
HAL Id: hal-04195952
https://ensta-bretagne.hal.science/hal-04195952

Submitted on 18 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FSET: Fast Structure Embedding Technique
for Self-reconfigurable Modular Robotic Systems

Aliah Majed, Hassan Harb, Abbass Nasser, Benoit Clement

To cite this version:
Aliah Majed, Hassan Harb, Abbass Nasser, Benoit Clement. FSET: Fast Structure Embedding Tech-
nique for Self-reconfigurable Modular Robotic Systems. 37th International Conference on Advanced
Information Networking and Applications, 2023, Juiz de Fora, Brazil. pp.53-66, �10.1007/978-3-031-
28451-9_5�. �hal-04195952�

https://ensta-bretagne.hal.science/hal-04195952
https://hal.archives-ouvertes.fr

FSET: Fast Structure Embedding Technique for
Self-Reconfigurable Modular Robotic Systems

Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

Abstract The rapid growth in communication technologies has lead to a new gen-
eration of robotics called as Modular Robotic System (MRS). The most crucial pro-
cess in MRS is self-reconfiguration, which is regarded as the major challenge for
such technology. Indeed, creating new morphology and behaviors manually is a
time-consuming and costly process, especially when dealing with complex struc-
tures. In this paper, we have proposed a fast self-reconfiguration technique called
FSET, i.e. Fast SET, dedicated to MRSs. Our proposed technique consists mainly in
two stages: root selection and morphology formation. The final goal of these stages
is to enhance the time cost to get new morphology of the traditional SET algorithm
thus, ensure fast self-reconfiguration. The root selection stage selects a small num-
ber of modules in order to find the best tree roots that effects the topological con-
ditions that leads to successful of the embedding process or not. The morphology
formation stage uses the traditional SET algorithm to calculate the embedding truth
table where the initial roots used are taken from the first stage. Finally, we show the
efficiency of our mechanism through simulations on real scenario using M-TRAN,
in terms providing a fast reconfiguration process in MRS and reducing the energy
consumption of modules thus, increasing its lifetime.

A. Majed and A. Nasser
ICCS-Lab, Computer Science Department, American University of Culture and Education
(AUCE), Beirut, Lebanon, e-mail: {firstnamelastname}@auce.edu.lb.

H. Harb
College of Engineering and Technology, American University of the Middle East, Kuwait, e-mail:
hassan.harb@aum.edu.kw.

B. Clement
Lab-STICC, UMR CNRS 6585, Ensta-Bretagne University, France e-mail: benoit.clement@ensta-
bretagne.fr.

1

2 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

1 Introduction

Since the early 1980’s, the robotics industry has seen an increase in the production
and manufacture of millions of robots of different types and missions. These robots
are altering our everyday lives and assisting us in making our jobs more efficient and
successful. Furthermore, the rapid advancement of technology in the new century
has ushered in a new robotic era: Modular Robotic System (MRS).

The most important attribute of modular robots, regardless of their design, is their
ability to reconfigure their morphology, a mechanism known as self-reconfiguration
(See Fig. 1), which is regarded as the major challenge for such technology [1, 2].
Self-reconfiguration is the mechanism by which a modular robot’s initial arrange-
ment of modules (and thus initial form, also known as configuration) is changed into
a target configuration. Indeed, MRS use self-reconfiguration to get new morphology
and new behavior to performs specified tasks. However, creating new morphology
and behaviors manually is a time-consuming and costly process, especially when
dealing with complex structures. As a result, designing an algorithm that creates
new morphology and new behavior from already existing modular robotic struc-
tures, takes a great attention from researchers and communities and became an ac-
tive research field nowadays.

