
HAL Id: hal-04114984
https://ensta-bretagne.hal.science/hal-04114984

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Serverless Cloud Computing: State of the Art and
Challenges

Vincent Lannurien, Laurent D’orazio, Olivier Barais, Jalil Boukhobza

To cite this version:
Vincent Lannurien, Laurent D’orazio, Olivier Barais, Jalil Boukhobza. Serverless Cloud Computing:
State of the Art and Challenges. Serverless Computing: Principles and Paradigms, 162, Springer
International Publishing, pp.275-316, 2023, Lecture Notes on Data Engineering and Communications
Technologies, �10.1007/978-3-031-26633-1_11�. �hal-04114984�

https://ensta-bretagne.hal.science/hal-04114984
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Serverless Cloud Computing: State of the Art
and Challenges

Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Abstract The serverless model represents a paradigm shift in the cloud: as opposed
to traditional cloud computing service models, serverless customers do not reserve
hardware resources. The execution of their code is event-driven (HTTP requests, cron
jobs, etc.) and billing is based on actual resource usage. In return, the responsibility
of resource allocation and task placement lies on the provider. While serverless
in the wild is mainly advertised as a public cloud offering, solutions are actively
developed and backed by solid actors in the industry to allow the development
of private cloud serverless platforms. The first generation of serverless offerings,
”Function as a Service” (FaaS), has severe shortcomings that can offset the potential
benefits for both customers and providers – in terms of spendings and reliability
on the customer side, and in terms of resources multiplexing on the provider side.
Circumventing these flaws would allow considerable savings in money and energy for
both providers and tenants. This chapter aims at establishing a comprehensive tour of
these limitations, and presenting state-of-the-art studies to mitigate weaknesses that
are currently holding serverless back from becoming the de facto cloud computing
model. The main challenges related to the deployment of such a cloud platform are
discussed and some perspectives for future directions in research are given.

Vincent Lannurien
b<>com Institute of Research and Technology, ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285,
Brest, e-mail: vincent.lannurien@ensta-bretagne.org

Laurent D’Orazio
Univ. Rennes, Inria, CNRS, IRISA, b<>com Institute of Research and Technology, e-mail:
laurent.dorazio@irisa.fr

Olivier Barais
Univ. Rennes, Inria, CNRS, IRISA, b<>com Institute of Research and Technology, e-mail:
olivier.barais@irisa.fr

Jalil Boukhobza
ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, Brest, b<>com Institute of Research and Tech-
nology, e-mail: jalil.boukhobza@ensta-bretagne.fr

1

vincent.lannurien@ensta-bretagne.org
laurent.dorazio@irisa.fr
olivier.barais@irisa.fr
jalil.boukhobza@ensta-bretagne.fr

2 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

1 Introduction

In 1961, John McCarthy imagined that the time-sharing of computers could make it
possible to sell their execution power as a service, just like water or electricity [50].
Due to the democratization of high-speed Internet access in the mid-2000s, Mc-
Carthy’s idea was implemented in what is known as cloud computing: companies
and individuals can now drastically reduce the costs associated with the purchase and
maintenance of the hardware needed to run their applications by delegating responsi-
bility for the infrastructure to service providers. This model is called ”Infrastructure
as a Service” (IaaS) [78].

Over the years, new trends appeared with the aim of reducing the customer’s re-
sponsibilities. For example, in the ”Platform as a Service” (PaaS) model, customers
do not have direct access to the machines that support their applications and per-
form most of the management tasks via specialized interfaces. In these models, the
customer pays for resources that are sometimes dormant. This is because reserved
resources must often be over-provisioned in order to be able to absorb the surge in
activity and handle hardware failures [52].

The serverless model represents a paradigm shift in the cloud: as opposed to
traditional models, serverless customers do not reserve hardware resources. The
execution of their code is event-driven (HTTP requests, cron jobs, etc.) and billing
is based on actual resource usage. In return, the responsibility of resource allocation
and task placement lies with the provider [106].

While serverless in the wild is mainly advertised as a public cloud offering (table
3), solutions are actively developed and backed by solid actors in the industry to
allow the development of private cloud serverless platforms (table 4).

The first generation of serverless offerings, ”Function as a Service” (FaaS), has
severe shortcomings that can offset the potential benefits for both customers and
providers – in terms of spendings and reliability on the customer side, and in terms
of resources multiplexing on the provider side. Circumventing these flaws would
allow considerable savings in money and energy for both providers and customers.
This chapter aims at establishing a comprehensive tour of these limitations and
presenting state-of-the-art studies to mitigate weaknesses that are currently holding
serverless back from becoming the de facto cloud computing model.

This chapter is organized as follows: after an introduction, some background and
motivations related to serverless computing are given. Those include an introduction
to cloud computing and virtualization technologies. Then, the serverless paradigm is
introduced: we discuss its characteristics, benefits and offerings for both public and
private cloud. A state of the art related to the challenges on resources management
for serverless computing is then drawn. It is built around six issues: cold start, cost
of inter-function communication, local state persistence, hardware heterogeneity,
isolation and security, and programming model and associated risks of vendor lock-
in. Finally, we introduce perspectives and future directions for research in the field
of serverless computing.

2 https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas

https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas

Serverless Cloud Computing: State of the Art and Challenges 3

Fig. 1 Comparison of the different cloud service models in terms of customer responsibility
(inspired from Red Hat’s documentation 2)

2 Background and motivations

In this first section, we introduce characteristics of cloud computing; its service
models and associated technologies. We also take a glance at recent transformations
in the ways developers program for the cloud, and the consequences in terms of
applications deployment.

2.1 The promises of cloud computing

The NIST definition of cloud computing [82] gives five essential characteristics for
the cloud computing model, as opposed to on-premises and/or bare metal deploy-
ments:

• On-demand self-service – Customers can book hardware resources through e.g.
a web interface rather than by interacting with operators. In return, they usually
have limited control over the geographic location for these resources;

• Broad network access – These resources are immediately made available over
public broadband connections by the provider;

• Resource pooling – Compute time, storage capacity, network bandwidth are all
shared between customers. Virtualization techniques are used to ensure isolation
between workloads;

• Rapid elasticity – Applications can benefit from increased or decreased comput-
ing power through scaling, as resources are dynamically provisioned and released
to absorb variations in demand;

4 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

• Measured service – Cloud providers instrument their infrastructures so as to
precisely monitor resource usage. Customers can then be charged in a fine way
according to their needs.

These characteristics are found in three cloud service models, as shown in Figure
1:

• Software as a Service (SaaS) – Targets the end user by offering access to fully
managed software (the application);

• Platform as a Service (PaaS) – Targets developers and DevOps teams who want
to deploy their applications quickly without managing servers, generally through
the use of containers. Customers deploy their applications on top of a runtime
environment that is managed by the provider;

• Infrastructure as a Service (IaaS) – Targets architects and system administrators
who want fine-grained control over their infrastructures. IaaS customers are in
charge of their own servers, usually virtual.

It is debatable how much traditional IaaS and PaaS cloud offerings hold up to
their promise regarding rapid elasticity and measured service. SaaS is out of the
scope of this study, as it targets end users rather than application developers.

Elasticity, in the sense of ”automatic scaling”, intrinsically cannot be offered
by IaaS or PaaS deployments. Developers are responsible for planning ahead and
specifying their needs, that is, booking an adequate quantity of resources [4]. These
are usually called ”instances” by cloud providers. Cloud instances are typically
distinguished according to their specifications in resource type and capacity: for
example, there can be instances with many CPU cores, whereas others provide
access to a GPU or some other hardware accelerator.

The choice of instance type(s) and quantity for an application depends on a) the
nature of the computations it runs, and b) the acceptable latency and the desired
throughput [134]. However, it is the customer’s responsibility to not over-provision
beyond their actual need.

This offering design has further consequences. First, it means that billing is
done coarse-grained: per instances booked rather than per resources actually used.
Besides, idle resources are always paid for, and scaling to zero cannot be achieved in
this setting, because an application will always require at least one instance running
to handle an incoming request.

Cloud computing platforms have to accommodate for an important number of
customer jobs, leading to massive multitenancy which requires adequate isolation
and virtualization techniques. Those are introduced in the next section.

2.2 Virtualization technologies

Multitenancy is a defining characteristic of cloud computing. It is the ability for a
cloud provider to share resources between multiple customers to secure cost savings

Serverless Cloud Computing: State of the Art and Challenges 5

[130]. As resources are pooled and different applications make use of them, it creates
direct channels between processes in the user space: multitenancy comes with the
responsibility for the provider to guarantee privacy and security across the different
workloads of the customers [124].

To meet these guarantees, providers must resort to protection measures providing
airtightness between processes that are not supposed to be aware of each others. This
mechanism of transparently presenting separate execution environment with distinct
address space, filesystem and permissions is called isolation [40]. For this purpose,
providers may rely on virtualization technologies.

Virtualization is an isolation technique that allows one to run an application within
the boundaries of a secure execution environment, called a sandbox, by introducing
a layer of indirection between the host platform and the application itself [113].

Virtualization of the host resources can be done with virtual machines (VMs) or
containers. These sandboxes give the underlying processes the impression of having
an entire machine at hand, but while VMs virtualize the physical resources of the
host, relying on the CPU’s architecture to achieve isolation, containers depend on
the host operating system’s system call API to isolate workloads [77].

These techniques are beneficial both on the provider and the developer side. The
former leverages virtualization to achieve isolation of customers’ workloads as well
as flexibility to manage scaling of sandboxes given a finite amount of hardware
resources. The latter organizes their development pipelines so as to replicate a
production-like environment during development stages, and to deliver and deploy
their products.

Virtualization became such a cornerstone in cloud computing that Kubernetes
[30], an orchestration system that leverages containers3 to manage applications from
deployment to scaling of services, is increasingly referred to as ”the operating system
for the cloud” [103].

When choosing the isolation model they want to rely on to achieve multitenancy,
cloud providers have to trade off between performance and security. Containers
are frequent targets of privilege escalation attacks ([137], [16]) but they perform
multiple orders of magnitude better than virtual machines: containers startup time
is in the hundreds of milliseconds, while VMs boot in seconds [77]. Designing
lightweight virtual machines that offer performances comparable to containers is a
critical research topic ([1], [10]).

2.2.1 Virtual Machines

Virtual machines virtualize the physical resources of the host: hardware-assisted
virtualization allows multiple full-fledged guest operating systems to run indepen-
dently on shared physical resources, regardless of the nature of the host operating
system [64].

3 Note that Kubevirt [31] aims at making Kubernetes suitable for VM workloads.

6 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Fig. 2 Overview of different isolation models: virtualization and containerization

From a VM point of view, the execution sandbox is seen as a complete platform,
while it actually is a subset of the host computer resources, determined by the
hypervisor (or VMM for Virtual Machine Manager), a low-level software that can
run on bare metal or as a process of the host operating system.

The hypervisor has the responsibility to manage VM lifecycle: creation, execu-
tion, destruction, and sometimes migration of virtual machines are handled by the
hypervisor.

Hypervisors exist in two different abstractions, as shown in figure 2:

• Type-1 (bare-metal) hypervisors run directly on the host machine’s hardware.
They rely on the host’s CPU support for virtualization. Given that they do not
depend on an underlying operating system, they are considered more secured and
efficient than their hosted counterpart. Common examples of type-1 hypervisors
include VMware ESXi [127], KVM [71], Xen [70] and Hyper-V [85];

• Type-2 (hosted) hypervisors run on top of an operating system. These hypervisors
are consumer-grade products that provide a convenient way for end users to run
systems or programs that would otherwise not be supported by their hardware or
OS. Examples of type-2 hypervisors include QEMU [102] and Oracle VirtualBox
[94].

Serverless Cloud Computing: State of the Art and Challenges 7

2.2.2 Containers

Containerization is an OS-level virtualization technique. The host operating system’s
kernel is responsible for the allocation of resources. Containers virtualize the OS:
they give the containerized process the impression of having the entire machine at
hand, while actually being constrained and limited regarding resource utilization by
the host kernel [17].

From the running application’s point of view, the execution platform behaves as if
it were bare metal. However, its allocated resources are actually a virtualized subset
of the host’s hardware resources.

Containers constitute a lightweight isolation mechanism that relies on the kernel
isolation capabilities of the host system, as shown in figure 2. Namely, under Linux:

• chroot changes the apparent root directory for a given process tree. It allows a
container to operate on a virtual / directory that could be located anywhere on
the host’s filesystem;

• cgroups create hierarchical groups of processes and allocates, limits, and moni-
tors hardware resources for these groups: I/O to and from block devices, accesses
to the CPU, memory and network interfaces;

• namespaces are an abstraction layer around global system resources, such as net-
working or IPC. Processes within a namespace have their own isolated instances
of these resources.

The idea behind containers is to sandbox an application’s execution in a process
isolated from the rest of the system. That process is bootstrapped from an image which
contains all dependencies needed to either build and/or execute the application.

Among the container ecosystem, Docker [36] in particular has seen important
traction since its inception in 2013. Docker was instrumental in specifying industry
standards for container formats and runtimes through the Open Container Initiative
(OCI) [69].

The OCI specification is a Linux Foundation [120] initiative to design an open
standard for containers. It defines container image specifications – guidelines on
how to create an OCI image with its manifest, filesystem layers, and configuration –
and runtime specifications regarding how to execute application bundles as they are
unpacked on the host OS.

This is how that specification translates in the case of Docker:

• dockerd is the daemon that provides both the Docker Engine application pro-
gramming interface (API) and console line interface (CLI), capable of building
distributable images representing the initial state of future containers. It is the
high-level interface through which the user can either programmatically or inter-
actively manage networking, storage, images and containers lifecycle;

• containerd, a Cloud Native Computing Foundation (CNCF) [41] initiative,
handles containers lifecycle (hypervision, execution) and manages images (push
and pull to and from image registries), storage and networking by establishing
links between containers namespaces;

8 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

• runc implements the Open Container Initiative specification and contains the
actual code allowing a container’s execution. It creates and starts containers, and
stops their execution.

2.3 From monoliths to microservices

Cloud computing saw the birth of new development techniques. ”Cloud-native de-
velopment” means building applications for the cloud from the ground up, with
scaling capacities in mind [37] [43].

