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80067, F-60304 Senlis Cedex, France

Abstract

This paper deals with the elastoplastic buckling analysis of shell geometries
traditionally encountered in pressure vessels subjected to external pressure
loading. The objective is to propose in a unified way original analytical
closed-form solutions giving rise to reliable results, with a good accuracy and
a wide range of applications in a straightforward and low time-consuming
way, for efficient dimensioning purposes. The present study is based on
the plastic bifurcation theory, classically used in the context of conservative
systems, where additional terms are incorporated here due to the follower ex-
ternal pressure acting normally to the deformed surface of the shell still after
buckling. Cylindrical shells are first considered, which certainly represent the
most fundamental components of pressure vessels in practice. Owing to the
external pressure also acting on the closure ends of a cylinder, the influence
of the induced axial compression is investigated thereafter. It appears to be
non-negligible for short cylinders in elasticity and it becomes very significant
in the case of plastic buckling. Then, closed-form solutions for the critical ex-
ternal pressure of a complete sphere are also obtained, both in elasticity and
plasticity. Finally, all these new closed-form solutions are validated against
reference numerical results obtained through finite element computations,
and compared to current design rules.
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1. Introduction

Shell structures are widely used in a variety of industrial applications
such as buildings, transportation facilities, deep-diving submarines and pres-
sure vessels, thanks to the economic benefits of such thin structures. In the
particular case of pressure vessels, the buckling phenomenon (or geometric
instability) represents one of the main failure modes encountered in prac-
tice, due to the thinness of the structures and the predominant compressive
stresses currently observed under standard loads such as external pressure.
Therefore, a thorough buckling analysis of such structures is generally re-
quired in standard design procedures.

Many shell buckling problems have been studied in the literature so far,
involving various geometries such as cylinders, spheres, ellipsoids, cones or
any combination of them. Among the loadings which typically give rise to
geometric instabilities, the external pressure has clearly a prominent place.
The vast majority of these papers deal with elastic buckling analyses and
several analytical solutions are already available in such conditions. Most in-
vestigations are concerned with cylindrical shells which are certainly the most
essential components in pressure vessels. Energy methods are the most pop-
ular approaches used to determine the critical buckling pressure and Bryan
[1] was the first to derive an analytical solution of the elastic critical buckling
pressure of long tubes under external pressure, using such an energy method.
More recently, the elastic buckling of long cylindrical shells under uniform
external pressure was still the topic of several analytical studies. One can
mention Paimushin [2], Xue [3], Salahshour and Fallah [4], among others.
Southwell [5] as for him considered the case of short cylinders under uniform
external pressure. Yamaki [6] thoroughly investigated the elastic stability
problem of circular cylindrical shells. He analyzed both the buckling and
post-buckling behavior from a theoretical and experimental point of view,
considering several geometric configurations and many loading cases among
which the external pressure. However, no exact closed-form expression was
provided for the critical pressure, but instead, only approximate empirical
formulae. Grigolyuk and Kabanov [7] derived an analytical expression of the
critical pressure for thin cylindrical shells with simply-supported end con-
ditions. Papadakis [8] proposed a new analytical expression of the critical
pressure in the case of thick cylindrical shells under external pressure, in-
cluding the effects of transverse shear in the analysis. Nguyen et al. [9]
also investigated analytically the elastic buckling of cylindrical shells under
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external pressure, considering a variable thickness. Finally, one can mention
Basaglia et al. [10] who were interested in the use of the Generalized Beam
Theory (GBT) for the elastic buckling analysis of steel cylindrical shells un-
der combinations of axial compression and external pressure.

Numerous studies have also been conducted on the buckling behavior of
spherical shells under external pressure, since this fundamental geometry is
also frequently encountered in practice. Zoelly [11] was the first to derive an
analytical solution for the critical external pressure of elastic buckling for a
perfect spherical shell. Hutchinson [12, 13] analyzed the post-buckling behav-
ior of spherical shells under external pressure within the context of Koiter’s
general theory and showed the significant imperfection sensitivity of such a
problem, even in elasticity. Palusamy and Lind [14] developed a consistent
theory for the limit analysis of spherical shells under radial pressure. Sato et
al. [15] investigated the axisymmetric buckling response of spherical shells
filled with an elastic medium subjected to external pressure.

Besides, pressure vessels (especially cylinders) generally include closure
ends of various shapes, which may be hemispherical, ellipsoidal, torispherical
or toriconical. Also, some transitions of conical shape are sometimes encoun-
tered between different cylindrical parts of pressure equipments. All these
ends and connecting zones have also to sustain reliably extreme design loads,
and require thus a detailed buckling analysis. However, only few studies deal
with such shell geometries. One can mention, for instance, the review paper
from Krivoshapko [16] dealing with static, dynamic and stability analyses of
complete ellipsoidal shells (and also ellipsoidal heads and bottoms), specially
focusing on ellipsoids of revolution and building applications. A few approx-
imate solutions for the critical external pressure are particularly listed with
their respective domain of validity. Otherwise, one only finds some numeri-
cal or experimental studies concerning the buckling of ellipsoidal structures,
such as the finite element analysis of super ellipsoidal shells under uniform
pressure [17] and the recent non-linear buckling analysis of a semi-elliptical
dome [18]. Dealing with conical shells, one can cite Sharghi et al. [19] who
analyzed the buckling of laminated conical shells under axial compression,
using trigonometric and power series, and Chung [20] who handled the more
general case of composite conical shells under combined axial compression,
external pressure and bending.

The buckling problem is much more difficult to analyze when considering
thicker structures, for which plasticity may occur before buckling. Shanley
[21] was probably the first to derive the so-called tangent modulus criti-

3



cal load for a discrete model, which corresponds to the minimum possible
plastic buckling load at which the structure may buckle in practice. Later,
a few results have been obtained concerning columns, plates or shells un-
der various loadings and boundary conditions. Among others, Becque [22]
investigated recently the inelastic buckling of thin-walled columns in an an-
alytical way, accounting for flexural but also torsional modes. Much earlier,
empirical formulae were already proposed for the plastic buckling loads of
simply-supported sandwich plates under uniaxial compression, arising from
simplifying assumptions [23]. The existence of continua of bifurcation points
in plastic buckling problems was emphasized by Cimetière [24] in the case
of compressed rectangular plates. As regards shell plastic buckling analyses,
the case of axially compressed circular cylindrical shells was certainly one of
the most considered, which is further limited to axisymmetric modes. In this
context, one can mention the pioneering works of Batterman [25, 26] who
derived first adequate formulae for the critical axial compressive stress in a
cylindrical shell with various boundary conditions.

The plastic buckling of a cylindrical shell under external pressure was
far less commonly studied than the elastic case. The pioneering works on
this subject are certainly due to Chakrabarty [27, 28]. He examined first
the general conditions under which bifurcation may occur in a shell under
pressure loading beyond the elastic limit, and considered then the particular
case of cylindrical shells subjected to external fluid pressure. More recently,
Takla investigated numerically both material and geometric instability phe-
nomena (such as necking, bulging, column buckling and section collapse) in
elastoplastic cylindrical shells under internal/external pressure and/or axial
tension/compression [29–32]. One can also find some rare experimental stud-
ies on this subject, such as the one from Zhu et al. [33], which considers a
very specific constitutive law and clamped ends. Besides, unlike the case of
cylindrical shells, to the best authors’ knowledge, there is no plastic buckling
analysis of spherical shells in the literature, at least analytically speaking.

When dealing with shell buckling, large discrepancies are often observed
between theoretical predictions and experimental results, which may be due
to unavoidable imperfections in experiments, among other things. This im-
perfection sensitivity was discussed by many authors, such as Hutchinson
[34] in his asymptotic analysis of plastic post-buckling. As far as plastic
buckling is concerned, different critical values may be obtained, depending
on the retained plasticity theory, and the strong discrepancy between the
results provided by the flow and deformation theories has been observed by
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many authors. Among others, Liu [35] analyzed the imperfection sensitiv-
ity of uniaxially compressed plates by means of finite element computations,
using both flow and deformation theories for comparison purposes. Ore and
Durban [36] also confronted the two theories by deriving two series of semi-
analytical values for the critical load of a cylinder under axial compression
under various boundary conditions. In most cases, it turns out that the flow
theory largely overpredicts the experimental critical values, whereas the de-
formation theory gives rise to predictions in much better agreement, although
the latter does not include the elastic unloading possibility. This major issue
is known as the plastic buckling paradox, and it has been partially explained
by the fact that the flow theory induces an elastic shear modulus at onset
of buckling. It is particularly detrimental to problems of torsional buckling
of beams, among others, for which the torsional stiffness is thus not affected
by the plasticity occurring during the uniaxial compression, as emphasized
in [22]. Otherwise, it is now well established that the use of the flow theory
(namely tangent moduli) is a better option. For example, many years ago,
Neale [37] carried out a theoretical analysis of the influence of imperfections
on the plastic buckling of rectangular plates, using a Reissner-type varia-
tional principle. He showed the close agreement between the results deriving
from the flow theory and the deformation theory (and thus also with exper-
imental data), provided that imperfections were conveniently accounted for
in the formulation.

