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Abstract—— Path planning and obstacle avoidance form the 

basis of the UAV operations. The objective of an Unmanned Aerial 

Vehicle (UAV) is to navigate an optimal path towards its 

destination while ensuring the avoidance of the obstacles along the 

way. Several algorithms have been proposed by many researchers 

to achieve this objective. In this paper, we focused on Global path-

planning algorithms for UAVs with obstacle avoidance. We 

compare various algorithms by highlighting their characteristics, 

advantages, and limitations. In addition, this paper implements 

four of the most well-known methods that tackle environmental 

challenges. Our results offer practical insights and guidance for 

researchers seeking to develop more effective path planning 

algorithms for UAVs. 

Keywords— UAV, Obstacle Avoidance, Path planning 

algorithms, Classification, Global path planning 

I. INTRODUCTION 

The use of unmanned aerial vehicles (UAVs) has gained 
popularity in various industries such as search and rescue, 
environmental tracking, mapping, surveillance, military 
operations, and more.[1] 

One of the major challenges facing UAVs operations  is path 
planning, which directly affects their power consumption. As a 
result, the primary objective is to ensure that the UAV arrives 
safely and in the shortest time possible. To this end it is 
necessary to use efficient path planning algorithms that can 
optimize the UAV's direction while avoiding obstacles and 
conserving energy. UAV path planning can be classified into 
two categories: global path planning and local path planning [2]. 
In addition, each of these categories can be further divided into 
subcategories. Moreover, we can distinguish two types of the 
flying environments a static environment where all conditions 
(obstacles, destination, weather…) remain constant over time, 
and a dynamic environment, where these conditions are subject 
to change [3]. However, the adopted path planning method 
should be adapted to the environment conditions so as the UAV 
can accomplish its mission successfully. 

To ensure that the aerial vehicle is adequately tested prior to 
physical experimentation, simulation has been proposed as a 
reliable and efficient technique.. One such simulator, JSBSIM, 
is a versatile and object-oriented Flight Dynamics Model (FDM) 
that has been integrated into our approach, as suggested by [4]. 

In this paper, we classify UAVs path planning, while 
mentioning the optimal environment which they can be used for. 
To better illustrate the practical utility of these methods, we 
conduct experiments on four different path planning algorithms, 
each tailored to a specific environment and task. For example, 
one of the tasks is docking of a UAV on a mobile landing station. 

II. UAV GLOBAL PATH PLANNING 

The task of identifying the optimal direction while avoiding 

obstacles relies heavily on the algorithm's ability to optimize the 

route. For instance, compared to wheeled mobile robots, 

planning a path for UAVs is much more intricate due to their 

high-speed operating environment and significant dynamic 

challenges, which include obstacles, wind, and rain. 

Consequently, more sophisticated and precise algorithms are 

necessary to tackle the obstacle avoidance and path planning 

difficulties for UAVs Fig 1. focuses on Global Path Planning 

(GPP) algorithms, GPP aims to identify the optimal route for a 

UAV to travel from its starting point to its destination within a 

given environment, while avoiding obstacles and complying 

with any constraints, such as restricted airspace or minimum 

altitude requirements. As mentioned by Fig. 1, Four subgroups 

Figure 1 UAV Path Planning Classification Categories 



of GPP can be distinguished: optimization methods, geometric 

methods, grid methods, and differential games. 

A. Optimization based methods 

The optimization-based methods form a subgroup of GPP 
that uses optimization techniques to find the best path through a 
given environment. They formulate the path planning problem 
as an optimization problem with an objective function that 
reflects desired characteristics of the path. Optimization is 
carried out using mathematical programming [5]or numerical 
optimization techniques [6]. These methods are useful in 
handling complex environments with multiple constraints and 
can generate optimal or near-optimal paths. In the following, we 
will present some Optimization-based methods.  

Nonlinear programming (NLP): a method for optimizing 
solutions to problems that have nonlinear objective functions 
and/or constraints. It involves techniques such as quadratic 
programming, mixed-integer programming, and nonlinear least 
squares optimization [7] 

Linear programming (LP): a mathematical optimization 
method used to find the optimal solution to a problem that 
involves linear objective functions and linear constraints [8] 

Genetic algorithm (GA): an optimization method inspired by 
the process of natural selection. It involves generating a 
population of potential solutions to a problem, evaluating their 
fitness, and iteratively improving the solutions through a process 
of selection, crossover, and mutation [9] 

Nature-inspired: methods use mathematical models to 
simulate the collective behavior of natural systems such as 
swarms of birds or colonies of ants. Particle Swarm 
Optimization (PSO) [10] and Ant Colony Optimization (ACO) 
which is inspired by the behavior of ants are examples of nature-
inspired methods. 