When an application grows, there are two ways of making room for new requests
by scaling:

• Vertically: attaching more hardware resources to the servers that support the ap-
plication. It may mean moving data to new, more powerful servers, thus impacting
application availability;

• Horizontally: increasing the server count for running the application. It may mean
introducing a load balancing mechanism to route requests and responses between
users and the multiple instances of an application, thus impacting complexity.

A monolithic application is built as a single unit. There is no decoupling between
the services it exposes, as they are all part of the same codebase [126]. When scaling
for a monolith, adding more resources (scaling vertically) does not solve the problem
of competing priorities inside the application: when the popularity of a monolithic
application increases, some parts of the codebase will be solicited more than others,
but the strain will not be distributed across the application. On the other hand,
spinning up more instances of the monolith (scaling horizontally) can prove cost
ineffective, as not all parts of an application suffer from load spikes at the same time:
in figure 3, an increase in authentication requests means scaling the infrastructure
for the whole application.

The Twelve-Factor App methodology, a set of guidelines for building cloud-native
applications, recommends ”[executing] the app as one or more stateless process”
[131]. This is called a microservices architecture – arranging an application as a
collection of loosely-coupled services. Each of these services runs in its own process,
communicates with the others through message-passing and can be deployed to scale
independently on heterogeneous servers to meet service level objectives: in figure 4,
an increase in authentication requests can be absorbed by scaling the infrastructure
for the authentication microservice alone.

However, a microservices infrastructure implies a complex layer of centralized
management, which either drives costs in operations or in DevOps teams. It relies
on long-running backend services (databases, message buses, etc.) that also have
to be monitored and managed. In IaaS and PaaS settings, developer experience
in particular is not satisfying: cloud deployment comes with a burden of systems
administration [62]. Microservices alone do not solve the deployment problem:

Serverless Cloud Computing: State of the Art and Challenges 9

Fig. 3 Scaling out a monolith-architectured application requires replicating the monolith on mul-
tiple servers

writing container images recipes does not add value to the product, as it relates to
operational logic rather than business logic.

Continuous Integration (CI) and Continuous Delivery or Deployment (CD) are
foundational building blocks of the DevOps culture – the idea that, at any given
stage of an application’s lifecycle, its codebase is in a working state [68]. This can
be achieved through the automation or running unit and integration test suites (CI),
and automated deployment of the main code trunk to a staging (or pre-production)
environment with heavy use of monitoring and reporting [109]. It allows developers
to ensure no regression is introduced by the addition of new features.

Continuous practices align neatly with the microservices architecture, where
incremental modifications to the application as a whole can be deployed as microser-
vices updates. Popularity of both DevOps practices and the microservice architecture
led to transformations in the cloud landscape. To some extent, the microservice ar-
chitecture can be mapped to a cloud programming and service model, Function as a
Service [60].

10 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Fig. 4 Scaling out a microservices-architectured application allows distributing and replicating
each microservice independently

3 Serverless, a new paradigm

In this section, we introduce the serverless model of programming for, and deploying
applications to the cloud. We will go through essential characteristics of serverless
platforms and highlight the tradeoffs that both service providers and application
developers have to consider when targeting serverless infrastructures. This section
also proposes a description of serverless offerings in public cloud solutions, and
open source platforms for private cloud architects.

3.1 Characteristics of serverless platforms

Serverless refers at the same time to a programming and a service model for cloud
computing. In a serverless architecture, developers design their applications as a
composition of stateless functions. Stateless (or ”pure”, side-effect free) means that
the outcome of the computation depends exclusively on the inputs [20]. These
functions take a payload and an invocation context as input, and produce a result
that is stored in a persistent storage tier. Their execution is triggered by an event that
can be described as the notification of an incoming message, be it an HTTP request,

Serverless Cloud Computing: State of the Art and Challenges 11

a cron job, a file upload, etc. As such, serverless is an event-, or demand-driven
model [106].

The aforesaid design is illustrated by an example serverless application in figure
5: when the user’s request hits the serverless platform’s API gateway, it triggers the
execution of different functions according to the requested HTTP endpoint – these
functions are not daemons listening for events (e.g. on an opened socket), they are
executed on demand.

Fig. 5 Fictional reference architecture for a serverless e-commerce web application deployed in the
Amazon Web Services ecosystem

12 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

In commercial offerings, serverless is usually referred to as Function as a Service
(FaaS). It has been believed that functions as an abstraction over cloud computing
are part of a first generation of serverless offerings, and might change later on [54].

Serverless does not mean that servers are no longer used to host and run ap-
plications – much like PaaS, from a customer’s perspective, serverless refers to an
abstraction over computing resources that allows engineers to leave out thinking
of the actual servers supporting their applications. Thanks to auto-scaling mecha-
nisms, they do not have to consider the optimal number of instances needed to run
their workloads in a capacity planning fashion. Serverless platforms are designed to
handle scaling requirements and address fluctuations in demand, therefore freeing
customers from the burden of having to define explicit scaling strategies. In a lay-
ered vision of cloud deployments, the SPEC Research Group [115] presents a FaaS
reference architecture that shows that serverless development allows developers to
be as close as possible to business logic [123].

Developing for serverless platforms requires re-thinking an application’s archi-
tecture. Indeed, long-running backend servers are relegated to serverful solutions
that provide always-on servers [80], such as IaaS offerings.

As Shafiei et al. [108] pointed out in their 2022 survey on serverless computing,
there is no formal definition for the concept of serverless computing, although we can
identify various essential differences between the serverful and serverless models
(summed up in table 1).

A major difference between PaaS and FaaS is that FaaS achieves scaling to
zero: providers only bill customers when their application actually uses hardware
resources, i.e. when functions are executed on the platform. That is made possible
because, in the FaaS paradigm, applications are designed as a collection of short-
running microservices.

Backend as a Service (BaaS) solutions are commercial, managed offerings
of backend services, made available to application developers through a unified
API [104]. Backend software usually consist in stateful, long-running services that
cannot be scaled down to zero. In order to maintain a consistent pricing model,
providers must offer these services in the same pay-as-you-go manner as they do
serverless functions. These third party services constitute the backbone infrastruc-
ture of serverless applications by handling the state of the functions deployed by
developers, through e.g. key-value stores or file storage; providing authentication to
application endpoints; allowing communications between functions using message
buses; etc. Figure 5 shows possible dependencies between serverless functions and
BaaS software: the example application relies on provider-managed authentication,
message bus, relational database, search engine and object storage, and is accessed
by the user through the provider’s API gateway. This situation introduces a high
degree of coupling between the application and vendor-specific services, potentially
tying developers to their initial choice of service provider.

Serverless allows reduced developer overhead by abstracting away server manage-
ment, while enabling providers to share physical resources at a very fine granularity,
thus achieving better efficiency. The fine level of granularity presented in the FaaS

Serverless Cloud Computing: State of the Art and Challenges 13

model enables the provider to offer perfect elasticity: scaling out and scaling in are
event-driven, in a typical pay-as-you-go pricing model.

This abstraction makes it desirable for providers to deploy code in multiple
geographic zones. This fail-over mechanism guarantees availability in case of outage
in one deployment zone and decreases the risk of function failure cascading through
the application [117].

Furthermore, as function instances are spun up on-demand by the provider, the
concurrency model offered by FaaS platforms means that an application’s perfor-
mance can scale linearly with the number of requests [81].

Table 1 Comparison of key characteristics in serverless and serverful service models
Characteristic Serverful (IaaS, PaaS) Serverless (FaaS)

Provisioning Customer responsibility Fully managed (i.e. by the
provider)

Billing Pay for provisioned resources Pay for consumed resources
Scaling Customer responsibility Auto-scaling built in

Availability Depends on provisioned
resources

Code runs in multiple high
availability zones

Fault tolerance Depends on deployment
strategy

Backend services are fully
managed and retries are

guaranteed

Concurrency Depends on provisioned
resources Virtually infinite

Various authors ([54], [123], [108], [63]) already consider serverless to be the
future of cloud deployment. However, FaaS adoption seems to be stalling among
cloud developers [76], and the Cloud Native Computing Foundation (CNCF) even
reports decreasing figures [29].

In the next section, we provide insights regarding workloads for which serverless
is particularly desirable. In section 4, we provide an overview of technical challenges
that are still holding serverless back from becoming the go-to cloud subscription
model.

3.2 Suitable workloads

In their 2018 white paper [95], the Cloud Native Computing Foundation (CNCF) – a
Linux Foundation initiative supported by more than 800 industrial members involved
in cloud services – identifies characteristics for serverless use cases, including:

• ”Embarrassingly parallel” workloads: asynchronous and concurrent, with little to
no communication and no synchronization between processes;

• Infrequent with unpredictable variance in scaling requirements, i.e. event-driven
or interactive jobs rather than batch jobs;

14 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

• Stateless and ephemeral processes, without a major need for instantaneous start
time.

We can argue that these conditions are too restrictive for general computing: for
example, it implies that long-lived jobs cannot be mapped to FaaS deployments.
Providers have introduced mechanisms such as Step Functions or Durable Func-
tions ([7], [86], [48]) to implement serverless workflows: an orchestration function
maintains state across the application’s stateless functions to create stateful work-
flows [20].

Developers are already deploying part of their applications’ logic to serverless
functions. According to a survey [96] led in 2018 by the Serverless framework
publisher among a panel of their users, examples of such logic include data trans-
formation pipelines, high-availability alerting platforms, ETL (Extract, Transform,
Load, batch data manipulation) tools, media transcoding, etc. These applications
are a subset of computer programs that produce output that only depends on the
program’s input: they apply purely functional transformations to data.

Problems that are conveniently split up in batches of sub-tasks would also benefit
from the virtually infinite level of concurrency offered by the serverless model [46].
In [1], the authors identify use cases for serverless in massive scale video encoding,
linear algebra and parallel compilation.

As there are fundamental similarities between a microservices-architectured ap-
plication and an application devised for FaaS deployment [60], full-fledged applica-
tions can be designed with FaaS in mind. Figure 5 gives an example architecture for
an e-commerce web application. The application’s business logic comprises three
serverless functions (catalog, search and checkout) that are triggered by user navi-
gation, and one function (notification) that is scheduled to run periodically. As these
functions are spun up and down according to the application’s load, state has to be
stored in persistent storage, i.e. a relational database and an object store that are both
managed by the provider. The application further relies on provider-managed ser-
vices: its search engine is powered by a BaaS solution, as is the notification function
and the authentication mechanism.

Using AWS Lambda in 2022, this kind of application could scale from zero
resources used to 150 TB of RAM and 90 000 vCPUs in less than two seconds [58],
allowing for timely reaction to load variations.

3.3 Tradeoffs in serverless deployments

When we consider serverless as a programming model, the immediate benefit is a
reduced development cost for teams leaning on BaaS offerings: instead of imple-
menting in-house backend services such as authentication or notifications, developers
merely introduce boilerplate in their codebase so as to connect frontend applications
to their cloud provider’s BaaS APIs. However, that degree of coupling means devel-
oppers can find themselves locked-in in a vendor-specific environment, ultimately
losing control over deployment costs [13].

Serverless Cloud Computing: State of the Art and Challenges 15

From a customer’s point of view, FaaS coupled with managed BaaS achieve perfect
scaling. Customers are charged at a fine grain, only when resources are actually used,
and for the exact duration of execution. From a provider’s point of view, increased
tenancy creates an opportunity to achieve better resource multiplexing, allowing for
increased efficiency and thus greater profits. This auto-scaling mechanism has a cost
in terms of latency: spinning up new sandboxes for incoming requests can create
situations of cold starts where initialization times dominate execution times of func-
tions [61]. Serverless auto-scaling has further implications in terms of throughput:
since function state has to be persisted in disaggregated storage, applications that
display patterns of extensive communications between functions can suffer from the
shipping time of data to compute nodes [89].

A side effect of the FaaS service model is the increase in job count per customer.
While the rise in concurrency, density and resources usage is a selling point for both
FaaS providers and customers, these short-lived jobs have to be isolated from each
other to prevent the leaking of secrets across customers, or at the scale of a single
application comprising multiple individual functions [124].

Table 2 Considerations regarding the FaaS service model
Pros Cons

Reduced development costs for teams leaning
on BaaS offerings

Can we map any application to the FaaS
architecture?

Reduced costs in operations thanks to fully
managed infrastructure

Risks of vendor lock-in due to high degree of
coupling with BaaS offerings

Perfect scaling allows billing granularity close
to actual use of resources

Increase in latency due to cold starts, and
decreased throughput from communications
through slow storage to handle statefulness

Providers can achieve better efficiency in
resources multiplexing leading to increased

profits

Massive multitenancy might involve security
threats

To build on the model’s strengths, customers and providers have to consider the
tradeoffs that are associated with serverless deployments. Table 2 summarises key
takeaways when using serverless to deploy applications to the cloud.

3.4 Description of current FaaS offerings

In this section, we provide an overview of current FaaS offerings from public cloud
providers and open source solutions for private cloud.

Table 3 presents a summary of major FaaS offerings regarding their pricing models
and properties; including Alibaba Function Compute [3], Amazon Web Services
Lambda [6], Microsoft Azure Functions [83], Google Cloud Functions [47], IBM
Cloud Functions [57] and Oracle Cloud Functions [93].

16 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Table 4 presents a summary of self-hostable FaaS platforms regarding their project
status and adoption, and corporate backers; including Apache OpenWhisk [11],
Fission [100], Fn [92], Knative [42] and OpenFaaS [128].

3.4.1 Commercial solutions

To position each offering among the commercial offerings, we chose to compare
them in terms of:

• Pricing model: the manner in which a customer can expect to be billed for product
usage;

• Properties: the limits imposed by the provider regarding resource usage.