Finally, let us mention the existence of many practical methodologies that
have been developed for the buckling design of pressure vessels. These meth-
ods are generally assembled in standards and codes such as the ASME Boiler
and Pressure Vessel Code (BPVC) [38] or the French CODAP [39]. The de-
sign rules are either analytical (based on abacuses or formulae), but limited
thus to a certain range of validity, or in the form of general recommenda-
tions [40] for performing finite element analyses in the presence of geometric
and/or material non-linearities and imperfections [41].

This paper deals with the buckling analysis of shell structures under ex-
ternal pressure. In view of the preceding literature review, it is specially
devoted to the search for new analytical solutions for the elastic but, above
all, plastic buckling critical values. In the longer term, the aim of this contri-
bution is to enrich and simplify simultaneously the current calculation rules
in standard codes with new explicit solutions, enabling thus an ever more
efficient dimensioning with both a better accuracy and a wider range of ap-
plications. The present study is based on the 3D plastic bifurcation theory,
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assuming the J2 flow theory of plasticity with the von Mises yield criterion
and a linear isotropic hardening. The 3D results are then particularized to
the case of a thin shell, considering the plane stress hypothesis and assum-
ing a pre-critical biaxial stress state. The so-called shallow shell theory is
retained so as to describe the kinematics in a simple way. A particular atten-
tion is given to the follower external pressure, which is supposed to remain
normal to the shell surface during all the deformation process (even in the
post-buckling range). Owing to this non-conservative loading, the classical
bifurcation equation is slightly modified and the critical pressure is found to
be possibly different from the corresponding critical value obtained when a
dead load is considered. Finally, the previous formulation is applied to the
cases of cylindrical and spherical shells, which represent the most encountered
shapes in practical pressure vessels and enable one to obtain closed-form so-
lutions. An axial compressive force is added to the external pressure in the
case of cylindrical shells so as to take into account the well-known pressure
end thrust.

The main contribution of the present work is to propose a generic method,
based on the so-called bifurcation equation, which is able to provide in a
straightforward way both elastic and plastic critical buckling loads of arbi-
trary shells under compressive loadings. In particular, it will be shown that
the shallow shell theory is a good compromise in that it allows for simple and
yet reliable closed-form expressions of the sought critical loads. The following
applications concern the two fundamental geometries of the cylinder and the
sphere, and they are focused on external pressure loading (possibly combined
with longitudinal compression in the case of cylindrical shells). However, the
generality of the method augurs well for future applications dealing with
other geometries and/or other loading conditions. In addition to the method
itself, some original results are established and validated, which may serve
as an alternative to current empirical design rules.

Section 2 summarizes first the main features of the plastic bifurcation
theory and presents the general formulation of the problem. Then, the two
case studies are detailed in Section 3, leading to closed-form solutions for
the critical pressure, both in elasticity and plasticity (the latter being mostly
original). In Section 4, numerical finite element computations are performed,
using Abaqus software, and the analytical and numerical results are discussed
and compared to each other, for validation purposes. Last, in Section 5, a
short comparison between the new formulae obtained in this paper and the
solutions derived from standard codes (CODAP/ASME) gives an insight of
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the relevance of such new closed-form solutions, especially in plasticity.

2. General formulation

2.1. 3D plastic bifurcation theory

The subsequent developments are based on the theory of plastic bifurca-
tion, the main issues of which having already been presented in detail in [42].
The most significant and useful results will be recalled here for the sake of
completeness.

The following elastoplastic buckling analyses are carried out, as usual,
by means of a total Lagrangian formulation, within the framework of the
standard generalized materials theory [43, 44]. As pre-critical deformations
are supposed to remain moderate in the present study, one can make use of
the Green strain tensor E which will be split additively into its elastic and
plastic parts, respectively Ee and Ep, leading next to expressions similar to
those obtained classically in small strains [45, 46].

The elastic response of the material is assumed to be isotropic and is there-
fore represented by the Saint-Venant-Kirchhoff law, involving the fourth-
order elasticity tensor D whose components in an orthonormal basis are
Dijkl = λδijδkl + µ(δikδjl + δilδkj), where δij is the Kronecker symbol and λ
and µ are the Lamé constants. Use will also be made of Young’s modulus
E and Poisson’s ratio ν which are related to λ and µ by λ = Eν

(1+ν)(1−2ν)
and

µ = E
2(1+ν)

.
In the plastic regime, the plastic threshold is defined by the von Mises

yield function with a linear isotropic hardening:

f(Σ, A) =

√

3

2
Σd : Σd − σ0 − A A = Hpeq (1)

where Σd denotes the deviatoric part of the second Kirchhoff stress tensor
Σ and peq the equivalent plastic strain. σ0 is the initial yield stress and H
represents the (constant) hardening modulus.

The material tangent elastoplastic tensor writes then:

Dp =
∂Σ

∂E
= D−

D : ∂f

∂Σ
⊗ ∂f

∂Σ
: D

H + ∂f

∂Σ
: D : ∂f

∂Σ

(2)

and the nominal tangent elastoplastic tensor can finally be expressed as fol-
lows:

Kp =
∂Π

∂F
= F.

∂Σ

∂E
.FT + (I.Σ)T (3)
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where F is the deformation gradient, Π = F.Σ the first Kirchhoff stress
tensor, I stands for the fourth-order unit tensor (Iijkl = δilδkj) and the su-
perscript T means the transposition of a second-order tensor or the major
transposition of a fourth-order tensor defined by (AT )ijkl = Aklij.

In the case of small pre-critical deformations, the nominal tangent tensor
can be reduced to:

Kp ≈ Dp + (I.Σ)T (4)

where (I.Σ)T depends on the stress state and thus on the loading factor (say
ξ) which will act further as the bifurcation parameter.

Now, let us assume that (i) the buckling phenomenon occurs in the plastic
zone (the whole solid is assumed to be plastified on the fundamental branch at
critical time) and that (ii) the bifurcation takes place at the tangent modulus
critical load (with incipient unloading). It implies that the yield stress σ0

is small enough for the plastic strains to appear before buckling. In these
conditions, the critical loading ξc and the corresponding buckling mode X of
an arbitrary 3D body Ω can be obtained by solving the following bifurcation
equation [47, 48]:

∀ δu,

∫

Ω

∇T δu : Kp(ξc) : ∇X dΩ = 0 (5)

where δu can be considered as a test function or, more physically, as the
virtual variation of the unknown displacement field u. Such an equation has
been initially derived in the context of conservative systems. As will be seen
in a later section, additional terms will be included in the formulation so
as to take into account the follower nature of the external pressure in the
present study.

2.2. Biaxial stress state

In this section, the expressions of the elastoplastic tangent tensors Dp

and Kp will be explicited in the special case of a uniform biaxial stress state,
which is consistent with the pre-buckling stress distributions observed in the
following analyses.