Therefore, to avoid the above-mentioned challenge, Structure Embedding Tech-
nique (SET) for the self-reconfigurable modular robotic system has been intro-
duced. SET decides if a given modular robot structure can be embedded into an-
other structure in order to form new morphology. In this paper, we present a fast
SET, abbreviated FSET, a technique for modular robotic systems to minimize the
delay to get new morphology. The proposed technique consists of a two-stage algo-
rithm and can highly outperform the traditional SET in terms of the time cost to get
new morphology and energy consumption of modules. The first stage of our tech-
nique, called root selection, has an objective to find the best roots of the initial trees,
by selecting a small number of modules instead of the whole sets. The second stage,
which is called morphology formation, uses the first stage’s root of trees, to calcu-
late the embedding truth table between modules in order to check the embeddability
of the two modular robotic designs, resulting in the formation of new morphologies.
Consequently, the calculation time cost of our FSET will highly minimize that of
traditional SET due to the small number of the training modules used in the first
stage and the low number of iteration loops needed in the second stage.

The rest of the paper is organized as follows. In section 2, we present related
works in self-reconfiguration techniques used in MRS. Section 3 detail the SET
mechanism. The system demonstration and the results are presented in Section 4.
Finally, Section 5 concludes our paper and gives some perspectives.

Title Suppressed Due to Excessive Length 3

Fig. 1 Sample self-reconfiguration of about 52 3D modules from a chair into a stroller. (a) Chair
initial configuration; (b) An intermediate configuration from the self-reconfiguration process; (c)
Stroller goal configuration..

2 Related Work

Various methods for self-reconfiguration introduced for MRS can be found in the
literature. Initially, researchers in the field of modular self-reconfigurable robotics
based their focus on the hardware issue of creating metamorphic robots; then, re-
search interest eventually arose in the generalized management of categories of
these systems and various software frameworks were proposed; More recently, in
the field of Self-Organizing Particle Systems, researchers have begun to show inter-
est in what may be called a theoretical kind of metamorphic system.

In fact, three categories can be extracted from these three methods. We would
then refer to self-reconfiguration algorithm, which Bottom-Up, Top-Down, and The-
oretical, as well as[3]. Such methods vary by how they relate to their target execution
platform, and therefore, by the nature of the constraints that make up the algorithm
model used. We’ll go through each of the three self-reconfiguration methods men-
tioned above, as well as the possible solutions.

From one hand, the authors of [4, 5, 6, 7, 8, 9] have proposed Bottom-Up meth-
ods to self-reconfiguration in MRS. The Bottom-Up method involves a focus on
modular robotic hardware at first. They’ve come up with a range of module models,
ranging from UCMs like Telecube [4] and Crystalline [5] to hybrids like M-TRAN
[6] and Roombot [7]. bi-partite models like the Robotic Molecule [9] and I-Cubes
[10, 11], as well as self-reconfigurable structures like Fracta [8]. There are several
other models in the literature, but these are the ones that are used in the algorithms
under consideration.

Due to the complexities of the geometry of hardware modules or their motion
capacities, this approach credibly provides a very complicated self-reconfiguration
preparation. Non-holonomic motion constraints are typical in these systems, com-
plicating the reconfiguration method. Motion constraints can either be local: caused
by module geometry and blocking constraints; or they can be global: like the con-
nectivity constraint which specifies that the whole system’s graph must stay con-
nected at all times. Several strategies for achieving holonomy at the expense of

4 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

granularity have been devised, including using higher holonomy module aggre-
gates (meta-modules) [10] or arranging the device into a porous structure [9] from
which modules can flow unconstrainedly (a scaffold). Although the kinematics in
the Bottom-Up method are typically more complicated, modules are more likely to
expect a greater understanding of their surroundings. Sensor data about their orien-
tation, location in the system, neighborhood, and other factors are used to produce
these environmental information.

The authors in [9] have suggested a centralized solution for their bipartite
Molecule robot, depending on a three-level hierarchical planner. The highest level
of preparation is task-level planning, which chooses a configuration that is suit-
able for the task at hand. It then admits on a motion plan for Molecules to turn
the initial configuration into the target configuration using configuration planning.
The configuration planner uses trajectory planning to shift individual modules to
their target positions at a lower stage. They also implemented the aforementioned
scaffolding principle to ensure that Molecules reached into the target configura-
tion, but this increased the granularity of their device dramatically since a single
scaffold tile consisted of 54 modules. While these early works using centralized
planners laid the foundations for most of the field and implemented useful problem
simplification techniques, they lack the robustness, scalability, and autonomy that
self-reconfiguration needs. As a result, researchers transformed to the decentralized
self-reconfiguration process, as we’ll see below.