Table 3 Cloud customers are faced with a diversity of FaaS offerings

Alibaba
Function
Compute

1 000 000 /
400 000

20a/
0.000 016 384

500
MB 3 GB 24 h

128 kB
(request),
6 MB
(response)

AWS
Lambda

1 000 000 /
400 000

0.2 /
0.000 016 666 7 10 GB 10 240

MB 15 min

6 MB (syn-
chronous),
256 kB
(asyn-
chronous)
for requests
and
responses

Azure
Functions

1 000 000 /
400 000

0.2 /
0.000 016 N/A 1.5

GB 10 min 100 MB
(request)

Service

Pricing model Properties
free quota
per month

pay-as-
you-go
cost

of
invocations /
compute
resources
[GB s]

1M requests /
1 GB s
compute
[USD]

code
size memory

execution
time payload size

Continued on next page

Serverless Cloud Computing: State of the Art and Challenges 17

Table 3 Cloud customers are faced with a diversity of FaaS offerings (Continued)

Google
Cloud
Functions

2 000 000 /
400 000

0.4 /
0.000 002 5

500
MB 8 GB 9 min

10 MB for
requests and
responses

IBM
Cloud
Functions

5 000 000 /
400 000

N/A /
0.000 017 48 MB 2048

MB 60 s
5 MB for
requests and
responses

Oracle
Cloud
Functions

2 000 000 /
400 000

0.2 /
0.000 014 17 N/A 2048

MB 5 min 6 MB

Service

Pricing model Properties
free quota
per month

pay-as-
you-go
cost

of
invocations /
compute
resources
[GB s]

1M requests /
1 GB s
compute
[USD]

code
size memory

execution
time payload size

a billed per 10 000 requests (for USD 0.02)

3.4.2 In the open source community

To measure a project’s status and adoption, we chose two indicators publicly available
at GitHub [84]:

• GitHub ”stars” indicate how many GitHub users chose to keep track of a project;
• Contributors are people who pushed 10 or more git commits (modifications to the

codebase) to the repository.

18 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Table 4 Open source solutions allow cloud providers to devise their own FaaS offering
Project status and adoption Corporate backer

Apache OpenWhisk 5.8k GitHub stars, 34
contributors (≥ 10 commits) IBM (Apache Foundation)

Fission 7.3k GitHub stars, 10
contributors (≥ 10 commits) Platform9

Fn 5.3k GitHub stars, 21
contributors (≥ 10 commits) Oracle

Knative 4.5k GitHub stars, 55
contributors (≥ 10 commits) Google

OpenFaaS 22.2k GitHub stars, 13
contributors (≥ 10 commits) VMware

In this section, we introduced FaaS as a deployment and a programming model,
available for both public and private cloud. Serverless sparked interest in academia
and industry, as a solution for customers to reduce their development and operation
costs, and for providers to maximize resource usage. However, despite attractive
pricing with extensive free plans in commercial offerings, and a various panel of
open source solutions targeted at the major cloud orchestrators, FaaS has not yet
become the go-to cloud subscription model: some challenges are still open and have
to be addressed before serverless can become ubiquitous. Those are described in the
next section.

4 Problems addressed in the literature

In order to achieve flexibility and performance comparable to PaaS or IaaS solutions,
FaaS providers need to tackle major problems that hinders the progress of serverless
in becoming the norm in cloud computing. Serverless is a lively topic in cloud
computing and many authors are contributing toward mitigating these setbacks: the
number of published papers around serverless almost doubled between 2019 and
2020 [53]. The following sections will describe each problem and provide a set of
state-of-the-art solutions that have been proposed in the literature. A real challenge
in addressing these shortcomings is to avoid ”serverful” solutions to the problem
of dynamic allocation of resources, i.e. allocating additional stable resources that
purposefully do not scale to zero [54].

4.1 Cold start delays and frequency

As serverless containers must spend a minimum amount of time in an idle state,
they are spun up and down very frequently as compared to PaaS containers or IaaS
VMs. Each time a function is called and has to be scaled from zero, the container or
virtual machine hosting the function’s code has to go through its initialization phase:

Serverless Cloud Computing: State of the Art and Challenges 19

this is called a ”cold start” [73]. Cold starts can incur latency penalties, aggravated
by delays snowballing during composition of functions in the context of complex
applications [88].

Functions are typically invoked in bursts – the AWS Lambda execution model
can maximize concurrency by instantiating a function in hundreds to thousands
of sandboxes across different geographical locations [8]. Minutes after handling a
request, a function’s sandbox is freed from the execution node; moreover, future new
instances are not guaranteed to be created on the same node. This leads to situations
in which a function’s environment is not cached on the node. Code and associated
libraries have to be fetched and copied to the filesystem again, resulting in cold start
latency.

A ”naive” approach would consist in pre-allocating hardware resources in order to
keep a pool of function containers ready for new requests. This is not acceptable [75]
as it strides away from the possibility of scaling to zero.

Vahidinia et al. [122] propose a comprehensive study of the position and strate-
gies of various commercial FaaS offerings regarding cold start. While serverless
computing suggests spinning up disposable instances of functions to handle each
incoming request, the authors note that commercial actors such as AWS, Google
and Microsoft all re-use execution sandboxes to some extent, keeping them running
during a timeout period in order to circumvent latency costs incurred by cold starts.

4.1.1 Reducing initialization times

Different approaches can be implemented by cloud providers to shrink the initializa-
tion time of function sandboxes. This is a crucial work as function invocations follow
mostly unpredictable patterns [110]. This section explores contributions from the
literature that focus on bridging the gap in latency between serverless and serverful
models.

Sandbox optimization approach
In [89], the authors propose Lambada to address the cold start problem in the

context of distributed data analytics by batching the invocation of workers in par-
allel. They identify a bottleneck in the invocation process of new workers: in their
evaluation, they show that invoking 1000 AWS Lambda workers takes between 3.4 to
4.4 seconds. In their contribution, each worker is responsible for invoking a second
generation of sandboxes, which will in turn invoke a next generation of workers until
the scaling process is complete. This technique allows to spawn several thousands
of workers in under 4 seconds.

In [77], the authors propose LightVM to put VM boot time in the same ballpark
as containers. The authors show that instantiation times grow linearly with image
size: creating a sandboxed environment for an application to run is an I/O-bound
operation. By redesigning Xen control plane and using lightweight VMs that include
a minimal environment needed to run the sandboxed application, they achieve boot
times comparable to the performances of the fork/exec implementation in Linux.

20 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

In [2], the authors propose that full-blown isolation mechanisms such as containers
are needed to isolate workloads among customers, while at the granularity of a single
application, processes are enough to isolate functions. In SAND, they implement
an isolation mechanism on top of Docker that enables resources-efficient, elastic,
low-latency interactions between functions.

In [1], the authors present Firecracker, which grew to become the de facto vir-
tualization technology for serverless, being used at AWS Lambda. They tackle the
tradeoff in isolation versus performances by introducing lightweight VMs (or Mi-
croVMs) in lieu of containers as a sandboxing mechanism for serverless workloads.
Firecracker achieves boot times under 125 ms by replacing QEMU with a custom
implementation of a virtual machine monitor that runs on top of KVM and allows to
create up to 150 MicroVMs per second and per host with a 3% memory overhead.

Snapshotting approach
In [38], the authors argue that startup overhead in virtualization-based sandboxes

is caused by their application-agnostic nature. Indeed, they show that the application
initialization latency dominates the total startup latency. In Catalyzer, the authors
show that sandbox instances of one same function possess very similar initialization
states, and thus present a snapshotting solution that allows restoring a function
instance from a checkpoint image, effectively skipping the application’s initialization
phase when scaling from zero. They build a solution based on Google’s gVisor [49]
that consistently outperforms state-of-the-art technologies such as Firecracker [1],
HyperContainer and Docker by one order of magnitude.

In [121], the authors present vHive, a benchmarking framework for serverless
experimentation that allows them to show that high latency can be attributed to fre-
quent page faults during sandboxes initialization, with very similar patterns among
executions of a same function – 97% of the memory pages being identical across
invocations of studied functions. They propose REAP to create images of a sandbox
memory layout that enable prefetching pages from disk to memory, eagerly populat-
ing the guest memory before function execution and thus avoiding the majority of
page faults at initialization time. This technique allows a cold start delay speedup of
3.7 times on average.

In [112], the authors propose Faaslets, a new isolation mechanism based on
software-fault isolation provided by WebAssembly. Faaslets allow restoring a func-
tion’s state from already initialized snapshots. These snapshots are pre-initialized
ahead of time and can be restored in hundreds of milliseconds, even across hosts.
Fasslets take advantage of the WebAssembly memory model: linear bytes arrays can
be copied without a lengthy (de)serialization phase.

Caching approach
In [91], the authors argue that while serverless allows costs savings through

increased elasticity and developer velocity, lengthy container initialization times
hurt latency performances of deployed applications. They identify bottlenecks in
Linux primitives involved in containers initialization, with package dependencies
being the major culprit in I/O operations during sandboxing. They propose SOCK

Serverless Cloud Computing: State of the Art and Challenges 21

as a container system optimized for serverless tasks that builds on OpenLambda and
rely on a package-aware caching system, and show that their solution offers speedups
up to 21 times over Docker.

In [44], the author show conceptual similarities between object caching and
function keep-alive, allowing them to devise policies that reduce cold start delays.
Building on that analogy, they propose a keep-alive policy that is essentially a func-
tion termination (or eviction) policy. By keeping functions warm as long as possible
(i.e. as long as server resources allow it), FaasCache manages to double the number
of serviceable requests in their OpenWhisk-based implementation.

The ability for serverless platforms to scale a function to zero replicas in order
to avoid billing customers for idle resources is a key difference with regards to
traditional cloud service models. Seeking techniques that minimize the impact of a
cold start on function latency is a critical research topic, as prohibitive initialization
times hinder the potential for FaaS to compete with PaaS platforms.

4.2 Data communications overhead

In FaaS offerings, functions are non-addressable: composition is done through storing
results in a stateful slow storage tier that is usually not collocated with the computing
tier.

As functions of the same application cannot share memory or file descriptors
to achieve IPC, they have to establish communication through message-passing
interfaces, introducing overhead when data need to flow through the application.

This problem is particularly concerning when data-hungry applications have to
work with cold data, i.e. data that are sparsely accessed and therefore not cached,
and stored on lower performing storage such as hard drives located on remote nodes.
In [61], the authors present LambdaML, a benchmarking platform that enables
comparing performances of distributed machine learning model training across IaaS
and FaaS offerings. They find out that using FaaS for ML training can be profitable
as long as the models present reduced communication patterns.

In [89], the authors show that FaaS can be profitable when running sporadic,
interactive queries on gigabytes to a terabyte of cold data. By providing serverless-
specific data operators with Lambada, they achieve interactive queries on more than
1 TB of Amazon S3-stored data in approximately 15 seconds, which is in the same
ball park as commercial Query-as-a-Service solutions.

In [105], the authors argue that serverless offerings lack an in-memory, per-
application data caching layer that would allow auto-scaling and work transparently.
Faa$T can form a strongly consistent distributed caching layer when multiple in-
stances of an application are spun up, with the latest caching node vanishing as the
application scales down to zero, effectively enabling billing on the basis of effective
resources usage. The experimentations show that Faa$T can improve performance

22 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

of varying applications by 57% on average while being 99% cheaper than serverful
alternatives.

SAND [2] introduces a hierarchy in communication buses. In SAND, an applica-
tion’s functions are always deployed on the same node. A node-local bus serves as
a shortcut for inter-function communications, allowing for fast sequential execution.
A global bus, distributed across nodes, ensures reliability through fault tolerance. In
SAND, the local bus achieves almost 3x speedup for message delivery compared to
the global bus.

As serverless functions are ephemeral by nature, and given the isolation mecha-
nisms rolled out by providers to meet privacy and security objectives, minimizing
the overhead of inter-function communication seems to be a two-fold problem: on
the one hand, serverless platforms need both domain-specific solutions that factor in
the characteristics of the data that are fed to and returned by the functions; on the
other hand, there is room for general improvements in the field of distributed caches.

4.3 Durable state and statefulness

”State”, or ”local state”, refers to data usually read and written from and to variables or
disk by a process during its execution. FaaS offers no guarantees as to the availability
of such storage across multiple executions. That is why serverless functions are
referred to as ”stateless”: data that need to be persisted have to be stored externally,
and functions should be idempotent in order to prevent state corruption.

Furthermore, FaaS offerings present arbitrary limitations including a function’s
execution time, payload size and allocated memory (cf. table 3). This is a problem
when designing ”real world” applications that consist of long-lived jobs, and/or
that comprise functions that need to communicate or synchronize, e.g. to pass on
intermediate results depending on transient state.

Given the ephemeral nature of function instances, one must be aware of fault
tolerance and data consistency in their application when they deploy to FaaS.

In [133], the authors address I/O latency in the context of serverless function
composition, where an application is divided into multiple functions that may run
concurrently on different nodes while accessing remote storage. They propose Hy-
droCache, a system that implements their idea of Multisite Transactional Causal
Consistency (causal consistency in the scope of a single transaction distributed
across multiple nodes). They observe improvements up to an order of magnitude in
performance while achieving consistency. HydroCache outperforms state-of-the-art
solutions such as Anna [132] and ElastiCache [5].

In [97], the authors argue that serverless database analytics would allow data
analysts to avoid upfront costs by achieving elasticity. However, as these kinds of
workloads are by nature unpredictable, cloud providers tend to have difficulty in
provisioning adequate resources, leading to solutions that are elastic but sometimes
suffer minutes of latency during scaling phases. They present Starling, a query

Serverless Cloud Computing: State of the Art and Challenges 23

execution engine built on FaaS: three stage of functions (Producers, Combiners
and Consumers) can scale independently to handle datasets stored on remote cold
storage. Their evaluation shows that Starling is cost-effective on moderate query
volumes (under 120 queries per hour on a 10 TB TPC-H dataset), while showing
good latency results for ad-hoc analytics on cold data in Amazon S3 and being able
to scale on a per-query basis.

In serverless, scaling from zero when activity returns after an idle period is usually
event-driven. This poses a problem when no hardware resources are immediately
available to resume workloads, inducing high latency. In [99], the authors investigate
proactive auto-scaling for their serverless Azure SQL database offering. The contri-
bution focuses on the prediction of pause and resume patterns in order to avoid the
latency issue when resuming activity, and to minimize resources reclamation in the
first place when idle periods are short. Using samples from thousands of production
databases, they found that only 23% of databases are unpredictable, and trained ma-
chine learning models on three weeks of historical data to build a prediction system.
The approach has been successfully used in production at Azure, achieving 80% of
proactive resumes and avoiding up to 50% less pauses.

In [116], the authors build on the Anna KVS [132] to propose a stateful FaaS
platform. Cloudburst achieves low-latency mutable state and communication with
minimal programming effort. Leveraging Anna’s capabilities, they provide essen-
tial building blocks to allow statefulness in an FaaS context: direct communication
between functions, low-latency access to shared mutable state with distributed ses-
sion consistency, and programmability to transparently implement Cloudburst con-
sistency protocols. In their evaluation against real-world applications, Cloudburst
outperforms both commercial and state-of-the-art solutions by at least an order of
magnitude while maintaining auto-scaling capabilities.