Let (e1, e2, e3) be a fixed orthonormal basis. Owing to the small strain
assumption, the second Kirchhoff stress tensor coincides with the first Kirch-
hoff stress tensor which is supposed to be written in this basis as follows:

Σ ≈ Π = −ηξe1⊗ e1− ξe2⊗ e2 =





−ηξ 0 0
0 −ξ 0
0 0 0



 (ξ > 0, η ∈ R) (6)
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where the tensor expression and its matrix representation in the basis (e1, e2, e3)
have been put together for the sake of brevity. The loading level is reflected
by the value of parameter ξ and the scalar coefficient η represents the ratio
between the stress in the e1-direction and that in the e2-direction. One has
thus a compressive stress in the e2-direction, whereas a compressive or ten-
sile stress may be observed in the e1-direction, depending on the sign of η.
Hence, the material tangent elastoplastic tensor of Equation (2) becomes:

Dp = D− µ2

(H+3µ)(1−η+η2)
[η(I− 3e1 ⊗ e1) + I− 3e2 ⊗ e2]

⊗[η(I− 3e1 ⊗ e1) + I− 3e2 ⊗ e2]
(7)

where I is the second-order unit tensor.
The components of Dp in the orthonormal basis (e1, e2, e3) are:

Dp
1111 = λ+ 2µ− µ2(1−2η)2

(H+3µ)(1−η+η2)

Dp
2222 = λ+ 2µ− µ2(2−η)2

(H+3µ)(1−η+η2)

Dp
3333 = λ+ 2µ− µ2(1+η)2

(H+3µ)(1−η+η2)

Dp
1122 = λ+ µ2(1−2η)(2−η)

(H+3µ)(1−η+η2)

Dp
1133 = λ− µ2(1−2η)(1+η)

(H+3µ)(1−η+η2)

Dp
2233 = λ+ µ2(2−η)(1+η)

(H+3µ)(1−η+η2)

Dp
1212 = Dp

1313 = Dp
2323 = µ

(8)

The other components are either zero or derived from Equation (8) using
both major and minor symmetries of tensor Dp (Dp

ijkl = Dp
klij = Dp

jikl =
Dp

ijlk).
The nominal tangent elastoplastic tensor of Equation (3) then writes:

Kp = Dp − ηξei ⊗ e1 ⊗ e1 ⊗ ei − ξei ⊗ e2 ⊗ e2 ⊗ ei (9)

which is independent of the spatial coordinates (implicit summations are
made on repeated indices).

Furthermore, when dealing with two-dimensional models like plates or
shells, an ad hoc assumption has to be added in order to enforce some specific
stress state in the body. Namely, the normal material stress is assumed to be
zero: Σ33 = 0. Taking into account this assumption leads one to recast the
3D constitutive law and to replace tensor Dp in Equation (9) with a reduced
one denoted by Cp, whose components in the orthonormal basis (e1, e2, e3)
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are:

Cp
ijkl = Dp

ijkl −
Dp

ij33D
p
33kl

Dp
3333

(i, j) 6= (3, 3), (k, l) 6= (3, 3) (10)

Tensor Cp has the major and both minor symmetries and the following
notations will be further used for brevity:

α = Cp
2222 = E

1+4η(η−1)+3
ET
E

(5−4ν)(1+η2)−2(4−5ν)η−(1−2ν)[(1−2ν)(1+η2)−2(2−ν)η]
ET
E

β = Cp
1122 = E

2−5η+2η2−[2(1−2ν)(1+η2)−(5−4ν)η]
ET
E

(5−4ν)(1+η2)−2(4−5ν)η−(1−2ν)[(1−2ν)(1+η2)−2(2−ν)η]
ET
E

γ = Cp
1111 = E

(2−η)2+3η2
ET
E

(5−4ν)(1+η2)−2(4−5ν)η−(1−2ν)[(1−2ν)(1+η2)−2(2−ν)η]
ET
E

(11)

where the tangent modulus ET is related to the Young’s modulus E and the
isotropic hardening modulus H by 1

ET
= 1

E
+ 1

H
.

Finally, in a biaxial stress state and under the plane stress condition, the
bifurcation equation (5) writes:

∀ δu,

∫

Ω

∇T δu : (Cp−ηξcei⊗e1⊗e1⊗ei−ξcei⊗e2⊗e2⊗ei) : ∇X dΩ = 0

(12)

2.3. Follower external pressure

The cylindrical and spherical shells further analyzed will be mainly sub-
jected to an external pressure which naturally always acts perpendicularly to
the shell surface. This follower nature of the load makes the problem no more
conservative and additional terms are needed in the bifurcation equation (12)
in order to take into account the supplementary work done by the external
pressure on the deformed shell surface. This problem has been extensively
described by Paimushin [2, 49, 50] in the context of elastic buckling analyses
of cylindrical shells under external pressure and it was also discussed in detail
in [10]. The main issue is that the buckling pressure may highly depend on
whether one considers a dead or follower load.

Let again (e1, e2, e3) be a (local) orthonormal basis with e1 and e2 being
tangent to the undeformed surface of the shell at the considered point and
e3 the corresponding normal unit vector. The displacement vector of a point
on the mid-surface of the shell can be expressed in this basis as follows:

U = Ue1 + V e2 +We3 (13)
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Figure 1: Circular cylindrical shell under follower external pressure

and as can the virtual displacement field. The example of a cylindrical shell
is illustrated in Figure 1 with the use of a cylindrical coordinate system.

When considering a conservative dead pressure, the load vector simply
writes:

p = −pe3 (14)

as pressure is invariably a radially inward force in the direction of the unde-
formed normal to the surface, and the associated external work is as follows:

W dead
ext =

∫

S

p.δU dS = −
∫

S

pδW dS (15)

where S stands for the whole surface of the shell.
The classical bifurcation equation (5) turns out to be the difference be-

tween two rate equilibrium equations, one for the bifurcated solution and
the other one for the fundamental solution. Since the external work term
appearing in these two equations is similar in the conservative case (it does
not depend on the rates considered), it does not occur anymore in the final
bifurcation equation (the pressure is only taken into account through the
nominal tangent tensor).
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Conversely, in the case of a follower external pressure, the load vector
becomes:

p = −pm = −p(m1e1 +m2e2 +m3e3) (16)

where m is the modified normal (see Figure 1), namely the outward unit vec-
tor perpendicular to the actual deformed surface, and the associated external
work is as follows:

W follower
ext =

∫

S

p.δU dS = −
∫

S

p(m1δU +m2δV +m3δW ) dS (17)

In the general case, the expressions of m1, m2 and m3 (which depend on
the geometry and the kinematics of the shell) are highly non-linear. If it
is assumed that the rotations are small, some simplifications can be made.
m3 can be taken as equal to 1, in such a way that the corresponding term
in the external work will be discarded as in the conservative case. As for
m1 and m2, only the linear non-conservative terms will be retained, which
will be specified in the sequel. In the end, only the path-dependent external
work must be deduced from the original bifurcation equation, and the new
equation to be solved will thus take the following form:

∀ δu,
∫

Ω
∇T δu : (Cp − ηξcei ⊗ e1 ⊗ e1 ⊗ ei − ξcei ⊗ e2 ⊗ e2 ⊗ ei) : ∇X dΩ

+
∫

S
pc(m1δU +m2δV ) dS = 0

(18)
where pc stands for the critical external pressure. Thereafter, in each suc-
cessive application, the bifurcation parameter ξ and thus the corresponding
critical value ξc will be adequately expressed in terms of the external pressure
p and the associated critical value pc, respectively. The value of coefficient η
will also depend on the considered problem.

2.4. Shallow shell theory

In the following applications, it will be supposed that the wavelengths
of the buckling modes are small when compared to the smallest radius of
curvature of the shell. In such conditions, the shallow shell theory can be
used, which can be viewed as a flat plate theory including corrective terms so
as to take into account the curvatures of the shell. In practice, one considers
the plane tangent to the shell surface at a current point, and cartesian coor-
dinates x and y are defined in this plane in such a way that the projection
of the lines along the shell with principal radii of curvature on the tangent
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Figure 2: Shallow shell theory: use of cartesian coordinates in the tangent plane

plane coincide with x and y axes. A third coordinate z is then defined in the
direction normal to the shell (see Figure 2).

In concrete terms, the displacement u of an arbitrary point of the shell can
be initially viewed as a function of the three displacements U(x, y), V (x, y)
and W (x, y) along x, y and z axes, respectively, of its projection onto the
mid-surface, according to the classical thin plate kinematics:

u =

∣

∣

∣

∣

∣

∣

U − zW,x
V − zW,y
W

(19)

However, the gradient (or deformation) terms do not only derive from the
displacement field above, but also include complementary terms stemming
from the curvatures of the shell. Without going into details, the following
simplified results can be used, assuming that the in-plane displacements U
and V are considerably smaller than the out-of-plane displacement W (see
[51] for more information). The displacement gradient, which appears in the
bifurcation equation (18), turns out to be equal to:

∇u =





U,x −zW,xx −W
Rx

U,y −zW,xy −W,x
V,x −zW,xy V,y −zW,yy −W

Ry
−W,y

W,x W,y 0



 (20)

where Rx and Ry are the algebraic principle radii of curvature of the shell
along x and y axes, respectively.
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3. Analytical solutions

3.1. Cylindrical shells

3.1.1. External pressure

Let us consider first the problem of a simply-supported cylindrical shell
under external pressure. These boundary conditions enable one to obtain
closed-form solutions and correspond at best to the real conditions in the
presence of closure ends. The cylindrical shell is defined in the reference
configuration by its length L, its average radius R and thickness t ≪ R (see
Figure 3). The external pressure p gives rise to a uniaxial compressive hoop
stress in the circumferential direction −ξ = −pR

t
. The preceding general

biaxial formulation in Section 2.2 can be used here once η is set to zero.

