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Abstract

Composite materials in association with metal sheets or ceramic coatings have found a variety of applica-
tions, especially as load-bearing components in composite structures. Their disassembly for recycling or
maintenance has therefore become more complex. The magnetic pulse technique, usually dedicated to dy-
namic forming and welding processes, can be used to separate composite materials of a laminate structure
of their recyclable adjacent materials. This technology profits from Lorentz forces appearing in electrically
conductive materials placed in the vicinity of conductors in which high-intensity electrical discharges are
performed. These body forces act locally during the fast energy discharge, from which a stress wave propa-
gates in the structure. The propagation of this stress wave can be used to generate interfacial tensile stress
in laminate structures or assemblies. Especially, this technique can be used for evaluating the dynamic bond
strength of an interface. This works aims at determining the required conditions for disassembling a lami-
nate structure using a magnetic pulse imposed on one side of the assembly, without significantly damaging
the debonded layers. Ideally, the generated interfacial tensile stress should be greater than the interfacial
bond strength. In this paper, a one-dimensional analytical analysis is performed in linear elastodynamics
on a tri-layered laminate structure, infinite in transverse directions, based on the method of characteristics.
An optimisation problem is defined, maximising the interfacial stress between the first two layers, whose
solution requires to study various configurations of the assembly involving different sets of characteristics in
the laminate, associated with different areas of the domain of feasability spanned by the unknown vector.
Some assumptions and introduced simplifications of the optimisation problem allows to follow a simple two-
stage solution procedure, first with respect to the thickness of the first layer for a given stress pulse, then
with respect to material impedances of all layers. Several configurations of the assembly are shown to create
a sufficiently large interfacial tensile stress to reach the crack initiation and propagation, and a maximum
tensile interface stress of twice the maximum applied pressure is obtained in the asymptotic limit.
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analytical solution, Optimisation problem

∗Corresponding author
Email address: benoit.lagain@ec-nantes.fr (Benoit Lagain)

Postprint



Table of symbols

T Appearance moment of the interface tensile stress
di Width of the layer i
ci Longitudinal elastic sound speed of the material of layer i
Zi Acoustic wave impedance of the material of layer i
τ Duration of the input pulse

Pmax Input pulse amplitude
σinterface Tensile stress at the interface at time t = T .
AiBj Geometrical configuration where the wave does i round trip in the layer A and j in layer B

before t = T .

Table 1: Symbols used in the article

1. Introduction

Material assemblies are more and more utilised in the design of load-bearing composite structures of high
added value technologies [1, 9]. This kind of assemblies can associate light weight efficiency with durability,
two performances required for a sustainable design. However, on the one hand, assembling different materials
such as composite materials, ceramics and metals, durably and in a sustained production pace still remains
a challenge for the industry. On the other hand, the assembly efficiency must be proved by suitable tests and
controls. At last, recyclability and maintainability of manufactured goods has become of a major content
for the future of our society.

With the idea of measuring the adhesion strength of an assembly method, various tests have been
developed last decades [7, 26, 27]. The purpose of these tests are mostly to ensure the strength of the
interface between two layers by creating acoustic waves in it [38, 25, 32, 33, 11] which will create tensile
stress inside the tested structure. Several technologies can be used like the ARCAN test [8, 10, 31]. However,
the ARCAN method does not allow the study of the dynamic behaviour of interfacial adhesion. In addition,
it is essentially devoted to adhesively bonded assemblies. Other technologies like Vibration-related methods
are used for the primary goal, which is quantification of debonding and delamination of composite layered
sections [3, 4]. In response to this limitation, dynamic tests like shock adhesion tests have been developed
[37, 15, 6]. The LASAT technique is contactless, involving fast diagnostics based on laser doppler velocimetry
and robotizable. It was tuned for evaluating bond strength of plasma sprayed and cold sprayed coatings,
as well as electrodeposited coatings and adhesively bonded materials [34, 12]. However, a laser means uses
impulsion with a very small characteristic time of about 10−9 second [13]. This characteristic time drives
the thickness of the structure to be tested. For metallic materials, the thicknesses considered are about of
hundreds of microns which corresponds more to a coating than to a structural assembly. Furthermore, the
laser pulse creates a strong shock wave at the surface material which may damage the layers, which is not
desirable.

The magnetic pulse technology represents an alternative and efficient way to apply a mechanical loading
within an electrically conductive layer without creating surface damages, and was already applied as a
tensile adhesion test method [19]. This technology allows larger characteristic times of about 10−5s to 10−7

seconds. This range of values allows to evaluate the bond strength of laminates of few centimeters thick,
which corresponds to structural assemblies. Moreover, the pressures involved are weaker than in the LASAT
test : the stress wave propagating in the laminate can not be considered as a shock wave anymore. By the
use of these lower pressures, it will be possible to disassemble the laminate, i.e. by interfacial crack, without
damaging the layers. Furthermore, the magnetic pulse technology also allows to weld two metallic parts in
a dynamic manner [18, 16, 23, 22, 24, 5]. It can produce effects similar to these of explosive welding, with
less safety constraints. Finally, such technology can even be used to perform dynamic forming [2, 30, 28, 35]
and so to obtain the desired plate shape for a formable material. To sum up, the same technology can be
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used to modify the shape, assemble and disassemble laminate structures, which is an interesting invest for
manufacturers, both logistically and economically. However for disassembly purpose, a key challenge is to
control the tensile stress that can be created at the interface between two layers of a laminate structure,
when submitted to a magnetic pulse. Due to the continuous time evolution of the loading, a discontinuous
approximation cannot be considered anymore as it was for the design the LASAT test. Rather, the solution
method should now account for its continuous time evolution.