4.3.1 Distributed data stores

Event-driven invocation implies that functions of a single application are not always
executed on the same node, thus these functions cannot make use of shared memory
or inter-process communications. Moreover, given the nature of serverless offerings
that allow scaling to zero, functions are not always in an execution state and as
such are not network addressable. Given these constraints, developers have to rely
on increased communications through slow storage such as S3 buckets to handle
statefulness within their applications.

There are hard challenges in scaling a database to zero: coming up with a database
design that allows true serverless is an ongoing engineering and research effort.
Microsoft recently proposed auto-scaling capabilities in their Azure SQL database
[99]. In 2022, Cloudflare introduced D1 [32], which is based on SQLite.

Indeed, serverless applications are often deployed alongside a key-value store that
scales much more naturally than a database, as key-value stores (KVS) are essentially
stateless and thus can be distributed across nodes [65]. Given that KVS systems
are central to serverless statefulness, implementing consistent, efficient and elastic

24 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

KVS is a lively research subject. However, industry-grade storage systems were not
designed with serverless properties in mind, resulting in impaired elasticity and thus
costs that grow faster than linearly with the infrastructure’s size, and inconsistent
performance depending on the scale.

In [132], the authors set out to design a KVS for any scale: the store should
be extremely efficient on a single node and has to be able to scale up elastically
to any cloud deployment. Their design requirements include partitioning the key
space (starting at the multi-core level to ensure performance) with multi-master
replication to achieve concurrency; wait-free execution to minimize latency and
coordination-free consistency models to avoid bottlenecks during communications
across cores and nodes. Using a state-of-the-art data structure, lattices, Anna can
efficiently merge state in an asynchronous (or wait-free) fashion. The evaluation
shows that Anna outperforms Cassandra by a 10x factor when used in a distributed
setting, across four 32-core nodes in different geographical locations.

In [65], the authors argue that existing store services have objectives orthogonal
or contradictory to those of a serverless KVS: they sacrifice performance or cost
for durability or high availability of data. In particular, they find that these systems
are inherently not suitable for intermediate (or ”ephemeral”) data in the context
of inter-functions communications, as they require a long-running agent to achieve
communication among tasks. The authors present Pocket, a distributed data store
designed for intermediate data sharing in the context of serverless analytics, with
sub-second response times, automatic resource rightsizing and intelligent data place-
ment across multiple storage tiers (DRAM, Flash, disk). This is achieved by dividing
responsibilities between three planes that scale independently: a control plane that
implements data placement policies, a metadata plane that allows distributing data
across nodes, and the data storage plane. When evaluated against Redis for MapRe-
duce operations on a 100 GB dataset, Pocket shows comparable performance while
saving close to 60% in cost. It is also significantly faster than Amazon S3, with a
4.1x speedup on ephemeral I/O.

4.3.2 Ephemeral storage

Cloud storage is devised as a tiered service: data is disaggregated across fast, but
costly medium and slow, but cheap medium, according to frequency of use, size,
age, etc.

Table 5 A simplified overview of media choice in tiered infrastructures
Capacity TB GB

Addressability Block Byte
Consideration Cost Data

Latency s ms µs µs ns
Data Cold Warm Hot Hot Mission critical

Medium Tape HDD SSD (Flash) NVRAM DRAM

Serverless Cloud Computing: State of the Art and Challenges 25

Intel Optane are persistent memory (PM) modules that target a tier in-between
Flash SSDs and DRAM: their latency and bandwidth are slightly worse than DRAM,
but they offer SSD-level capacities of non-volatile memory at an affordable price
([19], [59], [18]).

In [25], the authors aim at delivering a key-value storage engine that would take
advantage of persistent memory (PM, or NVM for non-volatile memory) technology
to achieve greater performance than on spinning disks or Flash memory. They focus
on write-intensive, small-sized workloads: indeed, previous studies ([12], [90]) have
shown that Memcached pools in the wild are mainly used to store small objects, e.g.
70% of them are smaller than 300 bytes at Facebook. Moreover, serverless analyt-
ics exchange short-lived data and thus are very write-intensive, while object stores
have historically been used as a read-dominated caching layer. Building on these
observations, and characteristics specific to PM devices, they present FlatStore, a
KVS engine with minimal write overhead, low latency and multi-core scalability.
As persistent memories present fine-grain addressability and show low latency as
compared to HDDs and SSDs, the authors designed FlatStore for minimal batching
of write operations so as to avoid contention. When benchmarked on Facebook data
with tiny (1-13 bytes) to large (> 300 bytes) items, evaluation shows that FlatStore
performs 2.5 to 6.3 times faster than state-of-the-art solutions.

Statefulness is a major problem for serverless platforms. Service providers are
deploying a variety of BaaS software to bridge the gap between traditional service
models and FaaS and allow developers to deploy their full applications to their
serverless offerings. Serverless functions present intrinsically disaggregated storage
and compute, as they are deployed on-the-fly to multiple geographic zones, on
hardware resources that are dynamically allocated by the provider. They need a
means to operate on data that is fast enough, offers consistency guarantees, and
scales in coherence with the pay-as-you-go pricing model. There is room for research
in the field of distributed data stores, and using emerging non-volatile memory to
accelerate throughput.

4.4 Hardware heterogeneity

Cloud customers are expected to book different resources depending on their ap-
plications’ needs, be it a specific CPU architecture, hardware accelerators, ad-hoc
storage... A striking example is distributed machine learning, in which many GPUs
are used to speed up the training of models – furthermore, cloud providers are starting
to generalize access to specialized hardware such as TPUs [28] in VMs.

Manual selection of hardware resources (”instance type”), expected from cus-
tomers in IaaS offerings such as Amazon EC2, does not make sense in the server-
less paradigm. Hardware acceleration should be decided by the provider on a per-
application or per-request basis. To date, that possibility is not available in FaaS
offerings such as AWS Lambda.

26 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

In [61], the authors set out to compare IaaS and FaaS configurations for machine
learning training on Amazon Web Services offerings (resp. EC2 and Lambda). They
propose an implementation of FaaS-based learning, LambdaML, and benchmark
it against state-of-the-art frameworks running on EC2 instances. They measured
that serverless training can be cost-effective as long as the model converges quickly
enough so that inter-function communications do not dominate the total run time.
Otherwise, an IaaS configuration using GPUs will outperform any FaaS configura-
tion, yielding better performance while being more cost-effective.

In [14], the authors explore multitenancy in FPGAs to achieve higher board usage
rate. They propose BlastFunction, a scalable system for FPGA time sharing in a
serverless context. Their implementation relies on three building blocks: a library
that allows transparent access to remote shared devices, a distributed control plane
that monitors the FPGAs to achieve time sharing, and a central registry that handles
allocating the boards to each compute node. This design allows reaching higher
utilization rates on the boards and thus processing a higher number of requests,
especially under high load, although at the cost of a 36% increase in latency due to
the added concurrency.

In [35], the authors focus on a financial services use case and propose FPGAs to
decrease end-to-end response time and increase scalability in a microservices archi-
tecture. The application they studied is computationally intensive and has real-time
characteristics. They propose CloudiFi, a cloud-native framework that exposes hard-
ware accelerators as microservices through a RESTful HTTP API. CloudiFi allows
offloading workloads to hardware accelerators at a function level. An evaluation of
the application’s performance under CloudiFi shows 485x gains in response time
when using network-attached FPGAs against a vanilla configuration.

ARM and RISC CPUs, GPUs and FPGAs are increasingly used in datacenters to
address demand for performance, power efficiency and reduced form factor. In [56],
the authors argue that since these heterogeneous execution platforms are usually col-
located with a general purpose host CPU, being able to leverage their characteristics
by migrating workloads could yield significant performance gains. They propose
Xar-Trek, a compiler and run-time monitor to enable execution migration across
heterogeneous-ISA CPUs and FPGAs according to a scheduling policy. Xar-Trek in-
volves limited programming effort: the application is written once and compiled for
different targets thanks to the Xilinx toolchain, without necessary high-level synthe-
sis annotations to guide the compiler. Xar-Trek’s runtime system, a user space online
scheduler, is able to determine if a migration is effective and to proceed to migrate
selected functions that benefit the most from acceleration. Evaluation on machine
vision and HPC workloads finds out that as long as the workloads are dominated by
compute-intensive functions, Xar-Trek always outperforms vanilla configurations,
with performance gains between 26 and 32%.

Even when heterogeneous hardware is collocated on the same node, they are
usually interconnected through PCI-Express buses managed by the host’s CPU.
Communications are achieved with message-passing interfaces that introduce band-
width and latency costs. In [125], the authors present FractOS, a distributed operating
system for heterogeneous, disaggregated datacenters. FractOS allows decentralizing

Serverless Cloud Computing: State of the Art and Challenges 27

the execution of applications: instead of relying on the CPU to pass on control and
data from one execution platform to another, FractOS provides applications with a
library that allows direct communications between devices, thanks to an underlying
controller that catches system calls and provides direct device-to-device function-
ality. When benchmarked on a face verification application that leverages GPUs to
accelerate computations, their solution shows a speedup of 47% in execution time
and an overall network traffic divided by 3.

With the exponential progression and growing interest in the field of machine
learning, demand for hardware accelerators in the cloud has never been so prevalent.
Commercial serverless offerings are lagging behind traditional IaaS in that regard, as
none offer access to GPUs, TPUs nor FPGAs. Furthermore, dynamically allocating
such hardware to accelerate select tasks has potential for providers to improve their
resource usage and energy consumption.

4.5 Isolation and security

In order to achieve resource pooling, cloud providers rely on virtualization technolo-
gies so as to isolate cusomters’ workloads. Furthermore, they offer various models
of service ranging from IaaS to FaaS, all of which call for different sandboxing
techniques providing a different balance between performance and isolation.

The usual tradeoff happens between the robustness of hypervision-based isolation
(VMs) where each sandbox runs a separate OS, and the performance of OS-level
virtualization (containers) where sandboxes all share the host’s kernel. Ideally, cloud
providers should not have to sacrifice one of these two essential characteristics.
Efforts have been made to reduce virtualization overhead in order to decrease startup
times and reduce the performance gap between these two techniques [77].

4.5.1 MicroVMs

In [1], the authors identify numerous challenges to devise an isolation method specif-
ically suitable for serverless workloads in the context of AWS Lambda – Firecracker
must provide VM-level security with container-level sandboxing density on a single
host, with close to bare-metal performances for any Linux-compatible application.
Firecracker overhead should be small enough so that creating and disposing of
sandboxes would be fast enough for AWS Lambda (≤ 150𝑚𝑠), and the manager
should allow over committing hardware resources with sandboxes consuming only
the resources it needs. With Firecracker, the authors present a new Virtual Machine
Monitor (VMM) based on Linux KVM to run minimal virtual machines (or Mi-
croVMs) that pack an unmodified, minimal Linux kernel and user space. Thanks
to sandbox pooling, Firecracker achieves fast boot times and high sandbox density

28 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

on a single host, for any given Linux application. It has been successfully used in
production in AWS Lambda since 2018.

In [10], the authors study the differences in host kernel functionality usage across
Linux Containers (LXC), Firecracker MicroVMs and Google’s gVisor secure con-
tainers. gVisor sandboxes are seccomp containers: they are restricted to 4 system
calls, namely exit, sigreturn, and read and write on already opened file de-
scriptors. Extended functionality relies upon a Go-written user space kernel called
Sentry that intercepts and implements system calls, and manages file descriptors.
This prevents direct interaction between the sandboxed application and the host OS.
While effectively achieving secure isolation, gVisor’s design is complicated and adds
overhead: the authors find that gVisor has the largest footprint in CPU and memory
usage, with the slowest bandwidth for network operations.

In [129], the authors argue that the virtualization ecosystem lacks a solution
tailored for isolation at the granularity of a single function. They present virtines,
a lightweight VM isolation mechanism, and Wasp, a type-2, minimal library hy-
pervisor that runs on GNU/Linux and Windows. Virtines are programmer-guided:
annotations at function boundaries allow the compiler to automatically package sub-
sets of the application in lightweight VMs with a POSIX-compatible runtime. Wasp
works in a client-server fashion: the runtime (client) issues calls to the hypervisor
(server) that determines if each individual request is allowed to be serviced according
to an administrator-defined policy. In their evaluation with a JavaScript application,
the authors find this design introduces limited overhead of 125 µs in boot time
compared to baseline, while effectively achieving fine-tunable isolation for selected
functions at almost no programmer effort.

4.5.2 Unikernels

The idea behind unikernels is to provide OS functionality as a library that can be
embedded in an application sandbox so as to avoid packing and booting a full-fledged
operating system to run the application, and to eliminate costly context switches from
user space to kernel space. In [67], the authors present Unikraft, a Linux Foundation
initiative. Unikraft aims at making the porting process as painless as possible for
developers who want to run their applications on top of unikernels. Resulting images
for different applications (nginx, SQLite, Redis) come close to the smallest possible
size, i.e. Linux user space binary size, with very limited memory overhead during
execution (< 10 MB of RAM) and fast boot times in the milliseconds range. Unikraft-
packaged applications achieve 1.7 to 2.7x performance improvements compared to
traditional Linux guest VMs.

In [22], the authors present a high-density caching mechanism that leverages
unikernels and snapshotting (see 4.1.1) to speed up deployments. They argue that
serverless functions are good candidates for caching: as they usually are written in
high-level languages that execute in interpreters, their startup path mainly consists
in initializing this interpreter and associated dependencies, which can be shared
across different sandboxes. The snapshotting mechanism benefits from the unikernel

Serverless Cloud Computing: State of the Art and Challenges 29

memory layout, where all functionalities (ranging from filesystem, to network stack,
to user application) are combined into a single flat address space. The implement this
mechanism in SEUSS to achieve caching over 16x more unikernel-based sandboxes
in memory than Linux-based containers. Furthermore, deployment times drop from
hundreds of milliseconds to under 10 ms, and platform handling of bursts of requests
dramatically improves under high-density caching, leading to reduced numbers of
failed requests.