Figure 3: Cylindrical shell under external pressure

Within the context of the shallow shell theory, x and y axes are chosen
as being respectively along the longitudinal and circumferential directions,
so that Rx is infinite and Ry = −R (this radius of curvature is negative since
the radial displacement is directed towards the outside of the cylinder).

The gradient of the bifurcation mode can thus be written as follows:

∇X =





U ,x −zW ,xx U ,y −zW ,xy −W ,x
V ,x −zW ,xy V ,y −zW ,yy +

W

R
−W ,y

W ,x W ,y 0



 (21)
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where U , V and W stand for the three displacement components of the
buckling mode X along x, y and z axes, respectively. The gradient of the
displacement variation δu takes a similar form.

According to this kinematics, the in-plane components of the normal
vector to the deformed mid-surface of the cylindrical shell are m1 = −W ,x
and m2 = −W ,y, as soon as only linear terms are retained.

With all these considerations, the bifurcation equation (18) can be ex-
plicited and solved. For this purpose, the tensor product∇T δu : Kp(ξc) : ∇X

is performed and first integrated in the shell thickness (from z = − t
2
to t

2
).

Then, the whole equation is adequately integrated by parts with respect to
x and y, giving rise to the three following local partial differential equations:



























γtU ,xx +(β + µ)tV ,xy +
(

βt

R
+ p

)

W ,x +(µt− pR)U ,yy = 0

(αt− pR)V ,yy +(β + µ)tU ,xy +αt
R
W ,y +µtV ,xx = 0

γt3

12
W ,xxxx +

(

(β+2µ)t3

6
− pRt2

12

)

W ,xxyy +
(

αt3

12
− pRt2

12

)

W ,yyyy

+
(

αt
R
− p

)

V ,y +βt

R
U ,x +

(

αt
R2 − p

R

)

W + pRW ,yy = 0

(22)

together with the corresponding natural boundary conditions, which will be
specified later. Presupposing that pre-critical deformations are small, a clas-
sical assumption is to neglect the stresses in relation to elastic moduli (and
elastoplastic ones, by extension). In practice, it results in pR

t
≪ α, β, γ, µ,

and it allows us to remove all the pressure terms between parentheses, so
that only one pressure term remains at the end of the third equation. By
doing so, the additional pressure terms originating from the follower nature
of the external pressure eventually turn out to disappear. It means that, with
such a shallow shell formulation, only one solution is expected, regardless of
whether one considers a follower or dead external pressure. It can be noticed
that, when using a more classical approach involving the more convenient
cylindrical coordinate system or in numerical analyses, one obtains two dif-
ferent expressions or values of the critical pressure, depending on its dead or
follower nature. It will be shown here that the single solution arising from
the use of shallow shell theory will be unexpectedly in better agreement with
the follower critical pressure.

As the special practical case of simply-supported end conditions has been
retained, the following displacement boundary conditions hold:

{

V(0, y) = V(L, y) = 0
W(0, y) = W(L, y) = 0

(23)
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This particular choice to set the circumferential displacement to zero and
not the longitudinal one enables one to get a simple explicit expression for
the critical buckling mode, as will be seen later. One must then verify the
following natural boundary conditions, deriving from the previous integration
by parts, that can be identified as the expression of a null axial normal force
and a null bending moment per unit length at both ends:



















γtU ,x (0, y) + βtV ,y (0, y) + βt

R
W(0, y) = 0

γtU ,x (L, y) + βtV ,y (L, y) + βt

R
W(L, y) = 0

γt3

12
W ,xx (0, y) +

βt3

12
W ,yy (0, y) = 0

γt3

12
W ,xx (L, y) +

βt3

12
W ,yy (L, y) = 0

(24)

The bifurcation mode satisfying all these boundary conditions may be
taken in the following form:







U = U0 cos(
mπx
L

) cos(ny
R
)

V = V0 sin(
mπx
L

) sin(ny
R
)

W = W0 sin(
mπx
L

) cos(ny
R
)

(25)

By inserting these expressions for the components of the buckling mode in
Equation (22), one obtains a linear system of homogeneous equations, whose
determinant must vanish in order to get a non-trivial solution. Solving this
determinant leads to the following general expression for the critical pressure:

pcylc =
(

t
[

α2µt2n8L8 + αR2t2m2n6L6π2(αγ − β2 + 4µ2)

+R4m4π4L4
[

12µR2(αγ − β2) + n4t2(−8µ2β + µ(6αγ − 8β2) + 2β(αγ − β2))
]

+γR6t2m6n2π6L2(αγ − β2 + 4µ2) + µγ2m8t2π8R8
])

/
(

12R3L4n2
[

αµn4L4 +R2m2n2π2L2(αγ − β2 − 2βµ) + γµπ4R4m4
])

(26)
In the case where buckling occurs in the elastic regime (ET = E), one

can use the elastic expressions of the reduced moduli: α = γ = E
1−ν2

and

β = Eν
1−ν2

. The elastic critical pressure writes then:

pcyle =
Et

Rn2

(mπR
L

)4
[

(mπR
L

)2 + n2
]2 +

D

R3n2

[

(
mπR

L
)2 + n2

]2

(27)

where D = Et3

12(1−ν2)
is the classical elastic bending stiffness.

16



This problem of elastic buckling of a cylindrical shell under external pres-
sure has been widely investigated in the literature, and it has led to several
expressions for the critical pressure, according to the underlying assumptions,
whose validity may depend on the geometric configuration (length-to-radius
or thickness-to-radius ratios, among other things). The present closed-form
solution takes a very simple form and it will be shown in the subsequent val-
idation section that it is valid for a large range of geometries. This formula
has already been derived in [7], but in a different way. In Equation (27),
the critical pressure depends on the circumferential wave number n and the
longitudinal half-wave number m, which have to be adequately identified so
as to find the minimum critical pressure, which alone is of practical interest.

When considering the elastoplastic expressions for the reduced moduli α,
β and γ in Equation (11), one obtains the analytical solution of the plastic
buckling critical pressure:

pcylp = −
(

Et
[

t2n8L8(E + 3ET )
2(1 + ν)− 8π2t2m2n6R2L6(E + 3ET )

(E(ν − 5
4
)− 3ET (ν + 1

4
)) + 24π4m4R4L4

(

t2n4(E2(ν − 2)

−3ETE(ν − 3) + 6E2
T (ν − 1

2
))− 8R2ET (1 + ν)(E(ν − 5

4
) + ET (ν − 1

2
)2)

)

−32π6t2m6n2ER6L2(E(ν − 5
4
)− 3ET (ν + 1

4
)) + 16π8R8t2E2m8(1 + ν)

])

/
(

48L4n2R3(1 + ν)
[

E(ν − 5
4
) + ET (ν − 1

2
)2
]

(n4L4(E + 3ET )− 4R2m2n2π2L2(E − 3ET ) + 4Eπ4R4m4)
)

(28)
Equation (28) is an original and quite long but closed-form expression of

the critical pressure of a cylindrical shell in the plastic regime. Again, the
wave numbers will be chosen appropriately so as to deal further with the
minimum buckling pressure. This formula will be validated in Section 4.

3.1.2. External pressure and axial compression

In practice, cylindrical pressure vessels are closed with top and bottom
ends, in such a way that the external pressure acting on these ends gives
rise to a given axial compression stress in the cylindrical shell, independent
of their shape (see Figure 4). This axial stress is half of the circumferential
stress, namely it is equal to −pR

2t
. In these real conditions, the cylindrical

shell undergoes a biaxial stress state. Nevertheless, it can be shown that the
buckling phenomenon is still mainly due to the circumferential compressive
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stresses, but that the critical pressure may slightly change due to the non-
negligible axial compressive stresses.