Fig. 2 SET Algorithm Flowchart.

Title Suppressed Due to Excessive Length 5

On the other hand, a lot of Top-Down methods have proposed to self-reconfiguration
in MRS [12, 13, 14, 15, 16, 17]. The Top-Down method plays a critical role in con-
structing shape formulation techniques that aren’t related to a particular hardware
application and can be applicable to a variety of MSR in a generalized way.

The authors in [12] developed the Pixel meta-module framework for lattice-based
modular robots, which could greatly simplify reconfiguration planning in large mod-
ular robots. The key idea is to split the reconfiguration problem into two tasks:
planning and resource allocation. The former’s job is to figure out the meta-module
positions in the target configuration need to be filled next, while the latter’s job is to
figure out where the meta-modules that will fill that position should come from.

In [17] the authors presents a two-level hierarchical approach to completely
generic algorithms (for any architecture), in which the planning problem is formu-
lated as a distributed Markov Decision Process (MDP). An MDP is defined by the
four-tuple S, A, T, R, where S is the set of states, represented by open positions
to be filled by modules, and is equal to the number of faces of the modules; A is
the set of actions, represented by the disconnection of a connector from a neighbor
module and the reconnection to another, potentially using a different connector; T
is a deterministic or stochastic transition function that determines the next action to
take; R is the estimated reward, which is set to 1 to reduce the number of moves.

The authors overcome this MDP by introducing dynamic programming in a
distributed environment using message passing. The MDP works at the planner’s
higher levels, deciding for each moving module which other modules and connec-
tors should link to during the next time phase. The low-level planner then calculates
the sequence of individual module movements that the mobile module can take to
detach from its current neighbor and reconnect at its new anchor point. Modules
look at the structure to make sure they aren’t an articulation point in the system’s
graph, then determine if they are mobile or not and lock a portion of it during their
motion if they are. Since several modules can lock the same part of the structure,
they can shift in parallel, speeding up the reconfiguration phase. Designing an ef-
fective kinematic planner to serve as the transition function T is the most difficult
part of this scenario.

The authors in [18] developed their PacMan self-reconfiguration algorithm for
two-dimensional unit-compressible modules to three-dimensional structures. As
compared to surface moving modules, one advantage of UCM is that they can mi-
grate through the volume of the system, theoretically benefiting from a higher num-
ber of parallel motions and a shorter distance to their destination. The authors use a
technique known as virtual relocation to transfer modules from one end of the con-
figuration to the other, switching their identities as they compress and decompress
along the path to their target point.

PacMan depends on a two-stage distributed planning algorithm in which: (1)
modules locally calculate the difference between the current and target shapes to de-
termine which modules should move; and (2) A suitable search (depth-first search)
for a mobile module is carried out from the desired locations, with pellets dropped
along the way to mark the route that the selected module should follow. Our pro-
posed method consists of two phases, where it applies one of the bottom-up algo-

6 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

rithms in its first phase, while in the second phase it applies one of the top-down
algorithms. Recognizing if two complete configurations are the same [19], detect-
ing graph automorphisms[20], and recognizing similar substructures for efficient
reconfiguration are all examples of existing work in graph representations of modu-
lar robots. Our work stands out by incorporating task implications on configurations
and specifying criteria for replicating a design’s capabilities by replicating its de-
sign.

3 FSET Technique

In the literature, one can find a huge number of self reconfiguration algorithms like
SET, PacMan, scaffold-based etc. However, SET is one the most popular algorithms
used in self reconfiguration. Unfortunately, traditional SET suffer from its huge cal-
culation time cost needed to obtain the new morphology. In order to overcome this
problem, we propose a new version of SET called FSET, Fast SET, which highly
enhances the time cost of traditional SET. Our FSET consists of two stages, root
selection and morphology formation stages, and calculate the embedding truth table
according to the topological embedding condition. In the next sections, we first re-
call the traditional SET and its topological embedding conditions then we detail the
two stages of our technique.