In [118], the authors present Unikernel-as-a-Function (UaaF), a single address
space, library OS aimed at deploying serverless functions. UaaF builds on the obser-
vation that cross-function invocations are slow in serverless deployments that rely
on network-based message passing interfaces (see 4.2); furthermore, Linux guests
suffer from memory usage overhead in sandboxes and their startup latency is not
satisfying (see 4.1). The authors investigate using VMFUNC, an Intel technology for
cross-sandboxes function invocations that do not incur latency when exiting from
a VM to the hypervisor. It effectively enables remote function invocation, thus giv-
ing hardware-supported, secure IPC capabilities to serverless functions. They also
propose a new programming model for serverless functions: session and library
functions, with the former being ”workflow” (or skeleton) functions and the latter
being actual code, uploaded by customers and possibly shared across applications.
In their evaluation, the authors implement UaaF with three unikernels (Solo5, Mira-
geOS and IncludeOS) and show that inter-function communication in UaaF is three
orders of magnitude lower than native Linux IPC. Their programming model allows
for reduced memory overhead and initialization times in several milliseconds thanks
to shared functions.

FaaS workloads are orders of magnitude shorter-lived than workloads in tradi-
tional offerings. As such, relying on virtualization techniques that were not built
for serverless is suboptimal: initialization times may not meet latency requirements
when scaling from zero; sandbox sizes may be too high to cache in memory given
the increase in multitenancy; isolation might be too weak to collocate different cus-
tomers’ jobs. This assessment sparked interest in research around unikernels and
MicroVMs, while commercial providers developed their own approaches such as
Firecracker for AWS, or gVisor for Google Cloud.

4.6 Programming model and vendor lock-in

As shown in figure 5, FaaS applications tend to rely heavily on BaaS offerings to
benefit from costs savings associated to their capability to scale to zero. This tie-in
introduces a risk of lock-in with vendor-specific solutions that might not be available
across commercial offerings, or available as off-the-shelf, open source software.

Furthermore, some providers will use prohibitive egress bandwidth pricing [55]
so as to deter their customers from moving data to a competitor.

30 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Another aspect of that problem is the difficulty to develop, test and debug FaaS
applications locally [119]. At the very least, developers will have to simulate the API
gateway in order to run test suites; if their application makes use of vendor-specific
storage solutions or communication buses, developers will have to deploy similar
solutions or mock the specificities of these BaaS building blocks, e.g. their API and
performance characteristics.

This amounts to non-negligible engineering efforts and indeed, deploying a full-
fledged serverless infrastructure for staging might offset the operations cost benefits
of choosing serverless for production. Entry level [33] and seasoned [87] engineers
alike report having trouble with tooling, testing and the general ecosystem and added
complexity of developing FaaS applications.

In [98], the authors observe that the disaggregation of storage and compute re-
sources in FaaS limits the development of applications that make heavy use of
shared mutable state and synchronize a lot between iterations. Indeed, state does not
persist between invocations of a same function (see 4.3), and message passing for
inter-function communications induces high overhead (see 4.2). In particular, they
focus on machine learning algorithms (k-means clustering and logistic regression).
They present Crucial, a framework aiming at supporting the development of stateful
serverless applications. Crucial provides applications with a shared memory layer
that guarantees durability through replication, with strong consistency guarantees.
Crucial programming model is annotation-based, allowing programmers to port a
single-machine, multi-threaded application to a FaaS platform with minimal involve-
ment. Evaluation against a Spark cluster over a 100 GB dataset shows that Crucial
running on AWS Lambda introduces very small overhead, enabling it to outperform
Spark by 18 to 40% in performance at similar cost.

In [136], the authors acknowledge that the serverless programming model is
challenging for developers. They have the responsibility to correctly partition their
code into stateless units of work, to manage coordination mechanisms to achieve
a microservices architecture, and to implement consistency models for state re-
tention in case of failures. The complexity might deter customers from deploying
general-purpose applications that would greatly benefit from the level of parallelism
offered by serverless providers. They present Kappa, a Python framework for server-
less applications. Kappa provides a familiar API that achieves checkpointing (by
periodically storing the application’s state so that the program can resume in case
of timeout), concurrency (by supporting spawning tasks, waiting on futures, and
cross-function message passing), and fault tolerance (by ensuring idempotent state
restoration when resuming from checkpoints). Kappa applications can be deployed
to any serverless platform, as the framework requires no change on the server side.
In their evaluation, they implement five applications with Kappa and results indicate
that the checkpointing mechanism works well when functions time out a lot, with
less than 9% response time overhead under heavy (15 seconds) timeout duration,
and a maximum of 3.2% with a more reasonable 60 seconds timeout period.

In order to limit the increase in latency when scaling from zero, the container
or VM images that support serverless applications are usually made as lean and
lightweight as possible. This deters developers from including monitoring or debug-

Serverless Cloud Computing: State of the Art and Challenges 31

ging tools, making it very hard to inspect a serverless function at runtime. In [119],
the authors present VMSH, a mechanism that allows attaching arbitrary guest images
to running lightweight VMs in order to instrument it for development or debugging
purposes. Evaluation done on KVM – although VMSH is built as a hypervisor-
agnostic solution – shows that guest side-loading adds no overhead to the original
VM guest, successfully slashing the tradeoff between no-frills, lightweight VMs and
functionality.

There is a clear tradeoff in providing sandboxes as small as possible to minimize
storage and memory costs in serverless platforms, while shipping adequate tools
for developers to build, test, distribute and deploy their functions. Furthermore, the
programming model based on stateless functions shed light on a new challenge:
provider-side and developer-side tooling for stateful FaaS is needed to enable the
serverless deployment of legacy and future applications that make use of long-
running services and data persistence.

5 Perspectives and future directions

The previous section provided an overview of contributions linked with technical
challenges in serverless computing. In this section, we introduce some future di-
rections for research in the field. We present problems investigated in works from
the cloud, system and database communities. We argue that contributions building
on these insights would have the potential to strengthen serverless platforms for a
broader recognition of the serverless paradigm.

5.1 Service Level Agreements

In 2011, Buyya et al. [21] advocated for SLA-oriented resource allocation in cloud
computing at the dawn of the microservices era. They identified reliability in utility
computing as a major challenge for the next decades: even with reserved resources in
traditional service models, the growing complexity of customer applications made
meeting Service Level Agreements (SLAs) a hard albeit inescapable problem for
cloud providers.

Latency, throughput and continuity of service are difficult to guarantee in cloud
computing when using unreserved resources [34]. Due to the transient nature of
function sandboxes in serverless computing, auto-scaling platforms face a similar
problem of dynamic allocation of resources. However, being able to offer SLAs to
customers and meet Quality of Service (QoS) commitments as a provider is necessary
for wide-scale adoption of the serverless service model [39].

In [23], the authors argue that serverless auto-scaling platforms are challenged
by bursty workloads. In their work, they highlight the importance of workload

32 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

characterization to rightsize the amount of reserved VMs needed to meet SLAs.
When the number of incoming requests drives up the concurrency level in reserved
VMs, and makes task latency go past the acceptable threshold negotiated via SLA,
they rely on a serverless platform to accommodate for extra tasks and maintain
performance. While that framework managed to keep most of response times under
the target threshold, the authors still see an incompressible number of violations
caused by cold start delays on the serverless platform.

In [27], the authors argue that the task model in serverless computing and the
infrastructure view in auto-scaling platforms are inadequate to address customers’
needs in terms of service level. Indeed, auto-scalers base their allocation decisions
upon generic metrics such as query per second (QPS) that do not reflect application-
specific characteristics and do not take into account the heterogeneity of the hardware
resources at hand. They propose a framework in which their application metrics
(such as request execution time) are fed to the auto-scaler in order for it to allocate
resources according to user-specified service level objectives, such as target latency.
However, observed response times are non-deterministic due to cold start delays, and
user-defined target latencies are subject to violations in an auto-scaling scenario.

In order to meet per-user QoS requirements, the auto-scaling platforms should
take into account the characteristics of heterogeneous hardware resources, and SLAs
should be negotiated on a per-request basis rather than on a per-function basis.
We believe that auto-scaling policies based on workload and platform characteriza-
tion could be implemented to minimize the impact of cold start latency and allow
serverless platforms to meet SLAs with unreserved, heterogeneous resources.

5.2 Energy efficiency

Power usage in cloud computing is a crucial challenge: in 2010, datacenters totaled
between 1.1 and 1.5% of global electricity use [66], and projections for 2030 show
that these figures could go up from 3 to 13% of global electricity use [9]. With server-
less becoming an increasingly popular service model for the cloud, and many authors
considering serverless as the future of cloud computing, there is an opportunity for
cloud providers to implement energy policies at scale.

To be efficient in terms of cost and energy consumption, an auto-scaling platform
should be able to rightsize the allocated resources in a serverless cloud infrastructure,
while being responsive enough to accommodate workload changes without impact-
ing end users with spikes in latency. This highlights a tradeoff between energy and
performance: oversubscribing resources can help ensure low latency on function
invocation, but will result in higher energy consumption.

Multitenancy helped slow down the growth in server count in datacenters [79].
With promises of massive collocation of short-lived jobs, serverless seems to be a
promising direction for cloud infrastructures looking to reduce their energy footprint.

Workload consolidation is a technique that consists in maximizing the number of
jobs on the fewest number of nodes [24]. This allows for dynamic power management:

Serverless Cloud Computing: State of the Art and Challenges 33

nodes that are not solicited can then be powered off, and nodes that observe moderate
load can be slowed down, i.e. via CPU throttling [72].

One fundamental problem in the serverless paradigm is the intrinsic data-shipping
architecture 4 [26]. Since function sandboxes are deployed on nodes in various
geographic regions to achieve load balancing and availability, serverless platforms
ship up to terabytes of data from the storage nodes to code which size can range from
kilobytes to megabytes within the compute nodes.

Storage functions allow small units of work to be executed directly on the storage
nodes [135], achieving 14% to 78% speedup against remote storage. Storage func-
tions do not question the physical disaggregation of storage and compute resources
that is instrumental in cloud computing, while effectively limiting data movement
between nodes and as such reducing energy consumption in a datacenter.

Computational storage is a means to offload workloads from the CPU to the storage
controller [15]. When dealing with large amounts of data, such techniques can help
decrease data transfers, improve performance and reduce energy consumption. While
these technologies are not yet ready for production use, they provide interesting
research opportunities for the serverless community.

These techniques could be implemented in serverless platforms to yield further
gains in cloud energy consumption. It implies taking into account the diversity of
user applications and the heterogeneity of requests and hardware resources.

5.3 AI-assisted allocation of resources

In the serverless paradigm, it is the provider’s responsibility to rightsize the alloca-
tion of hardware resources so that their customers’ workloads are executed in time.
Dynamically allocating appropriate hardware resources for event-driven tasks in a
heterogeneous infrastructure is a hard problem that may hit a computational com-
plexity barrier at scale, with online scheduler producing sub-optimal solutions [74].
Artificial intelligence (AI) techniques can help overcoming such a challenge.

Some authors expect AI-driven autonomic computing to become the norm in
future systems [45]. The idea of autonomic computing is to build self-managed
and self-adaptive systems that are resilient to an extremely changing environment
at scale [101]. Such systems can be implemented with machine learning (ML) in a
cost-effective way, using models that do not require extensive human intervention
for supervision.

In [107], the authors show that reinforcement learning (RL) can achieve appropri-
ate scaling on a per-workload basis, resulting in improved performance as compared
to baseline configuration. In their contribution, they propose an RL model that ef-
fectively determines and adjusts the optimal concurrency level for a given workload.

Serverless platforms require reactive resources allocation and scheduling of tasks
under SLAs with per-request QoS requirements [51]. Machine learning techniques

4 Moving data from where they are stored to where they need to be processed.

34 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

can help achieve QoS requirements in traditional cloud computing paradigms [114],
and have been used to enforce virtual machine consolidation [111]. Resources man-
agement and optimization using AI and ML could further help taking advantage of
the heterogeneity of hardware resources in a cloud infrastructure.

6 Conclusion

Serverless is an emerging paradigm in cloud computing, implemented in Function-
as-a-Service offerings. Customers devise their applications as compositions of state-
less functions and push their code to the serverless provider’s function repositories.
When an event triggers the execution of a serverless function, the function is reac-
tively instantiated in a virtualized environment.

It is a radical shift in the cloud computing landscape: while traditional offerings
such as IaaS or PaaS are based on the reservation of stable resources, FaaS providers
propose a demand-driven service model.

This paradigm allows customers to benefit from pay-per-use pricing models to
the granularity of a function invocation. On the other hand, serverless providers can
maximize the collocation of jobs on nodes and achieve better resource usage.

By freeing customers from the constraint of manual rightsizing of cloud resources,
the serverless service model pledges to ease the auto-scaling of applications. Thanks
to an event-driven, on-demand resource allocation mechanism, customers can benefit
from significant reductions in operations costs as they do not have to pay for idle
hardware anymore.

However, current serverless solutions present non-negligible limitations that con-
strain the model’s adoption to specific use cases. This paradigm is based on a
programming model in which developers have to design their applications as com-
positions of pure (stateless, idempotent) functions that cannot rely on side effects.
This constitutes a considerable engineering effort.

As with the microservices architecture, serverless software rely on message-
passing communications between functions. These functions being non-network
addressable in current serverless offerings, these communications have to go through
slow storage. This leads to important costs in performances when functions have to
synchronize, sometimes outweighing the benefits offered by the virtually infinite
level of parallelism in the serverless paradigm.

Furthermore, scaling from zero presents a frequent risk of increased latency
during application wake-up, as the provider has to allocate hardware resources and
instantiate the application’s sandboxes before answering to the event. Serverless
providers usually pre-allocate some resources so as to avoid these cold starts, which
comes with a cost in resources multiplexing.

Finally, hardware accelerators are not yet available in commercial serverless
offerings. With increasing demand in GPUs and FPGAs for massively parallel tasks,
such as machine learning training or big data analytics, customers have to turn to

Serverless Cloud Computing: State of the Art and Challenges 35

conventional cloud offerings such as IaaS if they want to benefit from heterogeneous
hardware resources.

For serverless to impose itself as a serious contender among the cloud computing
offerings, providers need to be able to guarantee some sort of quality of service
through service level agreements. Characterizing the customers’ workloads and
taking into account the heterogeneity of both the infrastructure and the requests is
crucial to that matter, and has the potential to boost both performance and reliability.