Figure 4: Cylindrical shell under external pressure and axial compression

In this section, one considers thus a cylinder subjected to a biaxial com-
pressive stress state, which amounts to taking ξ = pR

t
and η = 1

2
in the

preceding general formulation. Let us mention that the reduced moduli will
also change (at least in plasticity), due to this new biaxial stress state. With-
out going into details, by taking into account the pressure end thrust, the
three local buckling equations become:















γtU ,xx +(β + µ)tV ,xy +βt

R
W ,x +µtU ,yy = 0

αtV ,yy +(β + µ)tU ,xy +αt
R
W ,y +µtV ,xx = 0

γt3

12
W ,xxxx +

(β+2µ)t3

6
W ,xxyy +

αt3

12
W ,yyyy +

αt
R
V ,y +βt

R
U ,x

+ αt
R2W + pR

2
W ,xx +pRW ,yy = 0

(29)

where some pressure terms have already been discarded for the same reasons
as above.

The same kinematic and natural boundary conditions as before apply at
both ends of the cylindrical shell, and the same general expressions (25) can
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be used for the modal components. Finally, one obtains a new expression for
the critical external pressure:

pcyl−end
c =

(

t
[

α2µt2n8L8 + αR2t2m2n6L6π2(αγ − β2 + 4µ2) +R4m4π4L4

[

12µR2(αγ − β2) + n4t2(−8µ2β + µ(6αγ − 8β2) + 2β(αγ − β2))
]

+γR6t2m6n2π6L2(αγ − β2 + 4µ2) + µγ2m8t2π8R8
])

/
(

(6R5L2π2m2 + 12R3L4n2)
[

αµn4L4 +R2m2n2π2L2

(αγ − β2 − 2βµ) + γµπ4R4m4
])

(30)
A new analytical solution is thus obtained for the elastic critical pressure:

pcyl−end
e =

( Et

Rn2

(mπR
L

)4
[

(mπR
L

)2 + n2
]2 +

D

R3n2

[

(
mπR

L
)2 + n2

]2) n2

n2 + 1
2
(mπR

L
)2

(31)
In Equation (31), the term between parentheses corresponds to the elastic

critical pressure calculated without considering the pressure end thrust. The
new solution is therefore lower than the previous one, the axial compression
being detrimental to the current buckling phenomenon.

A new original formula is then obtained for the plastic buckling critical
pressure, also taking into consideration the new expressions of α, β and γ in
the present biaxial stress state:

pcyl−end
p =

(

Et
[

1
2
t2π8m8R8(E + ET

3
)2(1 + ν) + π4m4R6L2

(

E2
T [

8
9
n2t2m2π2(ν + 5

8
)− 32

3
L2(ν − 1

2
)(ν + 1)(ν + 1

2
)]

+8EET [
1
3
n2t2m2π2(ν + 3

4
) + L2(1 + ν)] + E2π2m2t2n2

)

+4
3
ETL

4n4t2π4m4R4[ET (3ν + 1) + E(ν + 3)]

+4
3
ETn

6π2t2L6m2R2[1
3
ET (8ν + 5) + E] + 8

9
E2

Tn
8L8t2(1 + ν)

])

/
(

6L2R3(1
2
π2R2m2 + L2n2)[E + 1

3
ET (1− 4ν2)](ν + 1)

[m4π4R4(E + 1
3
ET ) +

8
3
π2R2ETm

2n2L2 + 4
3
ETn

4L4]
)

(32)

3.2. Spherical shells under external pressure

Let us now consider the case of a spherical shell under external pressure.
The sphere is defined in the reference configuration by its average radius R
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and thickness t ≪ R (see Figure 5). The external pressure gives rise here to
a compressive equi-biaxial stress state, which amounts to taking ξ = pR

2t
and

η = 1 in the preceding formulation.

Figure 5: Spherical shell under external pressure

Within the context of the shallow shell theory, x and y axes are chosen as
being along two perpendicular great circles (or orthodromes) of the sphere,
so that Rx = Ry = −R.

The gradient of the bifurcation mode can thus be written as follows:

∇X =





U ,x −zW ,xx +
W

R
U ,y −zW ,xy −W ,x

V ,x −zW ,xy V ,y −zW ,yy +
W

R
−W ,y

W ,x W ,y 0



 (33)

and the gradient of the displacement variation δu takes a similar form.
According to this kinematics, the in-plane components of the normal

vector to the deformed mid-surface of the spherical shell are m1 = −W ,x
and m2 = −W ,y, like in the previous case of a cylindrical shell.

Then, after integration in the shell thickness and integration by parts
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with respect to x and y, the following buckling equations are derived:































(

αt− pR

2

)

U ,xx +(β + µ)tV ,xy +
(

(α+β)t
R

+ p

2

)

W ,x +
(

µt− pR

2

)

U ,yy = 0
(

αt− pR

2

)

V ,yy +(β + µ)tU ,xy +
(

(α+β)t
R

+ p

2

)

W ,y +
(

µt− pR

2

)

V ,xx = 0
(

αt3

12
− pRt2

24

)

W ,xxxx +
(

(β+2µ)t3

6
− pRt2

12

)

W ,xxyy +
(

αt3

12
− pRt2

24

)

W ,yyyy

+
(

(α+β)t
R

− p

2

)

V ,y +
(

(α+β)t
R

− p

2

)

U ,x +
(

2(α+β)t
R2 − p

R

)

W + pR

2
W ,xx +

pR

2
W ,yy = 0

(34)
where γ has been replaced by α since these two coefficients are equal, both
in elasticity and plasticity, due to the equi-biaxial stress state. By removing
all the negligible pressure terms in Equation (34), one obtains the following
simplified system:



















αtU ,xx +(β + µ)tV ,xy + (α+β)t
R

W ,x +µtU ,yy = 0

αtV ,yy +(β + µ)tU ,xy + (α+β)t
R

W ,y +µtV ,xx = 0
αt3

12
W ,xxxx +

(β+2µ)t3

6
W ,xxyy +

αt3

12
W ,yyyy

+ (α+β)t
R

V ,y + (α+β)t
R

U ,x +2(α+β)t
R2 W + pR

2
W ,xx +

pR

2
W ,yy = 0

(35)

where all the follower terms related to the external pressure do not appear
again.

Owing to the periodicity conditions inherent in the spherical nature of
the shell, the bifurcation mode may take the following form:







U = U0 sin(
kxx
R
) cos(kyy

R
)

V = V0 cos(
kxx
R
) sin(kyy

R
)

W = W0 cos(
kxx
R
) cos(kyy

R
)

(36)

where kx and ky are the wave numbers of the solution, respectively in the x
and y directions. By introducing the expressions above into the system of
partial differential equations (35) and solving the appropriate determinant,
one obtains again a general formula for the plastic buckling critical pressure
of a spherical shell:

psphp =
Et

[

k2
xyt

2(E2 + 6EET + 9E2
T ) + 96(1− ν − 2ν2)E2

TR
2 + 96EET (1 + ν)R2

]

12kxy(E + 3ET )(1 + ν)
(

(1− 2ν)ET + E
)

R3

(37)
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where kxy = k2
x + k2

y. As a result of this specific combination of the two
independent wave numbers in the general solution, it appears that at each
critical pressure (related to a specific value of kxy) correspond many multiple
modes with as many pairs of wave numbers. In practice, kx and ky (and
thus kxy) are sufficiently high so that the minimum critical pressure can
be obtained with a very good approximation by minimizing expression (37)
with respect to kxy considered as a real number (even though it is actually
an integer). After derivation of the expression of psphp as a function of kxy,
one obtains the minimum plastic buckling pressure:

psphp =
2

3

√
6EET

√

ET (ν + 1)(−2ETν + E + ET )

( t

R

)2

(38)

which corresponds to buckling modes with any combination of wave numbers
kx and ky that satisfies:

k2
x + k2

y = kxy =
4R

√

−12E2
Tν

2 + 6EETν − 6E2
Tν + 6EET + 6E2

T )

t(E + 3ET )
(39)

To the best of the authors’ knowledge, the closed-form solution (38) is
the first expression in the literature of the plastic bucking critical value of
a spherical shell under external pressure. This formula is quite simple and
gives rise, by taking ET = E, to the well-known elastic value initially derived
by Zoelly [11]:

psphe =
2E

√

3(1− ν2)