3.1 Recall of SET Algorithm

SET is one of self reconfiguration algorithm that decides if a given modular robot
structure can be embedded into another structure to form new morphology (Fig. 2.).
The process of SET starts by taking the two robotic structures and convert them into
two connected graph. Then, it applies MST to them and randomly selects the initial
roots for the trees.

We consider that the robotic system is modeled as a connected graph G (M, L):
M denotes the set of nodes representing the modules, and L ⊆ M × M denotes the
set of links that connecting such modules.

SET maintain a |M1| × |M2| truth table T, where T[m1, m2] is true, under a
specified rooting r1 ∈M1, r2 ∈M2. At the end of the algorithm, T[r1, r2] answers
whether structure (S1) embeds in stucture (S2) under r1 and r2; if the answer is
negative, it repeat the process for a new rooting until it either get a positive answer
or we exhaust all possible rootings, in which case we conclude that S1 does not
embeds in S2.

SET is a two pass algorithm. At first, all entries of the truth table are false. After
that, it start proceed bottom-up, starting from the leaves of S1, and keep going grad-
ually towards r1. As a starting point, it consider a leaf m1 ∈M1 and check whether it
embeds in the leaves of S2, to calculate the truth table that give us the new morphol-

Title Suppressed Due to Excessive Length 7

ogy according to the topological condition (see [21] for details). Basically, it fill the
truth table by traversing G1 in reverse pre-order, where at each step of the traversal
process the nodes of G2 in reverse pre-order.

After first pass, the second pass is lunched, where it involves a top-down message
passing. It iterate top-down, starting from the roots of S1, and progressively down
to v1. Then it compute a new table called T ∗, based on the topological condition in
top-down and the preceding truth table in bottom-up pass. However, T ∗[r1,n] = true
iff Tn[r1,n] = true, ∀n ∈M2. It is then not hard to see that S1 embeds in S2 iff at least
one entry of the r1− th row of T ∗ is true. if the answer is negative, This process is
repeated until we either get a positive answer or we exhaust all possible rootings.

Indeed, it is proved that the loop process generated in the algorithm will always
end. Subsequently, SETis highly dependent on the randomly initial tree roots. SET
algorithm is one of the simple method in the self reconfiguration approach that has
been used in wide range of domains.

Fig. 3 Convert MRS to Connected Graph.

3.2 FSET: Fast SET Algorithm

3.2.1 Root Selection Stage

Mostly, the efficiency and performance of the SET algorithm are greatly affected by
initial tree roots as different initial tree roots often lead to different embedding or
failure in the embedding and thus, failure to obtain the new morphology. Therefore,
the calculation time cost for the embedding truth table between the modules of the

8 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

two robotic structures to form new morphology will be high. Hence, the selection
of the initial root trees is becoming a challenge for the SET algorithm.

The first stage of our adapted SET is called root selection and aims to solve the
above problem. We propose to select a subset/training from the two sets of modules
G1 and G2 of the connected graph that represents the two modular robotic struc-
tures, in order to find the approximate final tree roots R = ri,r j that generate the
final morphology. Our intuition is to reduce the number of iterations needed in the
traditional SET to obtain the final morphology as fast as possible, thus enhancing
the processing time of the SET.

Obviously, the efficiency of the selection root stage is highly related to the per-
centage, represented by Ts (i.e. training size), of a training set of modules. Subse-
quently, increasing the value of Ts leads to an increase in the calculation time of
FSET so no profit will be noticed compared to traditional SET. On the other hand,
the lowest the value of Ts is the better the processing time, but the error in the final
obtained morphology will increase. Therefore, selecting the appropriate value of Ts
is very essential in the first stage of our technique. Indeed, we believe that Ts should
be determined by the decision-makers or experts depending on the application re-
quirements.

3.2.2 Morphology Formation Stage

After having the approximate initial root of trees R, the second stage is lunched
which aims to reduce the number of iteration loops in SET. So, it take the obtained
roots in the first stage and the whole sets of modules G , and then it apply SET over
G in order to get the final morphology.