The objective of this work is to develop a one dimensional analytical solution in linear elastodynamics
giving the expression of the stress created in the laminate structure, when submitted to a magnetic pulse
loading. An optimisation problem is then defined, maximising the interfacial tensile stress between the first
two layers with respect to a set of unknowns consisting of some geometrical parameters of the laminate, and
of material impedances of each layer. The method of characteristics is used to solve the linear elastodynamics
problem. For a given unknown vector, and for the sake of simplicity, only the sufficient set of characteristics
is considered. Therefore, the solution of the optimisation problem requires to study various configurations of
the assembly, each requiring to consider different sets of characteristics in the laminate, in order to explore
the domain of feasability. The paper is structured as follows. The linear elastodynamics initial boundary
value problem is described in Section 2. Section 3 defines the optimisation problem. Section 4 gives the
analytical expressions of the interfacial tensile stress between the first two layers for different configurations
of the laminate. Section 5 introduces a two-stage solution procedure to solve the optimisation problem, which
is then applied to the configurations studied in Section 4. At last, Sections 6 and 7 study the evolution of
the interfacial tensile stress for bi-layers and tri-layers configurations gathering the different aforementioned
configurations.

2. Linear elastodynamics initial boundary value problem

Let us consider a laminate structure consisting of a set of stacked homogeneous layers in its thickness
along the direction x. The presented situation is assumed being a linear elastodynamic wave propagation,
more precisely following the geometrical linearized framework and the isothermal assumption. The laminate
is also assumed to be infinite in the in-plane directions y and z, such that a one-dimensional strain state

ε = εex ⊗ ex (1)

consistent with the kinematics of a plane wave is achieved, where ε is the linearized strain tensor. This
continuous medium is governed at any time by the following conservation laws

∂U

∂t
+ ∂F

∂x
= 0, (2)

in which the conserved vector variables U and the fluxes F are defined as

U =
{
ρv
ε

}
; F =

{
−σ
−v

}
. (3)

In vectors (3), ρ, v, ε and σ ≡ σxx denote the mass density and the longitudinal components of the material
velocity, the linearized strain tensor and of the Cauchy stress tensor respectively. The first equation of
System (2) is the conservation of linear momentum, while the second expresses the geometric compatibility
between the strain rate and the velocity gradient. Each layer k of the laminate is assumed to follow a linear
elastic and isotropic response

σ = λktr(ε)1 + 2µkε (4)

where λk and µk denote Lamé’s elastic modulii of the layer k. From Equations (1) and (4), the transverse
stress components can be deduced from the longitudinal one and hence do not enter the system of conser-
vation law (2). Following Wang [38], the combination of System (2) and Equation (4) admits the following
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rightward (+) and leftward (−) characteristic lines

dx = ±ckdt (5)

in the kth layer, where ck =
√

(λk + 2µk)/ρk denotes the associated longitudinal elastic sound speed. Along
these characteristic lines, the following compatibility relationships or characteristic equations{

dv = ±cdε
dσ = ±ρkckdv

(6)

are satisfied. One shall notice that the acoustic wave impedance Zk = ρkck of layer k is here constant.
The laminate is subjected to a mechanical loading supposed to result from a magnetic pulse applied on

its left side. During the electrical discharge, an oscillating current flowing into a coil will generate eddy
currents in any electrically conductive medium placed in the vicinity of that coil. Then, repulsive Lorentz
forces result from these eddy currents and magnetic induction in these electrically conductive media. It is
therefore implicitly assumed in this study that the first layer of the laminate is electrically conductive. It is
also known that eddy currents mainly flows within some skin depth of thickness

δ =
√

2
ωµ0µrκ

(7)

related to the pulse frequency ω, to the magnetic permeability in vacuum µ0 and the relative permeability
of the material µr, and to the electrical conductivity of the medium κ. However for the sake of simplicity,
and in order to perform an analytical analysis, such skin depth will be assumed to be far lower than the
thickness dA of the first layer A, namely

δ

dA
<< 1 (8)

From Equation (8), the spatial distribution of Lorentz forces can be integrated through the skin depth
to define an equivalent applied pressure [28, Eq. (15)]. From the expression of the decaying oscillatory
discharged current [28, Eq. (3)], an exponentially decreasing square sine signal is obtained for that pressure.
However for the sake of simplicity, only the first half semi-period of this signal will be considered in the
modelling since it is the most significant in this study. The magnetic pulse applied on the laminate will thus
be approximated by the following applied pressure defined at its left side (at x = 0)

P̄ (t) =

Pmax sin2
(
πt

τ

)
∀t ∈ [0, τ ]

0 otherwise
(9)

where the loading time τ =
√
LC
π can be linked to the inductance L and the capacity C of the electrical

circuit, and Pmax is the maximum pressure reached, linked to the maximum intensity Imax reached during
the discharge.

Next, the right end of the laminate will be considered as a free surface, following the condition :

σ(x = D, t) = 0 ∀t ≥ 0 (10)

where D denotes the thickness of the laminate. The laminate is also assumed to be initially at rest in a
natural state, yielding

U(x, t = 0) = 0 ∀x ∈ [0, D], (11)

from which zero stresses follows from Equation (4). The combination of System (2), Equation (4), the
applied pressure (9), supplemented with the right free boundary (10) and the initial conditions associated
with a natural state (11) forms the linear elastodynamics initial boundary value problem. This problem is
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hyperbolic and admits a unique solution [21].