( t

R

)2

(40)

4. Numerical applications and finite element validation

4.1. Numerical modeling using Abaqus software

In this section, the previous closed-form solutions will be validated against
numerical results obtained through finite element computations using Abaqus
software. In elasticity, linearized buckling analyses can be performed but, in
plasticity, incremental calculations are needed so as to take into account the
material non-linearities. In practice, such computations are called Geometri-
cally and Materially Non-linear Analyses with Imperfections (GMNIA). Use
is made of arc-length approaches (Riks method) so as to deal with non-
monotonous equilibrium curves. In addition, imperfections are possibly in-
troduced (when necessary) so as to trigger the buckling phenomenon and
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follow the post-critical equilibrium path. Among a number of alternatives,
an initial geometric imperfection is preferred (when needed), in the shape
of the sought first buckling mode, which can be considered as the worst
imperfection type. This initial imperfection is included after a preliminary
linearized buckling analysis, with an optimal amplitude (the minimum value
leading to effective buckling). The resulting equilibrium curve obtained with
such a computation is supposed to be a slightly degenerated curve, when
compared to the idealized curve stemming from the perfect structure, and
it classically displays a limit point coinciding or almost coinciding with the
sought bifurcation point (at least in the two present configurations). In the
following validation sections, the analytical critical pressures will thus be
confronted to the limit admissible pressures arising from the numerical equi-
librium curves. The immediate post-critical deformed shapes will also be
plotted so as to identify the relevant first mode and compare it with the
analytical wave numbers.

Dealing with the finite element method, a shell finite element model is re-
tained, made of eight-node (quadratic) elements with five degrees-of-freedom
per node and reduced integration (S8R5 elements in Abaqus). A structured
mesh is built (as far as possible) and a mesh convergence study is performed
in each case. A parametric model has been developed so as to adjust the
proper geometric dimensions and material properties. Finally, the desired
boundary conditions are enforced (some of which to prevent from possible
rigid modes) and an external pressure is applied all over the shell structure.

4.2. Cylindrical shells

The case of an elastic cylindrical shell is first considered. Owing to the
symmetry of the expected buckling modes, only a quarter of the cylinder is
modeled (half of the length and half of the circumference), which consider-
ably reduces the computation times. The geometric parameters and elastic
properties are listed in Tables 1 and 2, respectively. When applying the
external pressure on the shell, two options are available (namely the choice
between a dead or follower pressure). These two assumptions conduce to
somewhat different critical values in the present case of a cylindrical shell.
Here, a follower pressure is naturally retained, as it corresponds to more re-
alistic conditions. At last, a short mesh convergence analysis leads to the
choice of an average element size of 100 mm.

In all the cases addressed thereafter, the order of appearance of the buck-
ling modes is the same whether one considers the analytical solutions or the
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Table 1: Cylindrical shell - Geometric parameters

Length L 5 m
Radius R 2.5 m
Thickness t 25 mm

Table 2: Cylindrical shell - Elastic material properties

Young’s modulus E 200000 MPa
Poisson’s ratio ν 0.3

numerical results. It means that the corresponding wave numbers perfectly
coincide between the two approaches, especially when focusing on the first
buckling mode. In both loading cases (with or without axial compression),
whether in elasticity or plasticity, it turns out that the longitudinal half-wave
number m minimizing the critical pressure is always equal to 1. Conversely,
the circumferential wave number n giving rise to the minimum pressure de-
pends on the material and above all geometric parameters. Dealing now with
the buckling pressures, the first five critical values are listed in Table 3, both
those derived from the analytical calculations and through the numerical lin-
earized buckling analyses, with and without the pressure end thrust. All the
results are shown to be in very good accordance, with a maximum relative
error of 2%. It means that the single solution derived through the use of
the shallow shell theory turns out to match better with the numerical results
obtained in the present case of a follower pressure.

Moreover, in this particular case, the results obtained with the model in-
cluding the axial compression only slightly differ from the ones obtained with
the external pressure alone. More generally, in elasticity, it can be checked
that the pressure end thrust will never affect the order of appearance of the
buckling modes. The analytical and numerical critical pressures are also
compared for the same first five modes in Figures 6(a) and 6(b), considering
the case without or with axial compression, respectively. For illustration pur-
poses, Figure 7 shows the first buckling mode of the cylinder under external
pressure and axial compression.
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Table 3: Cylindrical shell - comparison between analytical and numerical critical values
in elasticity

Mode
Analytical (elastic) FE (linearized) Relative error

pcyle pcyl−end
e pcyle−num pcyl−end

e−num

p
cyl
e −p

cyl
e−num

p
cyl
e

p
cyl−end
e −p

cyl−end
e−num

p
cyl−end
e

(MPa) (MPa) (MPa) (MPa) (%) (%)

1 0.9814 0.9488 0.9675 0.9337 1.42 1.59
2 1.0839 1.0572 1.0644 1.0373 1.80 1.88
3 1.1983 1.1419 1.2072 1.1457 -0.74 -0.33
4 1.3073 1.2826 1.2855 1.2606 1.67 1.72
5 1.5968 1.5728 1.5730 1.5491 1.49 1.51
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Figure 6: Cylindrical shell - analytical and numerical critical pressures for the first five
modes in elasticity: (a) under external pressure only; (b) including pressure end thrust

In Figure 8, the first (minimum) critical pressure is plotted for various
length-to-radius ratios, still comparing analytical and numerical results in
both loading cases (in practice, the radius is kept constant and the length is
varied). The corresponding values are also listed in Table 4. All the results
are shown again to be in very good accordance, with a relative error of 3%
at the maximum. Moreover, the comparison between the analytical values
with and without axial compression (last column of Table 4) shows a major
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Figure 7: Cylindrical shell under external pressure and axial compression: first buckling
mode in elasticity (n=6, m=1, pcyl−end

e−num =0.9337 (MPa))

influence of the pressure end thrust for particularly short cylinders, whereas
it hardly affects the critical value for sufficiently long cylinders. All these
results confirm the validity of the analytical solutions (27) and (31) for a
wide length range.
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Figure 8: Cylindrical shell - analytical and numerical first critical pressures in elasticity
vs. the length-to-radius ratio: (a) under external pressure only; (b) including pressure end
thrust

Next, incremental computations have been performed in plasticity, so as
to validate the plastic buckling results. In the present case of a cylindrical
shell, imperfections need to be introduced so as to trigger the buckling phe-
nomenon. The axial compression is first disregarded. In such conditions, it
can be shown that the order of appearance of the first buckling modes in

26



Table 4: Cylindrical shell - comparison between analytical and numerical first critical
values in elasticity for various length-to-radius ratios

L/R

Analytical (elastic) FE (linearized) Relative error Influence of the
pressure end thrust

pcyle pcyl−end
e pcyle−num pcyl−end

e−num

p
cyl
e −p

cyl
e−num

p
cyl
e

p
cyl−end
e −p

cyl−end
e−num

p
cyl−end
e

p
cyl
e −p

cyl−end
e

p
cyl
e

(MPa) (MPa) (MPa) (MPa) (%) (%) (%)

0.4 6.6133 5.4604 6.3814 5.3084 3.51 2.78 17.4
1 2.1194 1.9676 2.0903 1.9389 1.37 1.46 7.2
2 0.9814 0.9488 0.9675 0.9337 1.42 1.59 3.3
4 0.4883 0.4790 0.4813 0.4709 1.43 1.69 1.9
16 0.1202 0.1196 0.1172 0.1162 2.50 2.84 0.5

plasticity, as determined analytically, is the same as that obtained in elas-
ticity through finite element linearized buckling analyses, as seen in Table
5. The first mode in plasticity is notably the first mode already obtained in
elasticity, which will be thus employed as the initial imperfection shape in the
incremental calculations. A new geometry has been considered in plasticity
and a tangent modulus has been added to the model, which are all specified
in Table 5.