Algorithm 1 describes the procedure of the second stage of our technique. First,
we determine the number of modules needed to find the tree roots in the first stage
of our technique (line 2). Based on this number, we randomly select the training sets
among the whole sets of modules G1 and G2 (lines 3-6). The modules in the train-
ing set represent now the approximate roots of the trees. Then, we calculate the T*
embedding truth table. This process is repeated until we either get a positive answer
or we exhaust all possible rootings (lines 14-20). At this moment, the first stage is
accomplished and the initial roots are determined (line 21). After that, the second
stage is running where the process starts by considering the roots obtained in the
first stage as the initial roots of the trees. Then, we calculate the T* embedding truth
table based on the obtained roots from the first stage. Again, the loop is repeated
until we either get a positive answer or we exhaust all possible rootings that give us
the embedding sequence that form the new morphology. (lines 21-30).

Algorithm 1 FSET Algorithm.

Require: Two sets of modules: G1 = {m1,m2, . . . ,mk}; G2 = {n1,n2, . . . ,nq}; Per-
centage of training set: Ts.

Ensure: Embedding truth table T* that generate the new morphology.
1: Gs← /0

Title Suppressed Due to Excessive Length 9

2: Ns← [(Ts× k)/100]
3: for i← 1 to Ns do
4: // randomly selects the training set of modules among G1 and G2
5: Gs← GsUGi
6: end for
7: for i← 1 to 2 do
8: Ti← /0
9: // randomly choose roots ri among Gs belongs Ti

10: end for
11: // Initially, all entries are false
12: (i.e T [mi,n j]=false)
13: trace the two tree in a bottom-up to calculate the embedding truth table T be-

tween modules
14: repeat
15: for i← 1 to s do
16: for j← 1 to s do
17: // involves a top-down message passing to calculate embedding truth

table T *[mi,n j] between modules
18: end for
19: end for
20: until rth row of T * contain at least one true value or exhaust all possible root-

ings
21: extract the roots ri and r j from the previous T*
22: //use the whole set of modules G1 and G2
23: repeat
24: for i← 1 to k do
25: for j← 1 to q do
26: // involves a top-down message passing to calculate embedding truth

table T *[ri,r j] between modules
27: end for
28: end for
29: until rth row of T * contain at least one true value or exhaust all possible root-

ings
30: return T * that generate the new morphology

4 Simulation and Results

In order to evaluate its efficiency, we tested our mechanism on one of the most
used MRS proposed in recent years, e.g. M-TRAN [22]. Indeed, M-TRAN is a
three-dimensional modular robotic system, with characteristics of both lattice and
chain (linear) types of modular robot. Each M-TRAN module is made up of two
semi-cylindrical pieces that can rotate 180 degrees around their axis and have an

10 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

independent battery, two degrees of freedom motion, six surface connections, and
intelligence with inter-module communication. The M-TRAN system can perform
flexible and adaptive locomotion in various configurations using coordination con-
trol based on a CPG [23]. Figure 4 presents the components of a M-TRAN module.

Fig. 4 M-TRAN components.

In our simulations, we used two robotic that have chair and wall design and are
made out of M-TRAN modules. We obtain a new design with stroller morphology
quickly after using the FSET method (Fig. 5).

Fig. 5 Morphologies adapted in our simulation.

The objective of our simulations was to confirm that our technique can success-
fully achieve intended results for reducing the delay to obtain new morphology and
reducing the energy consumption in modules that leads to extend the MRS lifetime.
In order to evaluate the performance, we compare our results to the traditional SET.
In our simulations, we evaluated the performance using the following parameters:

• The Number of Modules for substructure nb, takes the following values: 100,
200, 300, 1000 and 2000.

Title Suppressed Due to Excessive Length 11

• the Number of Modules for superstructure np, takes the following values: 500,
950, 2000 and 4000.

• the percentage of module chosen, Ts, takes the following values: 5, 10, 15 and
20.