Cloud providers have a responsibility to tackle the problem of energy consumption
in datacenters. To that end, serverless could prove to be an efficient service model
if adequate techniques for workload consolidation are proposed and implemented.
Providers could make the most of their new responsibility to allocate resources by
devising power-off or slow-down strategies in serverless infrastructures.

AI-assisted resource management appears to be a promising research direction
for serverless computing. Indeed, as interactive workloads exhibit hard-to-predict
patterns, cloud providers could take advantage of ML models to guide allocation and
scheduling decisions in auto-scaling platforms.

References

1. Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., Popa, D.M.:
Firecracker: Lightweight Virtualization for Serverless Applications. In: 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20), pp. 419–434. USENIX
Association, Santa Clara, CA (2020). URL https://www.usenix.org/conference/
nsdi20/presentation/agache

2. Akkus, I.E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., Aditya, P., Hilt, V.:
SAND: Towards High-Performance Serverless Computing. In: Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’18, p.
923–935. USENIX Association, USA (2018). DOI 10.5555/3277355.3277444. URL
https://dl.acm.org/doi/10.5555/3277355.3277444

3. Alibaba: Alibaba Function Compute (2022). URL https://www.alibabacloud.com/
product/function-compute

4. Almeida Morais, F.J., Vilar Brasileiro, F., Vigolvino Lopes, R., Araujo Santos, R., Satterfield,
W., Rosa, L.: Autoflex: Service Agnostic Auto-scaling Framework for IaaS Deployment
Models. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pp. 42–49. IEEE, Delft (2013). DOI 10.1109/CCGrid.2013.74. URL https:
//doi.org/10.1109/CCGrid.2013.74

5. Amazon Web Services: Amazon ElastiCache (2022). URL https://aws.amazon.com/
elasticache/

6. Amazon Web Services: AWS Lambda (2022). URL https://aws.amazon.com/lambda/
7. Amazon Web Services: AWS Step Functions (2022). URL https://aws.amazon.com/
step-functions/

8. Amazon Web Services: Lambda function scaling (2022). URL https://

docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html

9. Andrae, A., Edler, T.: On Global Electricity Usage of Communication Technology: Trends
to 2030. Challenges 6(1), 117–157 (2015). DOI 10.3390/challe6010117. URL https:
//doi.org/10.3390/challe6010117

10. Anjali, Caraza-Harter, T., Swift, M.M.: Blending Containers and Virtual Machines: A Study
of Firecracker and gVisor. Proceedings of the 16th ACM SIGPLAN/SIGOPS International

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://dl.acm.org/doi/10.5555/3277355.3277444
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://doi.org/10.1109/CCGrid.2013.74
https://doi.org/10.1109/CCGrid.2013.74
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://doi.org/10.3390/challe6010117
https://doi.org/10.3390/challe6010117

36 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

Conference on Virtual Execution Environments (2020). DOI 10.1145/3381052.3381315.
URL https://doi.org/10.1145/3381052.3381315

11. Apache: Openwhisk (2022). URL https://openwhisk.apache.org/
12. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis of a

large-scale key-value store. SIGMETRICS Perform. Eval. Rev. 40(1), 53–64 (2012). DOI
10.1145/2318857.2254766. URL https://doi.org/10.1145/2318857.2254766

13. Baarzi, A.F., Kesidis, G., Joe-Wong, C., Shahrad, M.: On Merits and Viability of Multi-Cloud
Serverless. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 600–608.
ACM, Seattle WA USA (2021). DOI 10.1145/3472883.3487002. URL https://doi.org/
10.1145/3472883.3487002

14. Bacis, M., Brondolin, R., Santambrogio, M.D.: BlastFunction: An FPGA-as-a-Service
System for Accelerated Serverless Computing. In: 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 852–857. IEEE, Grenoble, France
(2020). DOI 10.23919/DATE48585.2020.9116333. URL https://doi.org/10.23919/
DATE48585.2020.9116333

15. Barbalace, A., Do, J.: Computational Storage: Where Are We Today? In: CIDR, p. 6 (2021).
URL http://cidrdb.org/cidr2021/index.html. Conference on Innovative Data Sys-
tems Research 2020, CIDR 2020 ; Conference date: 11-01-2021 Through 15-01-2021

16. Baude, B.: Basic security principles for containers and container runtimes (2019). URL
https://www.redhat.com/sysadmin/basic-security-principles-containers

17. Bentaleb, O., Belloum, A.S.Z., Sebaa, A., El-Maouhab, A.: Containerization Technologies:
Taxonomies, Applications and Challenges. The Journal of Supercomputing 78(1), 1144–1181
(2022). DOI 10.1007/s11227-021-03914-1. URL https://doi.org/10.1007/s11227-
021-03914-1

18. Boukhobza, J., Olivier, P.: Flash Memory Integration. ISTE Press - Elsevier (2017).
URL https://www.elsevier.com/books/flash-memory-integration/boukhobza/
978-1-78548-124-6

19. Boukhobza, J., Rubini, S., Chen, R., Shao, Z.: Emerging nvm: A survey on architectural
integration and research challenges. ACM Trans. Des. Autom. Electron. Syst. 23(2) (2017).
DOI 10.1145/3131848. URL https://doi.org/10.1145/3131848

20. Burckhardt, S., Chandramouli, B., Gillum, C., Justo, D., Kallas, K., McMahon, C., Meik-
lejohn, C.S., Zhu, X.: Netherite: Efficient Execution of Serverless Workflows. Proc.
VLDB Endow. 15(8), 1591–1604 (2022). DOI 10.14778/3529337.3529344. URL https:
//doi.org/10.14778/3529337.3529344

21. Buyya, R., Garg, S.K., Calheiros, R.N.: SLA-oriented resource provisioning for cloud
computing: Challenges, architecture, and solutions. In: 2011 International Conference
on Cloud and Service Computing, pp. 1–10. IEEE, Hong Kong, China (2011). DOI
10.1109/CSC.2011.6138522. URL https://doi.org/10.1109/CSC.2011.6138522

22. Cadden, J., Unger, T., Awad, Y., Dong, H., Krieger, O., Appavoo, J.: SEUSS: Skip Redundant
Paths to Make Serverless Fast. In: Proceedings of the Fifteenth European Conference on Com-
puter Systems, pp. 1–15. ACM, Heraklion Greece (2020). DOI 10.1145/3342195.3392698.
URL https://doi.org/10.1145/3342195.3392698

23. Chahal, D., Palepu, S., Mishra, M., Singhal, R.: SLA-aware Workload Scheduling Using
Hybrid Cloud Services. In: Proceedings of the 1st Workshop on High Performance Serverless
Computing, pp. 1–4. ACM, Virtual Event Sweden (2020). DOI 10.1145/3452413.3464789.
URL https://doi.org/10.1145/3452413.3464789

24. Chaurasia, N., Kumar, M., Chaudhry, R., Verma, O.P.: Comprehensive survey on energy-
aware server consolidation techniques in cloud computing. The Journal of Supercomputing
77(10), 11682–11737 (2021). DOI 10.1007/s11227-021-03760-1. URL https://doi.org/
10.1007/s11227-021-03760-1

25. Chen, Y., Lu, Y., Yang, F., Wang, Q., Wang, Y., Shu, J.: FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent Memory. Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (2020). DOI 10.1145/3373376.3378515. URL https://doi.org/10.1145/
3373376.3378515

https://doi.org/10.1145/3381052.3381315
https://openwhisk.apache.org/
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.23919/DATE48585.2020.9116333
https://doi.org/10.23919/DATE48585.2020.9116333
http://cidrdb.org/cidr2021/index.html
https://www.redhat.com/sysadmin/basic-security-principles-containers
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s11227-021-03914-1
https://www.elsevier.com/books/flash-memory-integration/boukhobza/978-1-78548-124-6
https://www.elsevier.com/books/flash-memory-integration/boukhobza/978-1-78548-124-6
https://doi.org/10.1145/3131848
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1109/CSC.2011.6138522
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3452413.3464789
https://doi.org/10.1007/s11227-021-03760-1
https://doi.org/10.1007/s11227-021-03760-1
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515

Serverless Cloud Computing: State of the Art and Challenges 37

26. Chikhaoui, A., Lemarchand, L., Boukhalfa, K., Boukhobza, J.: Multi-objective Optimization
of Data Placement in a Storage-as-a-Service Federated Cloud. ACM Transactions on Storage
17(3), 1–32 (2021). DOI 10.1145/3452741. URL https://doi.org/10.1145/3452741

27. Cho, J., Tootaghaj, D.Z., Cao, L., Sharma, P.: SLA-Driven ML Inference Framework for
Clouds With Heterogeneous Accelerators. p. 13 (2022)

28. Cloud, G.: Cloud tpu vms are generally available (2022). URL https:

//cloud.google.com/blog/products/compute/cloud-tpu-vms-are-generally-

available

29. Cloud Native Computing Foundation: New SlashData report: 5.6 million de-
velopers use Kubernetes, an increase of 67% over one year (2021). URL
https://www.cncf.io/blog/2021/12/20/new-slashdata-report-5-6-million-

developers-use-kubernetes-an-increase-of-67-over-one-year/

30. Cloud Native Computing Foundation: Kubernetes (2022). URL https://kubernetes.io/
31. Cloud Native Computing Foundation: Kubevirt (2022). URL http://kubevirt.io/
32. Cloudflare: Announcing D1: our first SQL database (2022). URL https://

blog.cloudflare.com/introducing-d1/

33. D., J.: Baby’s First AWS Deployment (2022). URL https://

blog.verygoodsoftwarenotvirus.ru/posts/babys-first-aws/

34. Dartois, J.E., B. Ribeiro, H., Boukhobza, J., Barais, O.: Cuckoo: Opportunistic MapRe-
duce on Ephemeral and Heterogeneous Cloud Resources. In: 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), pp. 396–403. IEEE, Milan, Italy (2019). DOI
10.1109/CLOUD.2019.00070. URL https://doi.org/10.1109/CLOUD.2019.00070

35. Diamantopoulos, D., Polig, R., Ringlein, B., Purandare, M., Weiss, B., Hagleitner, C., Lantz,
M., Abel, F.: Acceleration-as-a-µService: A Cloud-native Monte-Carlo Option Pricing Engine
on CPUs, GPUs and Disaggregated FPGAs. In: 2021 IEEE 14th International Conference on
Cloud Computing (CLOUD), pp. 726–729. IEEE, Chicago, IL, USA (2021). DOI 10.1109/
CLOUD53861.2021.00096. URL https://doi.org/10.1109/CLOUD53861.2021.00096

36. Docker Inc.: Docker (2022). URL https://www.docker.com/
37. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices:

How To Make Your Application Scale. In: A.K. Petrenko, A. Voronkov (eds.) Perspectives
of System Informatics, vol. 10742, pp. 95–104. Springer International Publishing, Cham
(2018). DOI 10.1007/978-3-319-74313-4 8. URL https://doi.org/10.1007/978-3-
319-74313-4 8

38. Du, D., Yu, T., Xia, Y., Zang, B., Yan, G., Qin, C., Wu, Q., Chen, H.: Catalyzer: Sub-
millisecond Startup for Serverless Computing with Initialization-less Booting. In: Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 467–481. ACM, Lausanne Switzerland (2020). DOI
10.1145/3373376.3378512. URL https://doi.org/10.1145/3373376.3378512

39. Elsakhawy, M., Bauer, M.: FaaS2F: A Framework for Defining Execution-SLA in Serverless
Computing. In: 2020 IEEE Cloud Summit, pp. 58–65. IEEE, Harrisburg, PA, USA (2020).
DOI 10.1109/IEEECloudSummit48914.2020.00015. URL https://doi.org/10.1109/
IEEECloudSummit48914.2020.00015

40. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Pat-
terns. Springer Vienna, Vienna (2014). DOI 10.1007/978-3-7091-1568-8. URL https:
//doi.org/10.1007/978-3-7091-1568-8

41. Foundation, C.N.C.: Cloud native computing foundation (2022). URL https://
www.cncf.io/

42. Foundation, C.N.C.: Knative (2022). URL https://knative.dev/
43. Fowler, M., Lewis, J.: Microservices (2014). URL http://martinfowler.com/articles/
microservices.html

44. Fuerst, A., Sharma, P.: FaasCache: Keeping Serverless Computing Alive with Greedy-Dual
Caching. In: Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 386–400. ACM, Virtual USA (2021).
DOI 10.1145/3445814.3446757. URL https://doi.org/10.1145/3445814.3446757

https://doi.org/10.1145/3452741
https://cloud.google.com/blog/products/compute/cloud-tpu-vms-are-generally-available
https://cloud.google.com/blog/products/compute/cloud-tpu-vms-are-generally-available
https://cloud.google.com/blog/products/compute/cloud-tpu-vms-are-generally-available
https://www.cncf.io/blog/2021/12/20/new-slashdata-report-5-6-million-developers-use-kubernetes-an-increase-of-67-over-one-year/
https://www.cncf.io/blog/2021/12/20/new-slashdata-report-5-6-million-developers-use-kubernetes-an-increase-of-67-over-one-year/
https://kubernetes.io/
http://kubevirt.io/
https://blog.cloudflare.com/introducing-d1/
https://blog.cloudflare.com/introducing-d1/
https://blog.verygoodsoftwarenotvirus.ru/posts/babys-first-aws/
https://blog.verygoodsoftwarenotvirus.ru/posts/babys-first-aws/
https://doi.org/10.1109/CLOUD.2019.00070
https://doi.org/10.1109/CLOUD53861.2021.00096
https://www.docker.com/
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/IEEECloudSummit48914.2020.00015
https://doi.org/10.1109/IEEECloudSummit48914.2020.00015
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-3-7091-1568-8
https://www.cncf.io/
https://www.cncf.io/
https://knative.dev/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3445814.3446757

38 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

45. Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski,
V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S.K., Baker, T., Parlikad, A.K.,
Lutfiyya, H., Kanhere, S.S., Sakellariou, R., Dustdar, S., Rana, O., Brandic, I., Uhlig, S.: AI
for next generation computing: Emerging trends and future directions. Internet of Things
19, 100514 (2022). DOI 10.1016/j.iot.2022.100514. URL https://doi.org/10.1016/
j.iot.2022.100514

46. Golec, M., Ozturac, R., Pooranian, Z., Gill, S.S., Buyya, R.: iFaaSBus: A Security- and
Privacy-Based Lightweight Framework for Serverless Computing Using IoT and Machine
Learning. IEEE Transactions on Industrial Informatics 18(5), 3522–3529 (2022). DOI
10.1109/TII.2021.3095466. URL https://doi.org/10.1109/TII.2021.3095466