3. Definition of the optimisation problems

3.1. Optimisation problem (P0)
The aim of the optimisation problem (P0) is to determine the required conditions for disassembling two

layers of the laminate whose response is governed by the mechanical initial boundary value problem. Let’s
consider for simplicity a laminate consisting of three layers denoted A, B and C, of thicknesses dA, dB ,
dC respectively. Firstly, the analysis will focus on the disassembly of the first two layers A and B of the
laminate. Secondly, an approximate failure criterion can be defined on the normal interfacial tensile stress
σ(x = dA, t) which is supposed to reach a critical value σr to break the interface between the layers A and
B. It should be noticed that many critical stress computation method exist [36]. However, in this paper,
a simple limit σr is considered. It results in an optimisation problem, whose cost function consists of the
ratio of this interfacial tensile stress σ(x = dA, t) to the maximum applied pressure Pmax, which should be
maximized at some arbitrary instant t = T for the given magnetic pulse (9). The optimisation is conducted
with respect to an array of unknown variables X

X = {dA, dB , dC , ZA, ZB , ZC , T} (12)

that consists of the thicknesses of the three layers, their acoustic wave impedances and the time T after
which the maximum allowable interfacial tensile stress σr has been reached. The optimisation problem reads

(P0) : max
X

(
σ(x = dA, t = T ; X,Y)

Pmax

)
(13)

where the interfacial tensile stress σ(x = dA, t = T ; X,Y) depends on the optimisation variables X but also
on known given quantities Y = {P̄ (t)} consisting of the applied loading (9) here, through the aforementioned
initial boundary value problem. The optimisation problem is conducted under the constraints

X ∈ (R+∗)7 (14)

3.2. Simplifications of the optimisation problem (P0)
The optimisation problem (P0) expressed as (13) involves too many unknowns to admit any analytical

treatment. Some additional assumptions should thus be added in order to follow such approach. In this
way, one key point is to recall that a tensile stress generally appears at the crossing of two unloading waves,
see [38] for instance, and that the resulting tensile stress is as intense as the unloading are consequent. Two
consequences arise from this idea.

The first one consists in fixing the time T of appearance of the maximum interfacial tensile stress in
such a way that it equals the loading time τ plus the time for a rightward elastic wave to propagate in the
whole layer A. In other words, the positive characteristic line joining the unloaded state σ(x = 0, t = τ),
generating one unloading wave, to the interface between layers A and B, determines the time T at which
the maximum interfacial tensile stress should occur. Figure 1 shows the plane (x, t) (the Lagrange diagram),
especially the rightward characteristic line plotted in blue joining states 4 and 1 propagates the unloaded
state to the interface between the layers A and B. From geometric considerations visible in Figure 1, one
gets

T = τ + dA
cA
, (15)

where cA denotes the longitudinal elastic sound speed in the layer A.
The second one consists in fixing the thickness of layer B in such a way that the maximum applied

pressure Pmax transmitted to layer B (through the characteristic line joining states 5 and 3, see Figure 1)
travels along only one wave round trip in that layer before crossing the previous unloading wave (propagated

5



along the rightward characteristic line plotted in blue) at time T . Comparing the path of the first unloading
wave (blue) and of the second one propagated from Pmax (green), one gets:

dA
cA

+ 2dB
cB

= dA
cA

+ τ

2 , (16)

from which the thickness of layer B is deduced

dB = τcB
4 (17)

Figure 2 shows the (v, σ) plane associated with the characteristic plane (x, t) shown in Figure 1. It can be
observed that the unloaded state 4 is transmitted to states 1 and 2 through characteristics in layers A and
B respectively. However, the crossing of two unloading waves associated with characteristics 4− 1 and 2− 1
generates a tensile stress, especially if ZB > ZC .

However, realistic configurations may not admit such a strict constraint concerning the thickness of layer
B (17). One possibility is to relax this condition by allowing an integer number n of wave round trips in
layer B before the maximum tensile stress occurs at the interface between the layers A and B at time T .
Two configurations then arise. The first one is called B1 and considers only one wave round trip in the
layer B, its thickness is hence given by Equation (17). The second one is called Bn and considers an integer
number n of wave round trips performed in the layer B, such that the thickness of layer B is obtained as

dB = τcB
4n , n ∈ N+∗. (18)

For the sake of simplicity, the loading time and the geometry of the laminate are assumed such that there is
no wave return at the interface between the layers A and B reflected from the bottom of the layer C, until
the maximum interfacial tensile stress occurs at time T . This leads to the condition

dC
cC

>
τ

2 (19)

Setting the parameters T , dB and dC according to Equations (15), (17) (or (18)) and (19) respectively
ensures that the interface should break in the fastest possible way with the most intense interfacial tensile
stress. The set of Equations (15), (17) (or (18)) and (19) is added to the optimisation problem, now denoted
(P1), as equality-type or inequality-type constraints.

Figure 1: Characteristic plane (x, t) plotted with three layers (A,B,C). Few characteristics lines are plotted from the unloaded
state (in blue) and from the maximum loaded one at the left side of the laminate in the three layers (in green). The interface
tensile stress reaches its maximum at the crossing of the rightward characteristic joining states 4 and 1, and the leftward
characteristic joining states 2 and 1.
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Figure 2: Plane (v, σ) associated with the characteristic plane shown in Figure 1. Lines in purple, brown and orange are
associated with the layers A, B and C respectively. The plot is here made in the case ZB > ZA > ZC .

4. Elements of solution

4.1. Domain of feasability
The linear elastodynamics initial boundary value problem defined in Section 2 may admit an analytical

expression of its solution which is defined in a piecewise manner depending on the chosen instance of the
vector X (12), because its analytical expression is here obtained with the method of characteristics. Hence,
the solution of the optimisation problem (P1) can be addressed by studying various configurations involving
different sets of characteristics in the laminate, associated with different areas of the domain of feasability
spanned by the unknown vector X, bounded by the equality-type and inequality-type constraints.

More precisely, the minimal number of considered characteristics which are required to compute the
stress between the layers A and B actually depends on the chosen instance of the vector X (12). Table 2
shows various configurations associated with different numbers of wave round trips within the layers A and
B performed during the loading time τ , each denoted AiBj , i ∈ {0, 1, n}, j ∈ {1, n}. The columns of Table
2 illustrate the equality-type constraints (17) and (18) already discussed in Section 3.2, while its rows define
three families of configurations according to the number of wave round trips considered in layer A. These
can be identified through the following inequalities

A0 : dA
cA

>
τ

2 , A1 : τ

4 <
dA
cA

<
τ

2 , An : dA
cA

<
τ

4 . (20)

It can be observed that the minimal number of characteristics required to get the sought solution dramatically
increases as the ratio dA

cA
decreases, especially for configurations AnBj , j ∈ {1, n}.