Simulated annealing: a probabilistic optimization method 
inspired by the process of annealing in metallurgy. It involves a 
random search through the solution space that allows for 
occasional "uphill" moves to avoid getting stuck in local minima 
[10]. 

Tabu search: is a metaheuristic optimization method that 
involves a search through the solution space while avoiding 
previously visited solutions by using a 'tabu list' to keep track of 
previous solutions and prevent revisiting them [11]. 

 

Figure 2 Subcategories of Optimization and Geometric based methods. 

B. Geometric based methods 

A subcategory of global path planning in which the 
environment is represented as a geometric space consisting of 
obstacles and free areas. It emphasizes the use of geometric 
concepts and algorithms to facilitate effective and safe 
autonomous navigation [12]. The following methods are 
considered subcategories of geometric based methods. 

Voronoi diagram based: Generate a graph of the 
environment by constructing a Voronoi diagram based on the 
distance to obstacle positions. The graph consists of nodes 
representing the obstacles and edges connecting adjacent 
regions. The method finds a path between the start and goal 
positions while avoiding obstacles by searching this graph[13]. 

 Visibility graph-based: the visibility graph-based method 
involves constructing a graph that represents the visibility 
relationships between the obstacles in the environment, and then 
using graph algorithms to find the shortest path between two 
points in the environment [14]. 

The Delaunay triangulation-based: A geometric path 
planning approach that uses a triangulation of the environment's 
free space. Each point in the triangulation is equidistant to its 
three nearest neighbor points, and the edges of the triangles form 
a network of potential paths. A pathfinding algorithm is then 
used to find the shortest path. 

 Medial axis-based: A method that generates a skeleton that 
represents the centers of the largest circles that can be inscribed 
within the obstacles in the environment. This skeleton can also 
be used as a basis for path planning algorithms to find the 
shortest path while avoiding obstacles.  

Cell decomposition-based: A method for path planning 
called cell decomposition divides the environment into simpler 
cells, which can be connected to form a path. The cells can be of 
any shape but squares or rectangles are commonly used [15]. 

C. Grid based methods 

Grid-based are a type of UAV path planning that divide the 
planning space into a grid and create a graph to find the shortest 
or most optimal path for the UAV to follow while avoiding 
obstacles and meeting objectives. They are commonly used 
because of their computational efficiency and ability to handle 
complex environments. The following sections will provide 
more information on these methods Fig 3. 

Dijkstra's algorithm: used to solve the shortest path problem 
of a graph with non-negative edge costs, it gives the shortest path 
tree. For a given vertex of the graph, the algorithm starts by 
finding the costs of the shortest path between a source vertex and 
a destination vertex. Once the shortest path to the destination 
vertex has been found, the algorithm stops [16]. 

A* algorithm: An algorithm finds the shortest path between 
two nodes in a graph by assigning tentative distance to each node 
and calculating a heuristic value based on the estimated distance 
to the goal node. It then selects the node with the lowest total 
distance and explores its neighbors until the goal node is reached 
or all possible paths have been explored. A* algorithm is faster 
than Dijkstra's algorithm because it uses a heuristic function. (1), 
where f(n) is the estimated path to reach the goal node throw the 



node n, g(n) is the cost to reach node n from the starting point, 
h(n) is the heuristic cost to reach goal node from node n. 
However, the quality of the heuristic function greatly influences 
the algorithm's performance. The A* algorithm is guaranteed to 
find the shortest path if the heuristic function is admissible and 
consistent. In [17], the authors utilized the A* algorithm in 
conjunction with GA (Genetic Algorithm) to find the minimum 
path and for obstacle avoidance. They also utilized ray tracing 
for calculating coverage. 

   f(n) = g(n) + h(n) (1) 

Dynamic A* (D* lite): A real-time planning algorithm that 
updates the path as the environment changes. It uses a graph 
search approach and maintains a local map of the environment 
to update the cost of the path. The algorithm is efficient and can 
handle real-time planning applications. 

