.

[10] J. L. Foo, J. Knutzon, J. Oliver, and E. Winer, “Three-Dimensional Path
Planning of Unmanned Aerial Vehicles Using Particle Swarm
Optimization,” in 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Portsmouth, Virginia, Sep. 2006. doi:
10.2514/6.2006-6995.

[11] B. Tong, J. Wang, X. Wang, F. Zhou, X. Mao, and W. Zheng, “Optimal
Route Planning for Truck–Drone Delivery Using Variable Neighborhood
Tabu Search Algorithm,” Appl. Sci., vol. 12, no. 1, p. 529, Jan. 2022, doi:
10.3390/app12010529.

[12] H. Choset, Principles of Robot Motion: Theory, Algorithms, and
Implementations. MIT Press, 2005.

[13] H. Tong, W. W. chao, H. C. qiang, and X. Y. bo, “Path Planning of UAV
Based on Voronoi Diagram and DPSO,” Procedia Eng., vol. 29, pp. 4198–
4203, 2012, doi: 10.1016/j.proeng.2012.01.643.

[14] A. Majeed and S. Lee, “A Fast Global Flight Path Planning Algorithm
Based on Space Circumscription and Sparse Visibility Graph for
Unmanned Aerial Vehicle,” Electronics, vol. 7, no. 12, p. 375, Dec. 2018,
doi: 10.3390/electronics7120375.

[15] S. K. Debnath et al., “Different Cell Decomposition Path Planning
Methods for Unmanned Air Vehicles-A Review,” in Proceedings of the
11th National Technical Seminar on Unmanned System Technology
2019, vol. 666, Z. Md Zain, H. Ahmad, D. Pebrianti, M. Mustafa, N. R.
H. Abdullah, R. Samad, and M. Mat Noh, Eds. Singapore: Springer
Nature Singapore, 2021, pp. 99–111. doi: 10.1007/978-981-15-5281-6_8.

[16] E. J. Dhulkefl, A. Durdu, and Electrical and Electronic Engineering, “Path
Planning Algorithms for Unmanned Aerial Vehicles,” Int. J. Trend Sci.
Res. Dev., vol. Volume-3, no. Issue-4, pp. 359–362, Jun. 2019, doi:
10.31142/ijtsrd23696.

[17] N. Bolourian and A. Hammad, “LiDAR-equipped UAV path planning
considering potential locations of defects for bridge inspection,” Autom.
Constr., vol. 117, p. 103250, Sep. 2020, doi:
10.1016/j.autcon.2020.103250.

[18] R. Isaacs, “Differential Games: A Mathematical Theory with
Applications to Warfare and Pursuit,” Jan. 1965.

[19] P. Cheng, “A short survey on pursuit-evasion games.” 2003.

[20] N. Makariye, “Towards shortest path computation using Dijkstra
algorithm,” in 2017 International Conference on IoT and Application
(ICIOT), Nagapattinam, India, May 2017, pp. 1–3. doi:
10.1109/ICIOTA.2017.8073641.

[21] M. C. Reeves, “Master of Science in Electrical Engineering”.

[22] R. E. Korf, “Depth-first iterative-deepening,” Artif. Intell., vol. 27, no. 1,
pp. 97–109, Sep. 1985, doi: 10.1016/0004-3702(85)90084-0.

[23] R. E. Korf, “Linear-space best-first search,” Artif. Intell., vol. 62, no. 1,
pp. 41–78, Jul. 1993, doi: 10.1016/0004-3702(93)90045-D.

[24] U. K. G. Z. Aditya Chatterjee, "Publication, Open-Source, Computer
Science,," 2017. [Online]. Available: iq.opengenus.org. [Accessed
September 2017].

Method Distance at the initial state t0, in meters

32311 35511 37947 56921

Traveled

distance in m

HC 44702 47666 52076 78188
TI 44632 47608 51990 78143