Remark 1. The configurations AnBj , j ∈ {1, n} involve several wave round trips in layer A, which may
arise from a very thin layer, a large elastic sound speed or a very long loading time. Notice that these
configurations in the case of a thin layer are not consistent with Inequation (8), namely the skin depth
within which eddy currents flow can be of the same order of magnitude than thickness of layer A, or are not
interesting for the purpose of this study (i.e. dynamic process). Hence, the configurations AnBj , j ∈ {1, n}
will not be studied in the sequel.

7



A B1 → dB = τcB

4 Bn → dB = τcB

4n ∀n ∈ N∗+

A
0
→

d
A

c
A
>

τ 2
A

1
→

τ 4
<

d
A

c
A
<

τ 2
A
n
→

d
A

c
A
<

τ 4

Table 2: Different configurations are depicted with their own sets of characteristic lines. The characteristic line associated with
the unloading wave (emanating from P̄ (t = τ)) is plotted in blue. These associated with the loading ones, emanating from
P̄
(
t = τ

2

)
= Pmax and P̄ (t = 0), are plotted in green and red respectively.

Then, analytical expressions are determined for configurations A0B1, A0Bn, A1B1 and A1Bn. Figures
showing the characteristic plane (x, t) for each of these configurations always represent the minimum number
of characteristic lines necessary to derive the analytical expression of the interfacial stress between the layers
A and B, with the same colour-coding than that used in Table 2.

4.2. Configuration A1B1

Figure 3 shows the characteristic plane (x, t) associated with the configuration A1B1. A set of interme-
diate points related by characteristic lines are depicted which will allow to determine the value of the tensile
stress at point 1, located at the interface between the layers A and B which is expected to break.

From the initial natural condition (11), velocities and stresses can be deduced at the following points of
the characteristic plane:

σi = 0 i = {2, 7, 8, 10, 11, 12}, (21)
vj = 0 j = {7, 8, 10, 11, 12} (22)

The stress at the left side (x = 0) of the laminate equals the opposite of the applied pressure (9), especially
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Figure 3: Characteristic plane (x, t) associated with the configuration A1B1.

it implies :

σ9 = −P9 (23)
σ5 = −Pmax (24)

From these initial and boundary values, the state of other points can successively be deduced using the
method of characteristics. Especially the characteristic equation (6)2 integrated along a characteristic line
joining states i and j gives :

σi − σj = ±Zk(vi − vj) i, j ∈ {1, 6}; k ∈ {A,B,C} (25)

The expressions of stresses and velocities at each intermediate point are given in Appendix A. The interfacial
tensile stress associated with point 1 (see Figure 3) is expressed as :

σ1 = 2ZB
(

2ZAPmax(ZB − ZC) + P9(ZB − ZA)(ZC + ZB)
(ZA + ZB)2(ZC + ZB)

)
, (26)

where P9 is defined as :
P9 = P̄

(
t = τ − 2dA

cA

)
, (27)

and according to Equation (9), is particularized to

P9 = Pmax sin2

π
(
τ − 2dA

cA

)
τ

 = Pmax sin2
(
dAπcB
2dBcA

)
, (28)

where Equation (17) has been used. As a consequence, the interfacial tensile stress computed at point 1
associated with a tri-layer laminate can finally be expressed as

σTriA1B1
= 2ZBPmax

2ZA(ZB − ZC) + sin2
(
dAπcB

2dBcA

)
(ZB − ZA)(ZC + ZB)

(ZA + ZB)2(ZC + ZB)

 (29)
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Remark 2. For a bi-layer laminate, the interface tensile stress is simplified as follows:

σBiA1B1
= 2ZBPmax

2ZA + sin2
(
dAπcB

2dBcA

)
(ZB − ZA)

(ZA + ZB)2

 (30)

4.3. Configuration A0B1
The configuration A0B1 is obtained when the time for a wave to travel along the thickness of layer A

becomes larger than half of the loading time, and for one wave back and forth in layer B. Figure 4 shows the
associated characteristic plane (x, t). This case can be deduced from the previous one (i.e. A1B1) setting

Figure 4: Characteristic plane (x, t) associated with the configuration A0B1.

P9 = 0. The velocity and the tensile stress expressed at the interface between the layers A and B can then
be deduced from Equations (29) and (28), one gets:

v1 = 4ZBPmax(ZB − ZC)
(ZA + ZB)2(ZC + ZB) , (31)

σTriA0B1
= 4ZBZAPmax(ZB − ZC)

(ZA + ZB)2(ZC + ZB) . (32)

Observe that the sign of the interfacial stress (32) only follows that of (ZB−ZC). Especially, a tensile stress
is only possible when ZB > ZC for configuration A0B1, whatever the impedance of layer A.

Remark 3. For a laminate structure consisting of two layers, the interface tensile stress can be simplified
as follows :

σBiA0B1
= 4ZBZAPmax

(ZA + ZB)2 (33)

4.4. Configuration A0Bn
The Bn configurations are obtained when an integral number n of wave round trips emanating from Pmax

is considered in the layer B, until the maximum interfacial tensile stress between layers A and B occurs at
time T . Figure 5 shows the associated characteristic plane (x, t). From the initial natural condition (11),
the velocities and the stresses vanish at some points of the characteristic plane:{

σj = 0
vj = 0 , j ∈ {Ok, P6, g6, d6} , k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. (34)
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Figure 5: Characteristic plane (x, t) associated with the configuration A0Bn.