Iterative Deepening A* (IDA): A search algorithm that uses 
depth-first search memory efficiency and A* optimality. It 
gradually increases the depth limit until it finds the goal node, 
using a heuristic function to estimate the cost at each depth limit. 
The algorithm terminates when the goal node is found, or the 
depth limit exceeds a pre-determined threshold. 

Breadth-First Search (BFS): Graph traversal algorithm used 
to explore all the vertices or nodes of a graph in breadth-first 
order, i.e., visiting all the nodes at a given depth before moving 
on to the nodes at the next depth. BFS can be used to find the 
shortest path between two nodes in an unweighted graph. 

Depth-First Search (DFS): An algorithm used to traverse and 
search through a graph or tree data structure. It starts at a given 
node and explores as far as possible along each branch before 
backtracking. The algorithm does this recursively until all nodes 
have been visited, marking each visited node as it progresses. 
DFS uses a stack data structure to keep track of the nodes to be 
visited and is commonly implemented using recursion. 

D. Differential games based methods: 

A mathematical framework for analyzing strategic 
interactions between multiple decision-makers over time. It 
models the dynamics of the system as a set of differential 
equations and studies the optimal strategies of each player under 
various conditions. The objective is to find a solution that 
maximizes each player's gain while taking into account the 
actions of the other players. In the following sections, we discuss 
methods that are considered as Differential games methods Fig 
3. 

Homicidal chauffeur (HC): A car with small turning radius 
with target to catch a pedestrian who tries to escape. Of course, 
the car can move faster than the pedestrian, but the pedestrian 
has better maneuverability. The main idea is what is the ideal 
strategy that each player can use to increase their own score? 
The car must choose a strategy that will ensure the capture of the 
pedestrian under different circumstances and the Pedestrian use 
a strategy to escape and in case that he can’t escape he will try 
to maximize the capture time on the other hand the car want to 
minimize this time. This simple game considered as a classical 
1-persuer-1- evader problem used in many military applications 
so for example we can assume that the car is anti-aircraft missile, 
and the pedestrian is the enemy plane. 

Target interception (TI): A method used to calculate the 
future position of a moving object and direct a UAV to intercept 
it at that position. This is achieved by utilizing the target's 
heading angle and speed to determine its future location. 

Two cars Two cars with the same turn radius limitation 
engaged in a pursuit evasion game, each car want to catch the 
other, according to Isaacs the two cars Differential game it is just 
like the HC except the evader too suffers the constraint of 
bounded curvature [18] 

Lady in the lake: A man runs around a circle and a woman 
moves from the circle center to the boundary of the circle. When 
the woman reaches the boundary, the distance between the man 
and the woman is measured by the angle between the segments 
connecting their position and the circle center. The man tries to 
minimize this angle, but the woman tries to maximize it. The 
objective of the game is to design policies for both players[19]  

 

Figure 3 Subcategories of Grid and Differential game based methods 

III. IMPLEMENTATION 

The choice of path planning techniques depends on the 
required task [2], so to cover most known scenario that can face 
a UAV during the path planning, we make two implementations. 
The first one deal with static environment and fixed destination 
using two-grid methods (Dijkstra and A*), both methods use 
offline calculation to provide an optimal path, so we can 
compare their results. The second implementation deal with 
dynamic environment with moving destination using two 
Differential games methods (HC and TI), both methods can be 
used in a dynamic environment and apply to the scenario where 
a drone is trying to catch a moving landing station. 

Grid-based Implementation: 
In the Grid-based implementation, we use python scripts, 

and 2D map in presence of static obstacles. The used map was 
divided into 900 cells, with 30 columns and 30 rows. The aim of 
this implementation is to monitor the limitation of these two 
methods by comparing their performance in terms of number of 
searched nodes and the path length. We change the location of 
obstacles and the cartesian location of the destination. 

We use the Euclidean distance between the current node and 
the destination node (goal node) as the heuristic function. In both 
Dijkstra and A* methods, the UAV will choose the offline path 
before starting the journey due to the static destination and the 
absence of moving obstacles or any other influencing factors on 
the UAV.  