Figure 9 represents a typical force-displacement equilibrium curve ob-
tained through an incremental finite element calculation, involving the ap-
propriate modal imperfection. More precisely, the external pressure is plotted
versus the maximum amplitude of displacement throughout the shell. This
curve reveals first a linear elastic part, followed by a plastic part (after the
plastic threshold). Then the shell bifurcates to a post-buckled shape at a
critical point which is immediately followed by a limit point, which will be
thus identified as the (first) bifurcation point for comparison with analytical
values. Let us mention that the initial yield stress σ0 should be taken not
too far away from the critical point in order to avoid large pre-critical de-
formations (consistently with the theoretical assumptions). In practice, σ0 is
assigned a value of 95% of the critical (von Mises) stress. Two post-critical
deformation shapes have also been added in Figure 9, one just immediately
after the bifurcation point (namely at the limit point) and the other one
at the end of the computation. The former corresponds roughly to the bi-
furcation mode (displaying n=7 circumferential waves) and the latter to an
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Table 5: Cylindrical shell - comparison between elastic and plastic buckling modes (L=2.5
m, R=2.5 m, t=50 mm, H=2000 MPa)

Mode

External pressure External pressure & axial compression

FE (linearized) Analytical (plastic) FE (linearized) Analytical (plastic)

pcyle−num n (m = 1) pcylp n (m = 1) pcyl−end
e−num n (m = 1) pcyl−end

p n (m = 1)
(MPa) (MPa) (MPa) (MPa)

1 12.246 7 5.7748 7 11.123 7 2.3838 12
2 13.101 8 6.0437 8 11.780 6 2.3893 11
3 13.441 6 6.3279 6 12.179 8 2.3974 13
4 14.914 9 6.5486 9 14.087 9 2.4222 10
5 17.228 10 7.1786 10 16.516 10 2.4245 14
6 20.064 11 7.9032 11 16.627 5 2.4617 15
7 20.124 5 8.7113 12 19.331 11 2.4948 9
8 23.171 12 9.5982 13 22.468 12 2.5066 16

advanced post-critical state revealing a localization of the deformation.
Let us now consider the case of a cylinder under external pressure and

axial compression. It can be seen in Table 5 that the buckling modes in
plasticity are still generally the same as in elasticity, but not necessarily with
the same order of appearance. A particular attention must be thus paid to
the choice of the imperfection shape, which must correspond ideally to the
first mode in plasticity so as to trigger the proper buckling phenomenon. As
an example, with the parameters considered in Table 5, one must retain the
eighth elastic mode (still derived from a linearized buckling analysis) for the
definition of the imperfection shape, as it corresponds to the first mode in
plasticity with a wave number of 12.

Figure 10 displays again a typical equilibrium curve, namely the external
pressure versus the maximum displacement amplitude, in the case where the
pressure end thrust is taken into account. The post-critical deformed shapes
at the maximum pressure and at the end of the computation are also shown
in the same figure. At the critical point, the deformation of the shell is shown
to be consistent with the first analytical mode, since the wave number in the
circumferential direction is the same (n=12).

In both cases (with or without axial compression), analytical and numeri-
cal critical values are compared to each other. As seen in Table 6, the results
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Figure 9: Non-linear buckling analysis of a cylindrical shell under external pressure

are again in very good accordance, for various hardening moduli H.
Lastly, one focuses on the influence of the pressure end thrust. In plas-

ticity, this influence turns out to be much more significant as in elasticity.
Figure 11 displays the typical evolutions of the critical values in plasticity,
with or without axial compression, according to the circumferential wave
number n, provided by Equations (32) and (28), respectively (the nominal
value of hardening modulus H=2000 MPa has been considered again). It is
shown that the pressure end thrust significantly lowers the critical values and
even gives rise to a critical value that hardly depends on the wave number,
from a certain rank, as if there were many quasi-multiple modes. As a con-
sequence, the order of appearance of the buckling modes is modified when
taking into account the pressure end thrust in plasticity.

Finally, for comparison purposes, Figure 12 brings together the illustra-
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Figure 10: Non-linear buckling analysis of a cylindrical shell under external pressure and
axial compression

tion of the influence of the pressure end thrust in both elasticity and plastic-
ity, by plotting the ratio between the first critical pressures with and without
axial compression for a large range of length-to-radius ratios. As mentioned
above, in elasticity, the additional axial compression only changes the crit-
ical values of relatively short cylinders and to a small extent. By contrast,
in plasticity, its effect becomes more and more important when the cylinder
lengthens and, in any case, the critical value is strongly reduced (at least
twice) in presence of axial compression, whatever the length. This strong
influence of a transverse compressive stress on the plastic buckling of a shell
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Table 6: Cylindrical shell - comparison between analytical and numerical first critical
values in plasticity for various hardening moduli

H

External pressure External pressure & axial compression

FE Analytical (plastic) Relative error FE Analytical (plastic) Relative error

pcylp−num pcylp

p
cyl
p −p

cyl
p−num

p
cyl
p

pcyl−end
p−num pcyl−end

p

p
cyl−end
p −p

cyl−end
p−num

p
cyl−end
p

(MPa) (MPa) (MPa) % (MPa) (MPa) %

4000 5.8078 6.0624 4.20 2.5889 2.6208 1.22
2000 5.5229 5.7748 4.36 2.3418 2.3838 1.76
1000 5.4991 5.6035 1.86 2.1942 2.2400 2.04
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Figure 11: Cylindrical shell - critical pressures in plasticity, with and without axial com-
pression, vs. the circumferential wave number
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initially loaded by a uniaxial compressive stress was already observed in [42]
in the case of rectangular plates.
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Figure 12: Cylindrical shell - influence of the pressure end thrust on the first critical
pressure in elasticity and plasticity vs. the length-to-radius ratio (R=2.5 m, t=50 mm,
H=2000 MPa)

4.3. Spherical shells

Dealing now with spherical shells, elastic linearized buckling analyses are
first performed using Abaqus software so as to validate the closed-form ex-
pression (40) in elasticity. Only one eighth of the total sphere is modeled so
as to reduce the computation times (it will be shown that it does not prevent
us from obtaining all the sought buckling modes). The geometric parameters
and elastic material properties are summarized in Table 7. A regular quad-
rangular mesh has been retained so as to prevent from singularity problems
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(see Figure 13(a)). In the present case of a spherical shell, it is well-known
(at least in elasticity) that the critical pressure does not depend on the dead
or follower nature of the applied pressure. However, a follower external pres-
sure is retained, for consistency purposes. A short mesh convergence analysis
leads to the choice of an element size of about 20 mm.

Table 7: Spherical shell - Material and geometric parameters

Young’s modulus E 200000 MPa
Poisson’s ratio ν 0.3
Radius R 500 mm
Thickness t 5 mm

In this particular problem, due to the spherical symmetry of the geom-
etry and loading, it appears that the first modes (up to a very high rank)
all display almost the same critical pressure, as seen in Figure 13(b-f). The
presence of such multiple modes has already been emphasized during the
theoretical analysis, since it was proved that the critical pressure was only
dependent on the sum of the squares of the wave numbers, in such a way that
many pairs of wave numbers (namely many buckling modes) correspond to
the same critical values, especially to the minimum one. The order of appear-
ance of the buckling modes will thus highly depend on the mesh refinement.

The analytical minimum critical value (40) is then compared to its nu-
merical counterpart for various radius-to-thickness ratios in Table 8 (the
thickness is varied while the radius is kept constant). The maximum relative
error is less than 2%.

Last, incremental calculations are performed so as to validate the closed-
form expression of the critical pressure in plasticity (38). A corresponding
equilibrium curve is plotted in Figure 14 with the specified geometry and
hardening modulus. In plasticity, the first buckling modes are again associ-
ated to a unique critical value, so that the choice of the imperfection shape
among all these buckling modes would have no particular influence on the
results, at least on the maximum admissible pressure (the first mode ob-
tained in elasticity could be arbitrarily retained). In practice, the problem
of a spherical shell under external pressure is known to be very imperfection-
sensitive. For this reason, the intrinsic imperfection due to the geometric

33



Figure 13: Spherical shell under external pressure: structured mesh and first buckling
modes in elasticity

Table 8: Spherical shell - comparison between analytical and numerical first critical values
in elasticity for various radius-to-thickness ratios

R/t
FE (linearized) Analytical (elastic) Relative error

psphe−num psphe

p
sph
e −p

sph
e−num

p
sph
e

(MPa) (MPa) (%)

50 94.966 94.836 1.93
100 23.967 24.209 1.00
200 6.0378 6.0523 0.24
500 0.9688 0.9684 -0.04

discretization of the surface is sufficient to trigger the buckling phenomenon,
and it is not necessary to introduce an additional geometric imperfection into
the numerical model.
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Figure 14: Non-linear buckling analysis of a spherical shell under external pressure (R=500
mm, t=10 mm, H=2000 MPa)

The plastic critical values (both analytical and numerical) are eventu-
ally listed in Table 9 for different radius-to-thickness ratios. All the values
are again in very good accordance, which definitely validates the theoretical
formulation.