On the left side of the laminate (x = 0), for an imposed pressure loading pulse, one gets :{
σPi

= −Pi
vPi

= Pi

ZA

, i ∈ {0, 1, 2, 3, 4, 5, 6}. (35)

From these initial values, the states of other points can successively be deduced using the method of char-
acteristic (25). Especially, the states of the points gi located at the interface between the layers A and B
are deduced from the following recurrence formula:{

σgi − σdi+1 = −ZB(vgi − vdi+1)
σgi − σPi = ZA(vgi − vPi)

, i ∈ {0, 1, 2, 3, 4, 5, 6} (36)

The solution of System (36) allows to express states associated with points gi as a function of these associated
with points di+1 and with pressure points Pi

σgi
=
ZAσdi+1 + ZAZBvdi+1 − 2ZBPi

ZA + ZB
, (37)

vgi =
2Pi + σdi+1 + ZBvdi+1

ZA + ZB
. (38)

The states defined at points di located at the interface between the layers B and C, are solution of the
following recurrence formula: {

σdi
− σgi

= ZB(vdi
− vgi

)
−ZCvdi

= σdi

(39)

whose solution gives expressions

vdi
= ZBvgi

− σgi

ZC + ZB
, (40)

σdi = −ZC
ZBvgi

− σgi

ZC + ZB
. (41)
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Introducing Equations (40) and (41) into Equations (37) and (38), one gets the recurrence formula:

vgi
=
ZB(ZB − ZC)vgi+1 + (ZC − ZB)σgi+1 + 2(ZC + ZB)Pi

(ZA + ZB)(ZC + ZB) , (42)

σgi =
ZAZBvgi+1(ZB − ZC) + ZAσgi+1(Z

C
− ZB)− 2ZB(ZC + ZB)P i

(ZA + ZB)(ZC + ZB) . (43)

Finally, solving the system consisting of Equations (42) and (43), the stress at points gi is expressed by
recurrence as:

σgi
=

(ZB(ZB − ZA − ZC) + ZAZC)σgi+1 − 2ZB((ZB + ZC)Pi − (ZB − ZC)Pi+1)
(ZA + ZB)(ZB + ZC) (44)

From equation (44), the interfacial tensile stress for a tri-layer laminate can be expressed for n back and
forth in the layer B as follows:

σTriA0Bn
= Pmax

2n−1∑
i=1

(
α−i−1

4
(
αi1α2 + α4α

i−1
1 α3

)
sin2

(
iπ

n

))
(45)

where the following constants have been defined as :

α1 = ZB(ZB − ZA − ZC) + ZAZC

α2 = −2ZB(ZB + ZC)
α3 = 2ZB(ZB − ZC)
α4 = (ZA + ZB)(ZB + ZC)
(α1, α2, α3, α4) ∈ R4

(46)

Remark 4. For a laminate structure consisting of two layers, the interface tensile stress simplifies as follows:

σBiA0Bn
= 4PmaxZBZA

Z2
B − Z2

A

2n−1∑
i=1

((
ZB − ZA
ZB + ZA

)i
sin2

(
iπ

n

))
(47)

4.5. Configuration A1Bn

Configurations A1Bn and A0Bn are close to each other. The difference lies in that at least one wave
round trip can be achieved within layer A during the loading time τ . This is shown in Figure 6 by the
characteristic lines plotted in orange. The state at point P0 is now given by these associated with points
g∗, P ∗ and d∗. The expression of the velocity at point P0 is changed accordingly. From the initial natural
condition (11), Equations (34) still hold, and is supplemented with similar ones at point d∗:{

σd∗ = 0
vd∗ = 0

(48)

From the states at points P ∗, O8 and d∗, that at point g∗ can be deduced as

vg∗ = 2P ∗

ZA + ZB
(49)

σg∗ = −2ZBP ∗

ZA + ZB
(50)

12



Figure 6: Characteristic plane (x, t) associated with the configuration A1Bn. The sketch is here made with n = 6 for illustration
purpose, without loss of generality.

from which, the state at location P0 changes as :

vP0 = −2(ZB − ZA)P ∗

ZA(ZA + ZB) (51)

σP0 = −2ZBP ∗

ZA + ZB
(52)

From Equations (42) and (43) we can deduce the (σ,v) state at point g1

σg1 = Pmax

2n−1∑
i=2

(
α−i4

(
αi−1

1 α2 + α4α
i−2
1 α3

)
sin2

(
iπ

n

))
+ α2α

−1
4 P1 (53)

vg1 = Pmax

2n−1∑
i=2

(
α−i8 (αi−1

5 α7 + αi−2
5 α8α6) sin2

(
iπ

n

))
+ α7α

−1
8 P1 (54)

with α1, α2, α3, α4 defined by Equations (46) and:
α5 = (Z2

B − Z2
A)(Z2

B − Z2
C)

α6 = 2((ZC + ZB)2(ZB + ZA)
α7 = −2(ZA + ZB)(Z2

C + Z2
B)

α8 = (ZB + ZA)2(ZB + ZC)2

(55)

Finally, the interfacial tensile stress for the configuration A1Bn can be deduced as :

σTriA1Bn
= ZAPmax(ZB − ZC)

(ZA + ZB)(ZB + ZC)

2n−1∑
i=2

[(
α−i8 ZB(αi−1

5 α7 + αi−2
5 α8α6)−

α−i4
(
αi−1

1 α2 + α4α
i−2
1 α3

))
sin2

(
iπ

n

)]
+ 2ZB(ZB − ZA)Pmax

(ZA + ZB)2 sin2
(
dAπcB
2dBcA

) (56)

Remark 5. For a laminate structure with two layers, the interfacial tensile stress can be expressed as

13



follows:
σBiA1Bn

= 2PmaxZB(ZB − ZA)
(ZA + ZB)2 sin2

(
dAπcB
2dBcA

)
(57)

5. Solution of the optimisation problem

5.1. A two-stage solution procedure
From the unknown vector X (12), and the set of constraints (15), (17) (or (18)) and (19), two subsets of

unknowns can be identified. Observe that if the set of acoustic impedances (ZA, ZB , Zc) of the laminate is
fixed, then the thickness of layer B is fixed by Equation (17) (or (18)), that of layer C can be determined
by Inequation (19) (and hence can be fixed accordingly) while the time to failure T becomes a function of
the thickness of the layer A through Equation (15), which appears to be the sole remaining unknown.