In the first implementation, we use an obstacles-free map, 
and we use a destination node with Cartesian location (12, 12) 



(see Fig 4) in order to compare the number of searched nodes 
between the two methods. The results show that both methods 
generate the same path which is the optimal path. However, 
there is a huge difference between the numbers of the searched 
nodes between the two methods. With A*, only 12 nodes were 
searched, while 237 nodes were searched by Dijkstra to get the 
same path as A*. This difference refers to that A* use heuristic 
function to estimates the distance from each explored node to 
the goal node while Dijkstra explores all the neighbors of each 
node. 

In the second implementation of Fig 5, we add obstacles to 
the map and change the destination Cartesian location to (14, 
12). The results show that the length of the path is the same in 
the two methods (18 nodes). However, the path itself is different 
and the number of searched nodes in Dijkstra equal to 215 and 
204 in A*. The difference between the number of nodes 
searched is significantly lower than the first implementation. 
These results indicate that the heuristic function used is not ideal 
for this map. 

In the third implementation of Fig 6 we change the 
destination Cartesian location to (14, 18). The A* failed to find 
a path to the destination due to the inefficiency of using 
Euclidean distance as a heuristic function in a complex 
environment., while Dijkstra was able to find the path in 50 steps 
and the number of searched nodes is 593 nodes. 

The three implementations show that the effect of the 
heuristic function on path generation is direct, and that the 
heuristic function does not always generate the optimal path. 

A. Differential gameImplementation: 

The second implementation focuses on two differential 
game-based methods: HC and TI. This implementation is 
designed to address the challenge of docking a drone onto a 
mobile station in a 2D dynamic environment with wind effects 
and no obstacles. We consider this use case as a cooperative 
scenario, meaning that neither the landing station nor the drone 
would take any premeditated actions to prevent the goal from 
being reached.  

For this implementation, we used a Python script to generate 
paths based on differential game algorithms (HC, TI). We also 
used JSBSIM FDM [4], to simulate the wind effects on a real 
airplane. We select a Cessna c172 airplane for the simulation, 
with an altitude hold autopilot set to 4000 feet (1219 meters) to 
simplify the implementation to a 2D environment. To simulate 
the wind effects, we added a wind speed of 23 feet per second, 

which is considered above average at 4000 feet. During the 
implementation, we varied the heading angle and starting 
location of the landing station (with the UAV starting 
coordinates used as a reference point at (0, 0), and we changed 
the wind direction to cover different possibilities (east, west), 
allowing for variations in the aircraft's path. In all 
implementations, we maintain a constant landing speed of 15 
m/s for the landing station and 51 m/s for the aircraft. We 
considered the plane to have caught the landing station when the 
remaining time to catch it became less than 1 second and the 
distance was less than 51 meters. 

 

Figure 5 A* and Dijkstra Path Planning in presence of obstacles and catching 

location (14,12) 

 

Figure 6 Dijkstra Path Planning in presence of obstacles and destination 

coordination (14,18) 

To implement HC, we assume that the UAV would act as the 
pursuer and the landing station would act as the evader, both 
modeled as points moving under the following assumptions. The 
UAV moves at a constant speed and can change its heading 
angle by instantaneously selecting the radius of curvature of its 
trajectory above a given threshold. The landing station moves at 
a constant speed and with a constant heading angle. The capture 
occurs when the distance between the pursuer and the evader 
reaches a given threshold. It is typically assumed that the pursuer 
has an advantage in speed but a disadvantage in 
maneuverability. Fig 7 shows a dynamic model of the 
movements of the pursuer (UAV) and evader (landing station). 
Let (x1, y1) be the Cartesian coordinates of the UAV with 
respect to a fixed frame O, X, Y. Let W1 denote the speed of the 
landing station and θ denote its heading angle, measured 
clockwise from the Y axis. Also, let R denote the minimum 
radius of curvature of the UAV's trajectory and φ denote the ratio 
of the minimum radius of curvature to the actual radius of 
curvature. Then the motion of the UAV is modeled by (2), (3) 
and (4) 