47. Google: Google Cloud Functions (2022). URL https://cloud.google.com/functions/
48. Google: Google Workflows (2022). URL https://cloud.google.com/workflows/
49. Google: gVisor (2022). URL https://gvisor.dev/
50. Greenberger, M., of Management, S.S., of Technology. School of Industrial Management,

M.I.: Management and the Computer of the Future, pp. 220–248. Published jointly
by M.I.T. Press and Wiley, New York (1962). URL https://archive.org/details/
managementcomput00gree/page/220/

51. Gujarati, A., Elnikety, S., He, Y., McKinley, K.S., Brandenburg, B.B.: Swayam: Distributed
autoscaling to meet SLAs of machine learning inference services with resource efficiency. In:
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, pp. 109–120. ACM,
Las Vegas Nevada (2017). DOI 10.1145/3135974.3135993. URL https://doi.org/
10.1145/3135974.3135993

52. Handaoui, M., Dartois, J.E., Boukhobza, J., Barais, O., d’Orazio, L.: ReLeaSER: A Reinforce-
ment Learning Strategy for Optimizing Utilization Of Ephemeral Cloud Resources. In: 2020
IEEE International Conference on Cloud Computing Technology and Science (CloudCom),
pp. 65–73. IEEE, Bangkok, Thailand (2020). DOI 10.1109/CloudCom49646.2020.00009.
URL https://doi.org/10.1109/CloudCom49646.2020.00009

53. Hassan, H.B., Barakat, S.A., Sarhan, Q.I.: Survey on Serverless Computing. Journal of
Cloud Computing 10(1), 39 (2021). DOI 10.1186/s13677-021-00253-7. URL https:
//doi.org/10.1186/s13677-021-00253-7

54. Hellerstein, J.M., Faleiro, J.M., Gonzalez, J., Schleier-Smith, J., Sreekanti, V., Tumanov,
A., Wu, C.: Serverless Computing: One Step Forward, Two Steps Back. In: 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings. www.cidrdb.org (2019). URL http://cidrdb.org/
cidr2019/papers/p119-hellerstein-cidr19.pdf

55. Holori: Holori GCP Pricing Calculator (2022). URL https://holori.com/gcp-pricing-
calculator/

56. Horta, E., Chuang, H.R., VSathish, N.R., Philippidis, C., Barbalace, A., Olivier, P., Ravin-
dran, B.: Xar-Trek: Run-Time Execution Migration among FPGAs and Heterogeneous-
ISA CPUs. In: Proceedings of the 22nd International Middleware Conference, pp. 104–
118. ACM, Québec city Canada (2021). DOI 10.1145/3464298.3493388. URL https:
//doi.org/10.1145/3464298.3493388

57. IBM: IBM Cloud Functions (2022). URL https://cloud.ibm.com/functions/
58. Ionescu, V.: Scaling containers on AWS in 2022 (2022). URL https://

www.vladionescu.me/posts/scaling-containers-on-aws-in-2022/

59. Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh, Y.J., Wang,
Z., Xu, Y., Dulloor, S.R., Zhao, J., Swanson, S.: Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. ArXiv abs/1903.05714 (2019). URL https:
//dblp.uni-trier.de/rec/journals/corr/abs-1903-05714.html

60. Jia, Z., Witchel, E.: Nightcore: Efficient and Scalable Serverless Computing for Latency-
Sensitive, Interactive Microservices. In: Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’21, p. 152–166. Association for Computing Machinery, New York, NY, USA (2021). DOI
10.1145/3445814.3446701. URL https://doi.org/10.1145/3445814.3446701

https://doi.org/10.1016/j.iot.2022.100514
https://doi.org/10.1016/j.iot.2022.100514
https://doi.org/10.1109/TII.2021.3095466
https://cloud.google.com/functions/
https://cloud.google.com/workflows/
https://gvisor.dev/
https://archive.org/details/managementcomput00gree/page/220/
https://archive.org/details/managementcomput00gree/page/220/
https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1109/CloudCom49646.2020.00009
https://doi.org/10.1186/s13677-021-00253-7
https://doi.org/10.1186/s13677-021-00253-7
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://holori.com/gcp-pricing-calculator/
https://holori.com/gcp-pricing-calculator/
https://doi.org/10.1145/3464298.3493388
https://doi.org/10.1145/3464298.3493388
https://cloud.ibm.com/functions/
https://www.vladionescu.me/posts/scaling-containers-on-aws-in-2022/
https://www.vladionescu.me/posts/scaling-containers-on-aws-in-2022/
https://dblp.uni-trier.de/rec/journals/corr/abs-1903-05714.html
https://dblp.uni-trier.de/rec/journals/corr/abs-1903-05714.html
https://doi.org/10.1145/3445814.3446701

Serverless Cloud Computing: State of the Art and Challenges 39

61. Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic, A., Singla, A., Wu, W., Zhang,
C.: Towards Demystifying Serverless Machine Learning Training. Proceedings of the 2021
International Conference on Management of Data (2021). DOI 10.1145/3448016.3459240.
URL https://doi.org/10.1145/3448016.3459240

62. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C., Khandelwal, A., Pu, Q., Shankar, V.,
Carreira, J., Krauth, K., Yadwadkar, N.J., Gonzalez, J.E., Popa, R.A., Stoica, I., Patterson,
D.A.: Cloud Programming Simplified: A Berkeley View on Serverless Computing. CoRR
abs/1902.03383 (2019). URL http://arxiv.org/abs/1902.03383

63. Khandelwal, A., Kejariwal, A., Ramasamy, K.: Le Taureau: Deconstructing the Serverless
Landscape & A Look Forward. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 2641–2650. ACM, Portland OR USA (2020). DOI
10.1145/3318464.3383130. URL https://doi.org/10.1145/3318464.3383130

64. Kivity, A., Kamay, Y., Laor, D.: Kvm: The Linux Virtual Machine Monitor. In: In Pro-
ceedings of the 2007 Ottawa Linux Symposium (OLS’-07, p. 8 (2007). URL https:
//www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

65. Klimovic, A., wen Wang, Y., Stuedi, P., Trivedi, A.K., Pfefferle, J., Kozyrakis, C.E.:
Pocket: Elastic Ephemeral Storage for Serverless Analytics. login Usenix Mag. 44 (2018).
DOI 10.5555/3291168.3291200. URL https://www.usenix.org/conference/osdi18/
presentation/klimovic

66. Koomey, J.G.: Growth in data center electricity use 2005 to 2010. Analytics Press for the
New York Times (2011). URL https://www.koomey.com/post/8323374335

67. Kuenzer, S., Bădoiu, V.A., Lefeuvre, H., Santhanam, S., Jung, A., Gain, G., Soldani, C.,
Lupu, C., Teodorescu, Ş., Răducanu, C., Banu, C., Mathy, L., Deaconescu, R., Raiciu,
C., Huici, F.: Unikraft: Fast, Specialized Unikernels the Easy Way. In: Proceedings
of the Sixteenth European Conference on Computer Systems, pp. 376–394. ACM, On-
line Event United Kingdom (2021). DOI 10.1145/3447786.3456248. URL https:
//doi.org/10.1145/3447786.3456248

68. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of devops concepts
and challenges. ACM Comput. Surv. 52(6) (2019). DOI 10.1145/3359981. URL https:
//doi.org/10.1145/3359981

69. Linux Foundation Projects: Open Container Initiative (2022). URL https://

opencontainers.org/

70. Linux Foundation Projects: Xen Project (2022). URL https://xenproject.org/
71. Linux Kernel: KVM (2022). URL https://www.linux-kvm.org/page/Main Page
72. Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J., Wang, Y.: A Hierarchical Framework of

Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning. In:
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp.
372–382. IEEE, Atlanta, GA, USA (2017). DOI 10.1109/ICDCS.2017.123. URL https:
//doi.org/10.1109/ICDCS.2017.123

73. Lloyd, W., Vu, M., Zhang, B., David, O., Leavesley, G.: Improving Applica-
tion Migration to Serverless Computing Platforms: Latency Mitigation with Keep-
Alive Workloads. In: 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion), pp. 195–200. IEEE, Zurich (2018).
DOI 10.1109/UCC-Companion.2018.00056. URL https://doi.org/10.1109/UCC-
Companion.2018.00056

74. Lopes, R.V., Menasce, D.: A Taxonomy of Job Scheduling on Distributed Computing Systems.
IEEE Transactions on Parallel and Distributed Systems 27(12), 3412–3428 (2016). DOI
10.1109/TPDS.2016.2537821. URL https://doi.org/10.1109/TPDS.2016.2537821

75. Mackey, K.: Fly Machines: An API for Fast-booting VMs (2022). URL https://fly.io/
blog/fly-machines/

76. Magoulas, R., Swoyer, S.: Cloud Adoption in 2020 (2020). URL https://

www.oreilly.com/radar/cloud-adoption-in-2020/

77. Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., Yasukata, K., Raiciu,
C., Huici, F.: My VM is Lighter (and Safer) than Your Container. In: Proceedings of the

https://doi.org/10.1145/3448016.3459240
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3318464.3383130
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.koomey.com/post/8323374335
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://opencontainers.org/
https://opencontainers.org/
https://xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.1109/UCC-Companion.2018.00056
https://doi.org/10.1109/UCC-Companion.2018.00056
https://doi.org/10.1109/TPDS.2016.2537821
https://fly.io/blog/fly-machines/
https://fly.io/blog/fly-machines/
https://www.oreilly.com/radar/cloud-adoption-in-2020/
https://www.oreilly.com/radar/cloud-adoption-in-2020/

40 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

26th Symposium on Operating Systems Principles, SOSP ’17, p. 218–233. Association for
Computing Machinery, New York, NY, USA (2017). DOI 10.1145/3132747.3132763. URL
https://doi.org/10.1145/3132747.3132763

78. Marshall, P., Keahey, K., Freeman, T.: Elastic Site: Using Clouds to Elastically Extend Site
Resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 43–52. IEEE, Melbourne, Australia (2010). DOI 10.1109/CCGRID.2010.80.
URL https://doi.org/10.1109/CCGRID.2010.80

79. Masanet, E., Shehabi, A., Lei, N., Smith, S., Koomey, J.: Recalibrating global data center
energy-use estimates. Science 367(6481), 984–986 (2020). DOI 10.1126/science.aba3758.
URL https://doi.org/10.1126/science.aba3758

80. Matei, O., Skrzypek, P., Heb, R., Moga, A.: Transition from Serverfull to Serverless Ar-
chitecture in Cloud-Based Software Applications. In: R. Silhavy, P. Silhavy, Z. Prokopova
(eds.) Software Engineering Perspectives in Intelligent Systems, vol. 1294, pp. 304–314.
Springer International Publishing, Cham (2020). DOI 10.1007/978-3-030-63322-6 24. URL
https://doi.org/10.1007/978-3-030-63322-6 24

81. McGrath, G., Brenner, P.R.: Serverless Computing: Design, Implementation, and Perfor-
mance. In: 2017 IEEE 37th International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW), pp. 405–410. IEEE, Atlanta, GA, USA (2017). DOI
10.1109/ICDCSW.2017.36. URL https://doi.org/10.1109/ICDCSW.2017.36

82. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute of Standards
and Technology Special Publication 800-145 (2011). DOI 10.6028/NIST.SP.800-145. URL
https://doi.org/10.6028/NIST.SP.800-145

83. Microsoft: Azure Functions (2022). URL https://azure.microsoft.com/products/
functions/

84. Microsoft: GitHub (2022). URL https://github.com/
85. Microsoft: Introduction to Hyper-V on Windows (2022). URL https://

learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/

86. Microsoft: What are durable functions? (2022). URL https://learn.microsoft.com/
en-us/azure/azure-functions/durable/durable-functions-overview

87. Mitchell, B.: After 5 years, I’m out of the serverless compute cult (2022). URL
https://dev.to/brentmitchell/after-5-years-im-out-of-the-serverless-

compute-cult-3f6d

88. Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., Sukhomlinov, V.: Agile cold
starts for scalable serverless. In: 11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), p. 6. USENIX Association, Renton, WA (2019). URL https:
//www.usenix.org/conference/hotcloud19/presentation/mohan

89. Müller, I., Marroquı́n, R., Alonso, G.: Lambada: Interactive Data Analytics on Cold Data
Using Serverless Cloud Infrastructure. In: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 115–130. ACM, Portland OR USA (2020).
DOI 10.1145/3318464.3389758. URL https://doi.org/10.1145/3318464.3389758

90. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy, R.,
Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.: Scaling
memcache at facebook. In: 10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), pp. 385–398. USENIX Association, Lombard, IL
(2013). URL https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/nishtala

91. Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau, A., Arpaci-Dusseau,
R.: SOCK: Rapid Task Provisioning with Serverless-Optimized Containers. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18), pp. 57–70. USENIX As-
sociation, Boston, MA (2018). URL https://www.usenix.org/conference/atc18/
presentation/oakes

92. Oracle: Fn (2022). URL https://fnproject.io/
93. Oracle: Oracle Cloud Functions (2022). URL https://www.oracle.com/cloud/cloud-
native/functions/

https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1109/CCGRID.2010.80
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1007/978-3-030-63322-6_24
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.6028/NIST.SP.800-145
https://azure.microsoft.com/products/functions/
https://azure.microsoft.com/products/functions/
https://github.com/
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://dev.to/brentmitchell/after-5-years-im-out-of-the-serverless-compute-cult-3f6d
https://dev.to/brentmitchell/after-5-years-im-out-of-the-serverless-compute-cult-3f6d
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1145/3318464.3389758
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://fnproject.io/
https://www.oracle.com/cloud/cloud-native/functions/
https://www.oracle.com/cloud/cloud-native/functions/

Serverless Cloud Computing: State of the Art and Challenges 41

94. Oracle: VirtualBox (2022). URL https://www.virtualbox.org/
95. Owens, K.: CNCF WG-Serverless Whitepaper v1.0. Tech. rep., Cloud Native Computing

Foundation (2018)
96. Passwater, A.: 2018 Serverless Community Survey: huge growth in serverless usage

(2018). URL https://www.serverless.com/blog/2018-serverless-community-
survey-huge-growth-usage/

