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Abstract—We introduce an hybrid approach for computing
multiple knife-edge diffraction attenuation. First, we show that
the well-known Epstein-Peterson method can be considered as
the first order approximation of the Vogler method. In the other
words, the Vogler method is a combination of the Epstein-
Peterson method and an higher order approximation. Then,
we propose to learn the approximation based on deep learning
methods. The key advantage of this approach is the significant
reduction of generating training data to approximate the Vogler
method while still offering a good accuracy and fast computation.
Comparison to the state-of-the-art methods demonstrates the
effectiveness of our proposed approach.

I. INTRODUCTION

Estimation of diffraction loss from propagation of radio
waves over obstacles modeled by multiple knife edges is
an important problem in wireless channel modeling, radio
coverage prediction, to name a few [1].

Many approaches have been proposed to deal with this
crucial problem, ranging from accurate and computational
intensive methods to geometrical construction based trade-
off ones [1]. The fundamentals behind those approaches are
based on physics with rigorous theories. The Vogler [2] is one
of the best methods in terms of accuracy, supported by both
theoretical analysis and practical measurements [1]. However,
it is slow due to the high computational cost.

In the past few years, there has been a surge in methods
based on machine learning, particularly deep learning (DL),
for this problem. This growth is inspired by many empirical
successes in, for example, natural language processing and
computer vision [3]. The high capacity in modeling com-
plicated processes creates an attractive constituent of this
approach. The requirement of large data and long training
time, however, are always posing a challenge to use DL in
practice.

In [4], we proposed a deep neural network, known as
VoglerNet, to obtain an accurate estimation of the diffraction
values, where the training data are generated from the Vogler
method. Still, VoglerNet requires large training data to reach a
desired accuracy. Our objective here is to exploit the modeling
knowledge to reduce the amount of training data and, hence,
training time. To this end, we first show that the graphic based
Epstein-Peterson (E-P) method [5] can be regarded as the first
order approximation of the Vogler method. By using the E-P as
a baseline approximation, we then can learn the higher order
approximation by a deep neural network (DNN) with much
less training data while preserving the adequate accuracy and
being a fast solution.

II. MULTIPLE KNIFE EDGE DIFFRACTION
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Fig. 1: Geometry of multiple knife edges.

The geometry of N knife-edge diffraction is presented in
Fig. 1, where {h, } _, are the knife-edge heights to a ref-
erence surface, {gb"}fyzl are diffraction angles, and {r"}g:f
are N +1 separation distances between knife-edges. Moreover,
ho and hyyp denote the transmitter and receiver heights
respectively. To illustrate the key ideas, we will consider the
case of N = 3 herein. The E-P method calculates a diffraction
attenuation by examining each knife edge as a source for the
next one [5]:
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where v; = ¢,/ #7;:»11) with j and ) referring to imaginary
number and wavelength respectively. In a similar but more
accurate way, the diffraction attenuation is given by Vogler

method as follows [2]:
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and k = 27r/)\. If m = 0, we can simplify (2) as follows:
———=C3exp (03) H / exp (

III. PROPOSED APPROACH
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We first present the following lemma that describes the
relation between the Vogler and E-P methods. Then, inspired
by this connection, we propose to use a DL approach to
approximate higher-order terms that represent a non-linear
difference between attenuation values computed by the two
methods. More specifically, we use a multilayer cascade-
forwad neural network (CENN), instead of a feed-forward NN
(FFENN) as in [4], for this approximation task.

Lemma 1: Given the small angle assumption, that is,
sin(¢;) ~ ¢; and ¢; > 0, for i = 1,..., N, the Epstein-
Peterson method is a first order approximation of the Vogler
method, up to the scaling factor Cy. In the other words,

A\/ ~ CNAEP + O (m) (8)

where O (m),m > 1, refers to the higher order approximation
of the Vogler method.

Proof: By making the change of variable u = 4/ %”a:, for
i=1,---,N, we have

/ exp du—\/ / exp g )dx. )
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Lemma 1 shows that, by comparing to the first order approxi-
mation of the Vogler method, the E-P method underestimates
the diffraction attenuation loss by a factor of 20 log(C'y) [dB].

Motivated by this lemma, we propose to learn the non-linear
higher-order terms by a DNN as presented in Fig. 2. In the
training stage, a DNN is used to approximate the difference
between the Vogler and E-P method using the corrected
factor. Then, in the testing stage, this approximation helps
complement the results from the E-P method that provides
a ‘rough’ estimate. Thus, we can reduce the training data
significantly while retaining a good accuracy. We choose a
CFNN architecture that is similar to FENN but includes a con-
nection from the input and every previous layer to following
layers. Parameters of the CFNN are obtained by minimizing
a loss function by the Levenberg-Marquardt backpropagation
with a Bayesian regularization [4]. The loss function includes
empirical risk and Tikhonov regularization terms, aiming to
optimal to the given training dataset and to bypass overfiting
problem [3].
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IV. SIMULATION RESULTS

To illustrate the effectiveness of the proposed approach,
we used a test with N = 3. For a quantitative assessment,
path profiles including the heights of knife edges and their
separation distances were generated randomly in the range
of (0,1) and (1,10) km, respectively. Their corresponding
diffraction values were obtained by using Vogler algorithm.
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Fig. 2: Illustration of proposed system.
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Moreover, the dataset was randomly split into training (80%)
and test (20%) sets. The mean squared error (MSE) was
used as a performance metric. For qualitative assessment, we
verified the results with an example as described in [2] and [4]
(see Fig. 3) where the middle knife-edge (i.e., ho) with variable
height increasing from 0 to 0.8 km. The diffraction attenuation
curve, thus, coincides with that of the single knife-edge. We
can observe that, the proposed method resulted in has smaller
MSE (see Table I) and produced better curve trend than other
methods (see Fig. 3). Here, we obtain a similar result with
a dataset of 50.000 samples, 10 times smaller than 500.000

sam les used in [4] (i.e., in terms of qualitative assessment).
LE I: MSE-based error comparison of four algorithms for

a dataset of 50.000 samples.

Methods Proposed meth. ~ VoglerNet ~ E-P meth.  Shallow NN
MSE (dB)  1.38 2.26 695.88 10.98
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Fig. 3: Qualitative assessment of four different methods.

V. CONCLUSION

We have proposed a hybrid method to solve multiple knife
diffraction problem. By approximating higher-order terms by a
deep cascade-forward neural network in the training phase and
using this approximation to enhance the accuracy in the test
phase, we reached a similar accuracy as using larger dataset.
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