Figure 4 A* and Dijkstra Path Planning without obstacles 



Table 1 lists specification of some grid and differential games-based methods. 
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In [18], Isaacs provides two examples of the simplest pursuit 
game involving two players, P and E, with speeds W and w, 
respectively, where W>w. The players move in the plane, each 
with simple motion, along a straight line connecting their initial 
positions, with E fleeing and P pursuing. The payoff is the time 
of capture, and in Isaacs' example, the question was why P 
cannot extrapolate E's future position and calculate a collision 
point, enabling P to go straight to it and reduce the number of 
steps required to catch E in from 15.5 steps to 4.3 steps. Isaacs 
points out that P's prediction has no basis since the game allows 
E to change direction abruptly. If E remains unaware of P until 
two-time units have elapsed, E will belatedly assume their 
optimal strategy and flee directly away from P. In our case, the 
landing station and the drone will not take premeditated actions, 
so we use the simple method Target Interception (TI). In order 
detect any external influences on the drone, we compare the 
actual location with the assumed location by using a constant 
speed and heading to ensure the drone is on the right trajectory. 

 

1) Change landing station heading angle 

First implementation we use the same starting location for 

the landing station (X=17000, Y=17000) which is 24042 meters 

away from the UAV and we change the heading angle 

(
 𝜋

3
,

𝜋

4
,

𝜋

5
,

𝜋

6
).We repeat the same experiment but in the second 

time we change the direction of wind from west to east. 

 

The implementation results show that TI was the best 
method with the shortest distances to reach the landing station 
over the four trials, however the HC method results was very 

close when the heading angle equal to 
𝜋

4
. In addition to the 

Algorithm Online/offline 

Calculation 

Connection between 

UAV and destination 

Optimal solution Dynamic/static 

environment 

limitation 

Dijkstra Offline Yes Yes Static cannot handle negative edge weights[20] 

A* Offline Yes Depend On 

Heuristic Function 

Static Heuristic function is the key for finding 

the optimal solution. [24] 

D* Online Yes No Dynamic require a significant amount of 

computation time and resources to 

update the cost-to-come values for each 

cell in the grid[21] 

IDA Offline Yes Yes Static Can be slow if branching factor is high or 

the heuristic function is not 

informative[22]. 

BFS Offline No Yes Static Very memory-intensive if the branching 

factor is high or the search space is large 

[23] 

DFS Offline No No Static Possible to get stuck in an infinite loop 

[23] 

HC Online Yes No Dynamic Doesn’t take into consideration the 

environment effects (wind,rain,…) [18] 

TI Online Yes Depend On 

Environment 

Dynamic The environment plays a major role in 

the success or failure of the method [12]. 

Figure 7 Dynamic model of the motions of HC 

Figure 8 The effect of the heading angle of the landing station 

on the total travel distance with a wind direction from the west 

Figure 9 The effect of the heading angle of the landing station on the 

total travel distance with a wind direction from the east 

 



heading angle of the landing station, the wind direction 
influences the travel distance Fig 8 Fig 9 

2) Modify the initial distance: 
During the second implementation we use the same heading 

angle in all the tests, but we change the coordination of landing 
station at t0 randomly and incrementally, which leads to 
changing in the initial distance d0 between landing station and 
the UAV, it is therefore normal to see that the traveled distance 
(TD) at evolves incrementally. Table 2. The results show that 
the drone using TI reaches the mobile landing station by a 
shorter path. 

TABLE 2 UAV TRAVELED DISTANCE WHILE CHANGING THE LANDING STATION 

START POSITION. 

3) Results 
The results showed that the TI approach performed better 

than the HC method. However, in some cases, there were only 
slight differences between the results of the two methods, and 
the differences observed were not statistically significant. 
Despite this, the overall trend indicates that the TI approach is 
more effective than the HC approach. 

IV. CONCLUSION 

In this paper, we presented the global path planning of UAVs 
classification categories and its subcategories, while focusing on 
their advantages and limitations and the environment in which 
they can be used. 

We implemented four methods, two of them considered as 
UAV grid based methods whish generate a path offline in static 
environment in presence of obstacles, the other two methods 
considered as Differential game methods whish deal a dynamic 
task which is docking of a UAV on a mobile landing station with 
the presence of wind as an external influence factor. 

As a future work, we plan to extend our implementation to 
include a wider range of trajectory planning methods that 
address different environmental challenges. Our goal is to 
develop a comprehensive dataset of trajectory planning 
solutions that can be used to train a supervised learning model 
for UAV trajectory planning using machine learning techniques. 
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Method Distance at the initial state t0, in meters 

32311 35511 37947 56921 

Traveled 

distance in m 

HC 44702 47666 52076 78188 
TI 44632 47608 51990 78143 