Accordingly, the optimisation problem can be solved following a two-stage procedure. The first one is
performed by maximizing the cost function (13) with respect to the sole thickness of the layer A, namely :

X = {dA}, (58)

still constrained such that X ∈ (R+∗), and provided an extended set of given data Y

Y = {P̄ (t), ZA, ZB , ZC}, (59)

including all acoustic impedances of the different layers the laminate consists of. Second, once optimized with
respect to dA at fixed wave impedances, the cost function is maximized with respect to acoustic impedances
at given thickness of layer A, such that the following staggered algorithm is considered

(dA, ZA, ZB , ZC) = arg max
(ZA,ZB ,ZC )

max
dA

(
σ(x = dA, t = T ; dA, ZA, ZB , ZC , P̄ (t))

Pmax

)
(60)

5.2. Solution of the optimisation problem for different configurations
In order to solve the optimisation problem (60), one explicit expression of the interfacial tensile stress

between layers A and B associated with one of the configurations studied in Section 4 should be selected.

5.2.1. Configurations A0Bj
From Equations (32), (33), (45) and (47), it can be observed that the configurations A0B1 and A0Bn

yield an interfacial tensile stress that only depends on the acoustic impedances either in bi-layered or tri-
layered options, but not on the geometry, and especially not on dA. These configurations do not allow
any possibility to increase the interfacial tension via the geometry. Hence only the second stage of the
optimisation problem can be conducted, whose solution is trivial and yields

(
σTriA0B1

)optimal = Pmax, if ZA = ZB , ZC = 0(
σBiA0B1

)optimal = Pmax, if ZA = ZB(
σTriA0Bn

)optimal → 2Pmax, if ZA → 0, ZC = 0, n ≥ 2(
σBiA0Bn

)optimal → 2Pmax, if ZA → 0, n ≥ 2

(61)

Among the A0Bj configurations, optimal ones are obtained for ZC = 0. Consequently, a third layer
should be avoided, a bi-layer laminate is sufficient.
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5.2.2. Configurations A1Bj
Conversely, Equations (29), (30), (56) and (57), obtained for the A1B1 and A1Bn configurations depends

on both dA (i.e. the geometry) and acoustic impedances (ZA, ZB , ZC). Maximising σ1 in Equations (29),
(30), (56) and (57) amounts to maximise sin2

(
dAπcB

2dBcA

)
which should equal one, yielding:

dAπcB
2dBcA

= π

2 + kπ ∀k ∈ N+∗ (62)

Since the loading only consists of one pulse (see Equation (9)), k = 0 can be set. The optimality condition
is thus expressed as:

dA
dB

= cA
cB

(63)

Introducing Equation (63) into Equations (29), (30), (56) and (57), the interfacial tensile stress at the
interface between the first two layers A and B is given as a function of acoustic impedances by

σTriA1B1
= 2ZBPmax

(
2ZA(ZB − ZC) + (ZB − ZA)(ZC + ZB)

(ZA + ZB)2(ZB + ZC)

)
(64)

σBiA1B1
= 2ZBPmax

(
2ZA + (ZB − ZA)

(ZA + ZB)2

)
(65)

σTriA1Bn
= ZAPmax(ZB − ZC)

(ZA + ZB)(ZB + ZC)

2n−1∑
i=2

[(
α−i8 ZB(αi−1

5 α7 + αi−2
5 α8α6) (66)

− α−i4
(
αi−1

1 α2 + α4α
i−2
1 α3

))
sin2

(
iπ

n

)]
+ 2ZB(ZB − ZA)Pmax

(ZA + ZB)2

σBiA1Bn
= 2PmaxZB

(ZA + ZB)2

(
ZA(ZB − ZA)
2(ZA + ZB) −

2ZBZA
ZB − ZA

2n−1∑
i=1

((
ZB − ZA
ZB + ZA

)i
sin2

(
iπ

n

))
+ (ZB − ZA)

)
(67)

with α1, α2, α3, α4, α5, α6, α7, α8 defined in Equations (46) and (55).
The subsequent optimisation of Equations (64), (65), (66), (67) with respect to the wave impedances

(ZA, ZB , ZC) gives interesting solutions

(
σTriA1B1

)optimal → 2Pmax, if ZA → 0, ZB > 0, ZC > 0 (68)(
σBiA1B1

)optimal → 2Pmax, if ZA → 0, ZB > 0 (69)(
σTriA1Bn

)optimal → 2Pmax, if ZA → 0, ZB > 0, ZC > 0 (70)(
σBiA1Bn

)optimal → 2Pmax, if ZA → 0, ZB > 0 (71)

In each of these configurations, twice the maximal pressure applied on the laminate is asymptotically ob-
tained as maximal tensile stress at the interface between layers A and B, at the failure time T . However,
these tensile stress should rather be understood as an upper limit since the acoustic impedance ZA of the
first layer A cannot be physically set to zero, and the material of layer A must remain electrically conductive.

But, these results are of great importance. First, it shows that velocity effects can be used at profit
to obtain interfacial stress levels which are larger than those achievable in quasi-static. Secondly, since the
thickness of the laminate is small with respect to its transverse dimensions by construction, any out-of-plane
quasi-static loading would be difficult to set up.
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6. Evolution of the interfacial tensile stress spanned by bi-layer configurations

From the optimal results obtained in Section 5.2, the analysis is first focused on a bi-layer laminate
structure consisting of the two layers A and B.

6.1. One wave round trip in the layer B
Figure 7 shows a semi-analytical plot of the evolution of the ratio of the interfacial tensile stress to the

maximum applied pressure Pmax as a function of the ratio dA

cA
, namely the time for a pressure wave to travel

through the thickness of the layer A. Indeed, following Inequations (20), this parameter allows to span the
different configurations studied in this work. Accordingly, the areas observed in Figure 7 appearing in green,
yellow and red correspond to the configurations AnB1, A1B1 and A0B1 respectively. One shall notice that
all are given for a single wave round trip in layer B before the interfacial failure occurs.