97. Perron, M., Fernandez, R.C., DeWitt, D.J., Madden, S.: Starling: A Scalable Query Engine
on Cloud Functions. Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (2020). DOI 10.1145/3318464.3380609. URL https://doi.org/
10.1145/3318464.3380609

98. Pons, D.B., Artigas, M.S., Parı́s, G., Sutra, P., López, P.G.: On the FaaS Track: Building
Stateful Distributed Applications with Serverless Architectures. Proceedings of the 20th
International Middleware Conference (2019). DOI 10.1145/3361525.3361535. URL https:
//doi.org/10.1145/3361525.3361535

99. Poppe, O., Guo, Q., Lang, W., Arora, P., Oslake, M., Xu, S., Kalhan, A.: Mon-
eyball: Proactive Auto-Scaling in Microsoft Azure SQL Database Serverless. In:
VLDB, pp. 1279–1287. ACM (2022). DOI 10.14778/3514061.3514073. URL
https://www.microsoft.com/en-us/research/publication/moneyball-

proactive-auto-scaling-in-microsoft-azure-sql-database-serverless/

100. Project, F.: Fission (2022). URL https://fission.io/
101. Puviani, M., Frei, R.: Self-Management for Cloud Computing. Science and Infor-

mation Conference p. 7 (2013). URL https://ieeexplore.ieee.org/document/
6661855?arnumber=6661855

102. QEMU team: QEMU (2022). URL https://www.qemu.org/
103. Reeve, J.: Kubernetes: A Cloud (and Data Center) Operating System? (2018). URL

https://blogs.oracle.com/cloud-infrastructure/post/kubernetes-a-cloud-

and-data-center-operating-system

104. Roberts, M.: Serverless Architectures (2018). URL https://martinfowler.com/
articles/serverless.html

105. Romero, F., Chaudhry, G.I., Goiri, Í., Gopa, P., Batum, P., Yadwadkar, N.J., Fonseca, R.,
Kozyrakis, C.E., Bianchini, R.: Faa$T: A Transparent Auto-Scaling Cache for Serverless
Applications. Proceedings of the ACM Symposium on Cloud Computing (2021). DOI
10.1145/3472883.3486974. URL https://10.1145/3472883.3486974

106. Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N.J., Popa, R.A.,
Gonzalez, J.E., Stoica, I., Patterson, D.A.: What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64(5), 76–84 (2021). DOI 10.1145/
3406011. URL https://doi.org/10.1145/3406011

107. Schuler, L., Jamil, S., Kuhl, N.: AI-based Resource Allocation: Reinforcement Learning
for Adaptive Auto-scaling in Serverless Environments. In: 2021 IEEE/ACM 21st In-
ternational Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 804–
811. IEEE, Melbourne, Australia (2021). DOI 10.1109/CCGrid51090.2021.00098. URL
https://doi.org/10.1109/CCGrid51090.2021.00098

108. Shafiei, H., Khonsari, A., Mousavi, P.: Serverless Computing: A Survey of Opportunities,
Challenges, and Applications. ACM Comput. Surv. (2022). DOI 10.1145/3510611. URL
https://doi.org/10.1145/3510611. Just Accepted

109. Shahin, M., Ali Babar, M., Zhu, L.: Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access 5, 3909–
3943 (2017). DOI 10.1109/ACCESS.2017.2685629. URL https://doi.org/10.1109/
ACCESS.2017.2685629

110. Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Laureano, E.,
Tresness, C., Russinovich, M., Bianchini, R.: Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud Provider p. 14 (2020). URL
https://www.usenix.org/conference/atc20/presentation/shahrad

https://www.virtualbox.org/
https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://www.microsoft.com/en-us/research/publication/moneyball-proactive-auto-scaling-in-microsoft-azure-sql-database-serverless/
https://www.microsoft.com/en-us/research/publication/moneyball-proactive-auto-scaling-in-microsoft-azure-sql-database-serverless/
https://fission.io/
https://ieeexplore.ieee.org/document/6661855?arnumber=6661855
https://ieeexplore.ieee.org/document/6661855?arnumber=6661855
https://www.qemu.org/
https://blogs.oracle.com/cloud-infrastructure/post/kubernetes-a-cloud-and-data-center-operating-system
https://blogs.oracle.com/cloud-infrastructure/post/kubernetes-a-cloud-and-data-center-operating-system
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://10.1145/3472883.3486974
https://doi.org/10.1145/3406011
https://doi.org/10.1109/CCGrid51090.2021.00098
https://doi.org/10.1145/3510611
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://www.usenix.org/conference/atc20/presentation/shahrad

42 Vincent Lannurien, Laurent D’Orazio, Olivier Barais and Jalil Boukhobza

111. Shaw, R., Howley, E., Barrett, E.: Applying Reinforcement Learning towards automating
energy efficient virtual machine consolidation in cloud data centers. Information Sys-
tems p. 21 (2022). DOI 10.1016/j.is.2021.101722. URL https://doi.org/10.1016/
j.is.2021.101722

112. Shillaker, S., Pietzuch, P.: FAASM: Lightweight Isolation for Efficient Stateful Serverless
Computing. USENIX Association, USA (2020). DOI 10.5555/3489146.3489174. URL
https://dl.acm.org/doi/abs/10.5555/3489146.3489174

113. Singhvi, A., Balasubramanian, A., Houck, K., Shaikh, M.D., Venkataraman, S., Akella,
A.: Atoll: A Scalable Low-Latency Serverless Platform. In: Proceedings of the ACM
Symposium on Cloud Computing, pp. 138–152. ACM, Seattle WA USA (2021). DOI
10.1145/3472883.3486981. URL https://doi.org/10.1145/3472883.3486981

114. Soni, D., Kumar, N.: Machine learning techniques in emerging cloud computing integrated
paradigms: A survey and taxonomy. Journal of Network and Computer Applications 205,
103419 (2022). DOI 10.1016/j.jnca.2022.103419. URL https://doi.org/10.1016/
j.jnca.2022.103419

115. SPEC Research Group: SPEC Research Group (2022). URLhttps://research.spec.org/
116. Sreekanti, V., Wu, C., Lin, X.C., Schleier-Smith, J., Faleiro, J.M., Gonzalez, J.E., Hellerstein,

J.M., Tumanov, A.: Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow. 13,
2438–2452 (2020). DOI 10.14778/3407790.3407836. URL https://doi.org/10.14778/
3407790.3407836

117. Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.: Patterns for Serverless Functions (Function-
as-a-Service): A Multivocal Literature Review:. In: Proceedings of the 10th International Con-
ference on Cloud Computing and Services Science, pp. 181–192. SCITEPRESS - Science and
Technology Publications, Prague, Czech Republic (2020). DOI 10.5220/0009578501810192.
URL https://doi.org/10.5220/0009578501810192

118. Tan, B., Liu, H., Rao, J., Liao, X., Jin, H., Zhang, Y.: Towards Lightweight Server-
less Computing via Unikernel as a Function. In: 2020 IEEE/ACM 28th Interna-
tional Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE, Hang Zhou, China
(2020). DOI 10.1109/IWQoS49365.2020.9213020. URL https://doi.org/10.1109/
IWQoS49365.2020.9213020

119. Thalheim, J., Okelmann, P., Unnibhavi, H., Gouicem, R., Bhatotia, P.: VMSH: Hypervisor-
Agnostic Guest Overlays for VMs. In: Proceedings of the Seventeenth European Con-
ference on Computer Systems, pp. 678–696. ACM, Rennes France (2022). DOI
10.1145/3492321.3519589. URL https://doi.org/10.1145/3492321.3519589

120. The Linux Foundation: Linux Foundation (2022). URL https://

www.linuxfoundation.org/

121. Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., Grot, B.: Benchmarking, Analysis, and
Optimization of Serverless Function Snapshots. In: Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 559–572. ACM, Virtual USA (2021). DOI 10.1145/3445814.3446714. URL
https://doi.org/10.1145/3445814.3446714

122. Vahidinia, P., Farahani, B., Aliee, F.S.: Cold Start in Serverless Computing:
Current Trends and Mitigation Strategies. In: 2020 International Conference
on Omni-layer Intelligent Systems (COINS), pp. 1–7. IEEE, Barcelona, Spain
(2020). DOI 10.1109/COINS49042.2020.9191377. URL https://doi.org/10.1109/
COINS49042.2020.9191377

123. van Eyk, E., Iosup, A., Abad, C.L., Grohmann, J., Eismann, S.: A SPEC RG Cloud Group’s
Vision on the Performance Challenges of FaaS Cloud Architectures. In: Companion of
the 2018 ACM/SPEC International Conference on Performance Engineering, pp. 21–24.
ACM, Berlin Germany (2018). DOI 10.1145/3185768.3186308. URL https://doi.org/
10.1145/3185768.3186308

124. Vaquero, L.M., Rodero-Merino, L., Morán, D.: Locking the Sky: A Survey on IaaS Cloud
Security. Computing 91(1), 93–118 (2011). DOI 10.1007/s00607-010-0140-x. URL https:
//doi.org/10.1007/s00607-010-0140-x

https://doi.org/10.1016/j.is.2021.101722
https://doi.org/10.1016/j.is.2021.101722
https://dl.acm.org/doi/abs/10.5555/3489146.3489174
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1016/j.jnca.2022.103419
https://doi.org/10.1016/j.jnca.2022.103419
https://research.spec.org/
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.5220/0009578501810192
https://doi.org/10.1109/IWQoS49365.2020.9213020
https://doi.org/10.1109/IWQoS49365.2020.9213020
https://doi.org/10.1145/3492321.3519589
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1007/s00607-010-0140-x
https://doi.org/10.1007/s00607-010-0140-x

Serverless Cloud Computing: State of the Art and Challenges 43

125. Vilanova, L., Maudlej, L., Bergman, S., Miemietz, T., Hille, M., Asmussen, N., Roitzsch,
M., Härtig, H., Silberstein, M.: Slashing the Disaggregation Tax in Heterogeneous Data
Centers with FractOS. In: Proceedings of the Seventeenth European Conference on Computer
Systems, pp. 352–367. ACM, Rennes France (2022). DOI 10.1145/3492321.3519569. URL
https://doi.org/10.1145/3492321.3519569

126. Villamizar, M., Garces, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., Gil, S.:
Evaluating the monolithic and the microservice architecture pattern to deploy web applications
in the cloud. In: 2015 10th Computing Colombian Conference (10CCC), pp. 583–590.
IEEE, Bogota, Colombia (2015). DOI 10.1109/ColumbianCC.2015.7333476. URL https:
//doi.org/10.1109/ColumbianCC.2015.7333476

127. VMware: ESXi (2022). URL https://www.vmware.com/products/esxi-and-esx.html
128. VMware: Openfaas (2022). URL https://www.openfaas.com/
129. Wanninger, N.C., Bowden, J.J., Shetty, K., Garg, A., Hale, K.C.: Isolating Functions

at the Hardware Limit with Virtines. In: Proceedings of the Seventeenth European
Conference on Computer Systems, pp. 644–662. ACM, Rennes France (2022). DOI
10.1145/3492321.3519553. URL https://doi.org/10.1145/3492321.3519553

130. Weissman, C.D., Bobrowski, S.: The Design of the Force.Com Multitenant Internet Applica-
tion Development Platform. In: Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data, pp. 889–896. ACM, Providence Rhode Island USA (2009).
DOI 10.1145/1559845.1559942. URL https://doi.org/10.1145/1559845.1559942

131. Wiggins, A.: The Twelve-Factor App (2017). URL https://12factor.net/
132. Wu, C., Faleiro, J.M., Lin, Y., Hellerstein, J.M.: Anna: A KVS for Any Scale. 2018 IEEE

34th International Conference on Data Engineering (ICDE) pp. 401–412 (2018). DOI
10.1109/TKDE.2019.2898401. URL https://doi.org/10.1109/TKDE.2019.2898401

133. Wu, C., Sreekanti, V., Hellerstein, J.M.: Transactional Causal Consistency for Serverless Com-
puting. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, pp. 83–97. ACM, Portland OR USA (2020). DOI 10.1145/3318464.3389710. URL
https://doi.org/10.1145/3318464.3389710

134. Yalles, S., Handaoui, M., Dartois, J.E., Barais, O., d’Orazio, L., Boukhobza, J.: Riscless: A
reinforcement learning strategy to guarantee sla on cloud ephemeral and stable resources.
In: 2022 30th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), pp. 83–87 (2022). DOI 10.1109/PDP55904.2022.00021. URL
https://doi.org/10.1109/PDP55904.2022.00021

135. Zhang, T., Xie, D., Li, F., Stutsman, R.: Narrowing the Gap Between Serverless and its State
with Storage Functions. In: Proceedings of the ACM Symposium on Cloud Computing, pp.
1–12. ACM, Santa Cruz CA USA (2019). DOI 10.1145/3357223.3362723. URL https:
//doi.org/10.1145/3357223.3362723

136. Zhang, W., Fang, V., Panda, A., Shenker, S.: Kappa: A Programming Framework for Serverless
Computing. In: Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC ’20,
p. 328–343. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3419111.3421277. URL https://doi.org/10.1145/3419111.3421277

137. Zomer, J.: Escaping privileged containers for fun (2022). URL https://pwning.systems/
posts/escaping-containers-for-fun/

https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://www.vmware.com/products/esxi-and-esx.html
https://www.openfaas.com/
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/1559845.1559942
https://12factor.net/
https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.1145/3318464.3389710
https://doi.org/10.1109/PDP55904.2022.00021
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3419111.3421277
https://pwning.systems/posts/escaping-containers-for-fun/
https://pwning.systems/posts/escaping-containers-for-fun/

	Serverless Cloud Computing: State of the Art and Challenges
	Vincent Lannurien, Laurent D'Orazio, Olivier Barais and Jalil Boukhobza
	Introduction
	Background and motivations
	The promises of cloud computing
	Virtualization technologies
	From monoliths to microservices

	Serverless, a new paradigm
	Characteristics of serverless platforms
	Suitable workloads
	Tradeoffs in serverless deployments
	Description of current FaaS offerings

	Problems addressed in the literature
	Cold start delays and frequency
	Data communications overhead
	Durable state and statefulness
	Hardware heterogeneity
	Isolation and security
	Programming model and vendor lock-in

	Perspectives and future directions
	Service Level Agreements
	Energy efficiency
	AI-assisted allocation of resources

	Conclusion
	References
	References