5. Comparison with current design codes

This last section aims at comparing the previous closed-form solutions to
results stemming from the use of standard design rules. Use will be made
of the current methodology implemented in the French CODAP [39] for the
buckling design of cylindrical shells, which is mostly derived from the ASME
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Table 9: Spherical shell - comparison between analytical and numerical first critical values
in plasticity for various radius-to-thickness ratios

R/t
FE Analytical (plastic) Relative error

psphp−num psphp

p
sph
p −p

sph
p−num

p
sph
p

(MPa) (MPa) (%)

50 10.9711 11.3785 3.58
100 2.7336 2.8446 3.90
200 0.6853 0.7112 3.64

Boiler and Pressure Vessel Code (BPVC) [38]. First, the calculation proce-
dure will be briefly described (interested readers may find a complete pre-
sentation of the method and its demonstration in [52]). Then, numerical
applications will be performed for various geometries, so as to confront the
results obtained by the current design rules and the previous closed-form
solutions.

In a few words, in the French CODAP, the critical external pressure of an
elastic cylindrical shell, accounting for the pressure end thrust, is classically
obtained through the following formula:

pc = KE
( t

Do

)3

(41)

where the coefficient K is supposed to depend only on the geometric charac-
teristics of the shell, namely the length L, thickness t and outside diameter
Do of the cylinder. Based on this, the critical circumferential stress can be
deduced:

Σc
θθ = pc

R

t
= KE

( t

Do

)3R

t
≈ KE

2

( t

Do

)2

(42)

and a pseudo-strain is evaluated as follows:

A =
Σc

θθ

E
≈ K

2

( t

Do

)2

(43)

This critical strain value A also depends only on the geometric parame-
ters, and it is determined in practice by using abacuses C4.2.9.1 [39]. From
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this numerical value and Young’s modulus, the critical pressure can be ob-
tained in a straightforward way, as soon as elasticity is concerned.

In the more general case of elastic-plastic buckling, a stress-strain curve
like the one displayed in Figure 15 is used so as to estimate a stress parameter
B. This curve results from an experimental uniaxial tensile test and applies
to carbon or low-alloy steels, within a particular temperature range. The
elastoplastic buckling pressure writes then:

pcyl−end
c−codap =

4B

Do/t
(44)

It can be checked that this expression gives naturally the same value in
elasticity as obtained by using directly Equations (41) and (43) (since the
linear elastic part of the stress-strain curve in Figure 15 satisfies actually the
equation B = EA/2). Finally, let us mention that, in practice, a knock-down
factor of 3 is then usually applied for design purposes.

In the sequel, a cylindrical shell of given length and radius is considered.
By varying the thickness, four cases are considered, represented by the four
numbered crosses on the stress-strain curve in Figure 15. In the first two cases
(1) and (2), the cylindrical shell is sufficiently thin so that the representative
point in the stress-strain curve belongs to the elastic part and the buckling
response is elastic. Conversely, the last two cases (3) and (4) correspond
to thicker cylindrical shells for which plastic buckling is expected, given the
position of the associated points on the behavior curve. The critical pressures
obtained through Equation (44) (without knock-down factors) are compared
to the analytical solutions previously derived, namely using Equations (31)
in elasticity and (32) in plasticity, respectively. The Young’s modulus and
tangent modulus involved in these equations are deduced from the stress-
strain curve of Figure 15, the latter depending on the slope of the curve at
the representative point in case of plasticity. All the critical pressures are
listed in Table 10 and the ratio between the value from the standard and the
corresponding analytical value is added for clarity purposes.

First, in elasticity, apart from the use of a safety factor, the present analyt-
ical solutions agree perfectly with the values provided by the CODAP/ASME
standard. In contrast, in the case of plasticity, the analytical critical pressure
is found to be equal to 75% on average of the corresponding value recom-
mended by the standard (this ratio of about 0.75 has also been obtained
in other configurations, by varying the length of the cylindrical shell). The
present work therefore shows, through these illustrative examples, that the
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Figure 15: Stress-strain curve used for the determination of the elastic-plastic buckling
pressures of cylindrical tubes under external pressure (accounting for pressure end thrust)
made of carbon or low-alloy steels under a temperature T < 150◦C [39]

Table 10: Cylindrical shell - comparison between the proposed closed-form solutions and
the French CODAP (R=500 mm, L=500 mm)

Cases R/t
French CODAP Analytical Relative ratio

A B pcyl−end
e−codap pcyl−end

p−codap pcyl−end
e pcyl−end

p
p
cyl−end
c

p
cyl−end

c−codap

(MPa) (MPa) (MPa) (MPa) (MPa)

(1) 500 0.0000819 8.489 0.03392 – 0.03395 – 1.001
(2) 200 0.000337 34.117 0.34032 – 0.34030 – 1.000
(3) 100 0.000967 75.993 – 1.5123 – 1.1067 0.732
(4) 50 0.002670 84.620 – 3.3513 – 2.6758 0.798
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current procedure in plastic buckling analysis is possibly not so conservative
as expected.

6. Conclusions

In this paper, the elastoplastic buckling problem of a shell under external
pressure has been investigated. A general approach has been defined, based
on the 3D bifurcation theory. The critical pressures and the associated buck-
ling modes are obtained by solving the so-called bifurcation equation, which
has proven to be successful in addressing many other buckling problems with
various geometries, loading conditions and constitutive laws. In the present
case, the classical bifurcation equation (conventionally used for conservative
problems) has been slightly modified so as to take into account the follower
nature of the external pressure. Next, the general choice was made of the
shallow shell theory to express the kinematics of the shells further considered,
in order to simplify at best the governing equations of the future problems.

This general formulation is then applied to the particular cases of a cylin-
drical and spherical shell. These two geometries are the most frequently
encountered in practical pressure equipments, and are also simple enough to
hope for explicit solutions. In the case of a cylindrical shell, axial compression
is added in a second step so as to take into account the pressure end thrust. In
all cases, closed-form analytical solutions are established. While elastic crit-
ical values are mostly well-known for these particular problems, the plastic
buckling pressures are supposedly original. For validation purposes, numer-
ical finite element computations are performed, namely linearized buckling
analyses in elasticity and incremental calculations in plasticity. As soon
as the buckling phenomenon occurs within the context of small pre-critical
transformations, the analytical and numerical results are found to be in very
good agreement. By the way, these formulae have enabled us to analyze
efficiently the main features of the buckling phenomena of such shell struc-
tures under external pressure, focusing naturally on the first critical value.
It was shown in particular that the occurrence of plasticity before buckling
modifies considerably the nature of the response and thus the collapse mode
of the structure. Not only the critical value is much lower in plasticity than
in elasticity, but also the buckling mode (identified here by a particular wave
number) can strongly change between the two cases. Also, the pressure end
thrust, which is traditionally known to be virtually not influential in the
elastic buckling of cylindrical shells under pressure, plays a major role in
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plasticity, where it reduces the critical value by a factor of about 2 to 5,
depending on the geometry of the cylinder.

In the end, this general formulation is shown to give satisfactory results
in the two cases of cylindrical and spherical shells. The new expressions
derived in plasticity enable one to extend rigorously the validity domain of
classical elastic critical values to moderately thick shells, for which plasticity
is expected to occur before instability. All these analytical simple formulae
constitute interesting reference expressions for dimensioning purposes. In
some cases, when plasticity is involved, they are found to be more conserva-
tive than the current design rules, and could thus serve as a basis for a new
formulation of such procedures. In all cases, they correspond to the idealized
context of perfect structures with simple boundary conditions, on the basis
of which one may build some more practical rules, including the influence of
imperfections or other perturbations. All of this motivates us to apply the
same formulation to new geometries and/or under other (possibly combined)
loading conditions, by using approximate solution methods, if necessary in
the case of more complex configurations. From all these results, a practical
tool is likely to be developed, only based on such analytical solutions, for the
purpose of designing pressure equipments as a whole against elastic/plastic
buckling.
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[11] R. Zoelly, Über ein Knickungsproblem an der Kugelschale, Ph.D. thesis,
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