4.1 Execution Time

Sometimes, getting new morphology fast time as possible to the end-user is a crucial
operation especially in e-health and military applications. Fig. 6, shows the execu-
tion time for both FSET and SET when varying the number of modules (for both the
substructure and the superstructure respectively). The results show that FSET can
optimize the execution time, comparing always to the SET, from 10% (while vary-
ing number of module from (100,500) to (300,2k) module) to 37% (while varying
number of module from (500, 2k) to (2k,4k) module).

Obviously, the execution time of FSET will be highly affected by the selection
of the tree roots as well as the number of iteration loops to obtain the final morphol-
ogy. Therefore, FSET outperforms the SET where the processing time to get new
morphology is twice accelerated when using FSET, compared to SET algorithm

Fig. 6 Processing time for FSET and SET..

4.2 Iteration Loop

One of the factor that can delay the obtain of new morphology is the number of
iterations. In Fig. 7, we show how many iterations are generated by the the two
robotic structures to find the final morphology for both FSET and the SET. It is
important to know that a high number of iterations can increase the complexity of

12 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

the proposed algorithm. The obtained results show that, The number of iterations
is reduced by at least 30% as shown in these figure when applying FSET on the
SuperBot modules. Therefore, FSET minimize the morphology delay by reducing
the number of iterations.

Fig. 7 Iteration loop number for FSET and SET.

4.3 Energy Consumption

Energy consumption is a crucial parameter to assess in MRS since it impacts the
overall system’s functionality. Indeed, the data transmission or activity done during
the transition consumes the majority of a module’s limited energy. In our simulation,
we implemented the same energy model that used in [16] to calculate the energy
consumption in SuperBot modules, assuming that each module has fixed energy
units, based on the MRS size, then we considered that each message transmission
consumes 0:2 unit and each successful embedding modules consumes 0:8 unit.

Fig. 8, shows the energy consumed in the SuperBot robot depending on modules
number. The obtained results show that the energy consumption increases with the
increasing of the modules number while it is optimized, using FSET, up to 68%
compared to the SET approach. Therefore, our proposed technique can be consid-
ered very efficiently in terms of reducing the energy consumption of the modular
robotic system, thus, increasing its lifetime.

5 Conclusion and Future Work

In this paper, we have proposed a fast self reconfiguration technique called FSET,
i.e. Fast SET, dedicated to MRSs. Our proposed technique consists mainly in two

Title Suppressed Due to Excessive Length 13

Fig. 8 Energy consumption for FSET and SET.

stages: root selection and morphology formation. The final goal of these stages is
to enhance the time cost of creating new morphology of traditional SET algorithm
thus, ensure fast self reconfiguration. The root selection stage selects a small number
of modules in order to find the best tree roots that effects the topological conditions
that leads to successful of the embedding process or not. The morphology forma-
tion stage uses the traditional SET algorithm to calculate the embedding truth table
where the initial roots used are taken from the first stage. Finally, we demonstrated
FSET’s efficiency in terms of complexity, optimality (lowest number of steps), and
time efficiency by simulating its performance on a real robot called SuperBot.

As a future work, we will study how to handle designs with a small number of
cycles and how to reduce the kinematic checking runtime. We will go from detect-
ing embeddability to design synthesis in the long run. We consider our embedding
method is a good place to start for this line of research, and preliminary results are
promising.

References

1. P. Thalamy, B. Piranda, and J. Bourgeois, “Distributed self-reconfiguration using a determin-
istic autonomous scaffolding structure,” Ph.D. dissertation, UBFC, 2019.

2. R. Thakker, A. Kamat, S. Bharambe, S. Chiddarwar, and K. Bhurchandi, “Rebis-
reconfigurable bipedal snake robot. 2014 ieee,” in RSJ International Conference on Intelligent
Robots and Systems, Chicago-USA, pp. 309–314.

3. P. Thalamy, B. Piranda, and J. Bourgeois, “A survey of autonomous self-reconfiguration meth-
ods for robot-based programmable matter,” Robotics and Autonomous Systems, vol. 120, p.
103242, 2019.