Figure 7: Semi-analytical plot of the interface tensile stress as a function of dA
cA

. Green, yellow and red areas are respectively
associated with the configurations AnB1, A1B1 and A0B1. The plot has been performed with the couple aluminium-steel for
the layers A and B, whose material parameters are gathered in Table 3.

The first area (appearing in green in Figure 7) is associated with the AnB1 configuration and was not
studied analytically in Section 4 as already explained in Remark 1. The plot was performed using one-
dimensional numerical simulations carried out with a finite volume-type discretization, and more precisely
with the Lax-Wendroff scheme [20, 21, 17] which is second order accurate. This plot shows that the interfacial
tensile stress increases from zero to the optimal value 2 ZB

ZA+ZB
reached at dA

cA
= τ

4 , the small step at the
beginning of the rising edge are numerical effects. The subarea associated with its lowest values is not
interesting, and may in addition violate the assumption (8), while its highest values appear much more
interesting although the associated subarea was not quantified analytically.

The second area (appearing in yellow in Figure 7) is associated with the A1B1 configuration, whose
interfacial tensile stress (29) is simplified when considering ZC = 0 as :

σ1 = 2ZBPmax

2ZA + sin2
(
dAπcB

2dBcA

)
(ZB − ZA)

(ZA + ZB)2

 . (72)
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The stress ratio ranges in this area from its highest value 2 ZB

ZA+ZB
reached at dA

cA
= τ

4 (i.e. combining the
optimality condition (63) to the equality-type constraint (17)), to its lowest value 4ZBZA

(ZA+ZB)2 associated with
a plateau reached at dA

cA
= τ

2 . Notice that if ZA

ZB
→ 0, these highest and lowest values tend to 2 and zero

respectively, while they both tend to unity if ZA

ZB
→ 1. The latter case thus appears less interesting than the

former one for disassembling the laminate.

Figure 8: Evolution of the ratio of the interface tensile stress to the maximum applied pressure in the A1B1 configuration,
plotted for different couples of materials for layers A and B. The legend is of the form : (’Material of the layer A’, ’Material
of the layer B’, ZA

ZB
).

Material Aluminium Titanium Iron Copper Steel CFRP
c (m.s−1) 5.38×103 5.99×103 3.93×103 3.94×103 5.74 ×103 3.00 ×103

Z (Pa.m.s−1) 1.45×107 2.69×107 3.08 ×107 3.51 ×107 4.47×107 0.49×107

Table 3: Materials parameters. CFRP stands for Carbon Fiber Reinforced Polymer, data taken from [14]
.

Figure 8 shows some instance of evolutions of this stress ratio for various couples of materials listed
in Table 3. A turning point makes a separation between values of the stress ratio increasing up to its
maximum value, and these tending to the plateau value observed in Figure 7, whose contrast becomes
maximal as ZA

ZB
→ 0, and minimal as ZA

ZB
→ 1. This point is associated with the change of sign of the

second derivative of the interface tensile stress (72). Considering Equation (17), its sign is given by that of
cos
(

4πdA

τcA

)
which changes from negative to positive for

dA
cA

= 3
8τ. (73)

Hence, for a given instance of couple of materials and if this configuration is targeted, we shall always try
to achieve a ratio dA

cA
lying between the interval dA

cA
∈
[
τ
4 ,

3
8τ
]
bounded by Equations (63) and (73).

The third area (appearing in red in Figure 7) is associated with the A0B1 configuration, within which
the stress ratio is given by 4ZBZAPmax

(ZA+ZB)2 and does not depends on dA

cA
. As already said, it varies between
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zero and Pmax for ZA

ZB
→ 0 and ZA

ZB
→ 1 respectively. The latter case corresponds to similar materials in

the two layers. Such configuration may be sufficient to disassemble the laminate without damaging it if
the bond strength between the two layers is weak. More generally, such magnetic pulse loading applied
on a homogeneous structure can be used in magnetic pulse peening [29] for instance, but whose purpose is
different from disassembly.

Figure 9 shows the evolution of the stress ratio σinterface
Pmax

for the two configurations A0B1 and A1B1 as a
function of the ratio of acoustic impedances ZA

ZB
∈ [0, 1]. Although these two solutions are equal for ZA

ZB
= 1,

they diverge when ZA

ZB
decreases to zero, where the stress ratio goes to zero for configuration A0B1, and

tends to 2 for configuration A1B1.

Figure 9: Evolution of the stress ratio as a function of the ratio of acoustidc impedances ZA
ZB

for the configuration A0B1 and
A1B1.

6.2. Several wave round trips in layer B
As mentioned in Sections 3.2, 4.4 and 4.5, more possibilities in the design of the disassembly process can

be obtained by allowing an integer number n of wave round trips in layer B before the time to failure T .
Figures 10 and 11 show, respectively for configurations A0Bn and A1Bn, the evolution of the stress ratio

as a function of ZA

ZB
for two or more round trips n of the wave front in layer B before the time T . As it

can be seen in Figure 10, the number of round trips n has a huge influence on the interfacial tensile stress.
Moreover, for a number of round trips greater or equal than four, there exits an impedance ratio ZA

ZB
for

which the interfacial stress ratio σinterface
Pmax

admits a maximum (close to 0.9). Hence, the smaller the ratio ZA

ZB
,

the more round trips for increasing the interfacial tensile stress. But none of these configurations gives a
higher interfacial tensile stress than that obtained with the configuration A0B1. Figure 11 shows that, for
the A1Bn configurations, the number of round trips n doesn’t have any influence on the interfacial tensile
stress when there are only two layers as it can be seen in Equation (57), all plots are superposed. It can
also be seen that the maximum interfacial tensile stress is reached for ZA

ZB
→ 0.

7. Evolution of the interfacial tensile stress spanned by the tri-layer configurations

In this section, the analysis is focused on a tri-layered laminate. The stress ratio σinterface
Pmax

now depends
on the ratios ZA

ZB
and ZC

ZB
.
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Figure 10: Evolution of the stress ratio for the A0Bn configuration as a function of the ratio of acoustic impedances ZA
ZB

.