4. S. Vassilvitskii, M. Yim, and J. Suh, “A complete, local and parallel reconfiguration algo-
rithm for cube style modular robots,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292), vol. 1. IEEE, 2002, pp. 117–122.

5. S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji, “Hardware
design of modular robotic system,” in Proceedings. 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), vol. 3. IEEE, 2000,
pp. 2210–2217.

14 Aliah Majed, Hassan Harb, Abbass Nasser and Benoit Clement

6. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-tran: Self-
reconfigurable modular robotic system,” IEEE/ASME transactions on mechatronics, vol. 7,
no. 4, pp. 431–441, 2002.

7. A. Sproewitz, P. Laprade, S. Bonardi, M. Mayer, R. Moeckel, P.-A. Mudry, and A. J. Ijspeert,
“Roombots—towards decentralized reconfiguration with self-reconfiguring modular robotic
metamodules,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 1126–1132.

8. E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji, “A distributed method for
reconfiguration of a three-dimensional homogeneous structure,” Advanced Robotics, vol. 13,
no. 4, pp. 363–379, 1998.

9. K. D. Kotay and D. L. Rus, “Algorithms for self-reconfiguring molecule motion planning,”
in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2000)(Cat. No. 00CH37113), vol. 3. IEEE, 2000, pp. 2184–2193.

10. C. Unsal and P. K. Khosla, “A multi-layered planner for self-reconfiguration of a uniform
group of i-cube modules,” in Proceedings 2001 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No. 01CH37180), vol. 1. IEEE, 2001, pp. 598–605.

11. C. Ünsal, H. Kiliççöte, and P. K. Khosla, “A modular self-reconfigurable bipartite robotic
system: Implementation and motion planning,” Autonomous Robots, vol. 10, no. 1, pp. 23–40,
2001.

12. D. J. Dewey, M. P. Ashley-Rollman, M. De Rosa, S. C. Goldstein, T. C. Mowry, S. S. Srini-
vasa, P. Pillai, and J. Campbell, “Generalizing metamodules to simplify planning in modular
robotic systems,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE, 2008, pp. 1338–1345.

13. M. Yim, Y. Zhang, J. Lamping, and E. Mao, “Distributed control for 3d metamorphosis,”
Autonomous Robots, vol. 10, no. 1, pp. 41–56, 2001.

14. R. Fitch, Z. Butler, and D. Rus, “Reconfiguration planning for heterogeneous self-
reconfiguring robots,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 3. IEEE, 2003, pp. 2460–2467.

15. ——, “In-place distributed heterogeneous reconfiguration planning,” in Distributed Au-
tonomous Robotic Systems 6. Springer, 2007, pp. 159–168.

16. P. Thalamy, B. Piranda, and J. Bourgeois, “A survey of autonomous self-reconfiguration meth-
ods for robot-based programmable matter,” Robotics and Autonomous Systems, vol. 120, p.
103242, 2019.

17. R. Fitch and R. McAllister, “Hierarchical planning for self-reconfiguring robots using module
kinematics,” in Distributed Autonomous Robotic Systems. Springer, 2013, pp. 477–490.

18. Z. Butler and D. Rus, “Distributed planning and control for modular robots with unit-
compressible modules,” The International Journal of Robotics Research, vol. 22, no. 9, pp.
699–715, 2003.

19. M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configuration recognition methods
in modular robots,” The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 403–
421, 2008.

20. B. McKay, “Nauty user’s guide (v2. 4),” Computer Science Dept., Australian Nat. Univ, 2007.
21. Y. Mantzouratos, T. Tosun, S. Khanna, and M. Yim, “On embeddability of modular robot

designs,” in 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 1911–1918.

22. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-tran: Self-
reconfigurable modular robotic system,” IEEE/ASME transactions on mechatronics, vol. 7,
no. 4, pp. 431–441, 2002.

23. H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata, “Self-
reconfigurable modular robot m-tran: distributed control and communication,” in Proceedings
of the 1st international conference on Robot communication and coordination, 2007, pp. 1–7.