Figure 11: Evolution of the stress ratio for the A1Bn configuration as a function of the ratio of acoustic impedances ZA
ZB

.
Equation (57) does not depend on n. All curves are superposed.

7.1. One wave round trip in the layer B
7.1.1. Evolution of the interface tensile stress for the A0B1 configuration

Figure 12 shows the evolution of the stress ratio as a function of these impedance ratios for an A0B1
configuration. It can be seen that the impedance of the third layer C has a huge influence on the stress
ratio. It highlights the fact that a bi-layer laminate with ZA

ZB
→ 1 should be preferred to this configuration.
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Figure 12: Evolution of the stress ratio for the A0B1 configuration as a function of the ratios of wave impedance ZA
ZB

and ZC
ZB

.

7.1.2. Evolution of the interfacial tensile stress for A1B1 configuration

Figure 13: Evolution of the stress ratio for the A1B1 configuration as a function of the ratios of wave impedances ZA
ZB

and ZC
ZB

.

Figure 13 shows the evolution of the stress ratio for the A1B1 configuration. The impedance value of
the third layer has now a weak influence on the interfacial tensile stress level. The smaller the ratio ZA

ZB
, the

weaker this influence. It can be seen that a configuration where ZA

ZB
→ 0 should be preferred regardless the

impedance value of the third layer. For this configuration Equation (63) has been considered.

7.2. Several wave round trips in the layer B
7.2.1. Evolution of the interfacial tensile stress for A0Bn configurations

Figures 14a, 14b, 14c and 14d show the evolution of the interface tensile stress as a function of ratios
ZA

ZB
and ZC

ZB
for configurations A0B2, A0B4, A0B8 and A0B16 respectively. These four configurations have

been chosen to illustrate the evolution of the behaviour of A0Bn ones. It can be seen that the third layer
have a huge negative influence on the interfacial tensile stress. Moreover, the more round trip, the smaller
the impedance ratio ZA

ZB
, as already shown in Figure 10. It can be deduced that the optimal configuration

of the A0 configurations is the A0B1 with ZC = 0.
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(a) A0B2 (b) A0B4

(c) A0B8 (d) A0B16

Figure 14: Evolutions of the interfacial tensile stress for A0Bn configurations, as a function of acoustic impedance ratios.

7.2.2. Evolution of the interfacial tensile stress for A1Bn configurations
Figures 15a, 15b, 15c and 15d show the evolution of the interface tensile stress as a function of ratios

ZA

ZB
and ZC

ZB
for configurations A1B2, A1B4, A1B8 and A1B16. These four configurations have been chosen

to illustrate the evolution of the behaviour for A1Bn ones. For these configurations, it can be seen that the
impedance of the layer C and the number of wave round trips n in the layer B before the appearance of the
failure do not have a strong influence on the stress ratio. So, it can be concluded that for A1Bn configurations
the presence of a third layer and the number of round trips do not matter. The only constraint to enforce
is ZA

ZB
→ 0.

8. Conclusion

The aim of this study was to evaluate by analytical considerations whether or not it would be possible
to use the magnetic pulse technology for disassembling laminate structures. This work focused on the
study of a one-dimensional model in linear elastodynamics of a laminate consisting of three stacked elastic,
homogeneous and isotropic layers, infinite in transverse directions. The method of characteristics was used
to solve this model in various configurations. The solution of an optimisation problem, whose purpose was
to maximise the interfacial tensile stress between the first two layers with respect to layer thicknesses and
acoustic impedances, allowed to draw a set of conclusions. First, the layer B needs to be the one with the
highest impedance. Second, adding a third layer C does not appear necessary to increase the interfacial
tensile stress. Rather, it contributes to its decreasing. Third, several configurations have been identified
as being potentially able to achieve a debonding between the first two layers. Next, it was shown that the
interfacial stress follows a three-subarea profile as function of the parameter dA

cA
. In its second subarea,
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(a) A1B2 (b) A1B4

(c) A1B4 (d) A1B16

Figure 15: Evolutions of the interfacial tensile stress for A1Bn configurations, as a function of acoustic impedance ratios.

given for τ
4 ≤

dA

cA
≤ τ

2 , optimised configurations were found for which the interfacial tensile stress has an
asymptotic limit of 2Pmax if ZA

ZB
→ 0. These promising results point out the interest for developing an

experimental device able to disassemble multi-material assemblies which are thicker than a centimeter, as
they can be found in light weight armouring plates, including a composite material on ceramic coating or
metallic plate for instance. This will be the object of the next step.
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Appendix A. Computation of states at intermediate points for the configuration A1B1

Point 9 (from 10) :
v9 = P9

ZA
(A.1)
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Point 6 (from 9 and 12):
v6 = 2P9

ZA + ZB
(A.2)

σ6 = −2ZBP9

ZA + ZB
(A.3)

Point 5 (from 11):
v5 = Pmax

ZA
(A.4)

Point 3 (from 5 and 7):
v3 = 2Pmax

ZA + ZB
(A.5)

σ3 = −2ZBPmax
ZA + ZB

(A.6)

Point 4 (from 8 and 3)
v4 = 4ZBPmax

(ZA + ZB)(ZC + ZB) (A.7)

σ4 = −4ZBZCPmax
(ZA + ZB)(ZC + ZB) (A.8)

Point 2 (from 6)

v2 = 2P9(ZA − ZB)
ZA(ZA + ZB) (A.9)

Point 1 (from 2 and 4) :

v1 = 4ZBPmax(ZB − ZC) + 2P9(ZA − ZB)(ZC + ZB)
(ZA + ZB)2(ZC + ZB) (A.10)

σ1 = 2ZB
(

2ZAPmax(ZB − ZC)− P9(ZA − ZB)(ZC + ZB)
(ZA + ZB)2(ZC + ZB)

)
(A.11)
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