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Abstract

In class incremental learning, discriminative models are
trained to classify images while adapting to new instances
and classes incrementally. Training a model to adapt to new
classes without total access to previous class data, however,
leads to the known problem of catastrophic forgetting of
the previously learnt classes. To alleviate this problem, we
show how we can build upon recent progress on contrastive
learning methods. In particular, we develop an incremen-
tal learning approach for deep neural networks operating
both at classification and representation level which alle-
viates forgetting and learns more general features for data
classification. Experiments performed on several datasets
demonstrate the superiority of the proposed method with re-
spect to well known state-of-the-art methods.

1. Introduction
Despite the popularity and strong performances of deep

convolutional neural networks on computer vision tasks [9,
19], a number of problems are not yet fully addressed. No-
tably, the performance of a discriminative model is heavily
dependent on the amount of data available during learning,
whose availability and annotation in real-world problems
is either questionable or time-consuming. However, these
models are static, i.e. designed to be trained offline to solve
a task and then used to solve the same task, therefore if
the task changes overtime then these models will not au-
tomatically adapt. On the other hand, re-training a model
with newly acquired data about either new knowledge or
task data distribution changes will degrade performance on
the tasks previously learnt, a problem well known as catas-
trophic forgetting [17] in the incremental learning research
field.

To address this issue, prior works have focused on three
main concepts, namely data rehearsal, task recency bias

*Thanks to Naval Group for supporting this work

correction and knowledge distillation. Rehearsal-based
methods generate or store a small portion of data from
previous tasks and add them to the current task training
data [14,18,21] in order to keep information about previous
tasks in the dataset. As none or only a few samples from
past tasks are usually stored and rehearsed, the dataset used
for training is heavily imbalanced which leads to a score
magnitude bias in the output of the last fully connected
layer of the neural network towards most recent tasks; bias
that some works attempt to minimize [16, 21, 24]. Finally,
knowledge distillation approaches are regularisation-based
methods borrowed from the field of transfer learning that
add a term to the loss function in order to transfer knowl-
edge of the previous tasks towards the model being trained
for the current task [5, 6, 10, 18, 25].

Most of these methods operate at a classifier level, how-
ever we believe that maintaining a discriminative represen-
tation is equally important. In this context, in order to im-
prove the representation of the model during the incremen-
tal learning process, we believe that we can draw an analogy
with an emerging trend of representation learning called
contrastive learning [3, 8] that has been shown to improve
the discriminativeness of model representations [11]. We
thus propose a new approach for joint training of the repre-
sentation and the classification components of a model, via
contrastive and incremental learning. On the one hand, we
employ contrastive learning to learn a more discriminative
representation for new classes while keeping the discrim-
inative information of the previous representation for old
classes. And in the other hand we make use of incremen-
tal learning methods to train an unbiased classifier that also
adapts to new classes without forgetting previous ones.

2. Related works

Recently many advances have been proposed in repre-
sentation, transfer, and incremental learning. In this section
we will briefly describe the most important methods that
can be used to alleviate catastrophic forgetting happening
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in deep neural networks during incremental training.

2.1. Incremental learning

A significant amount of work has been proposed to al-
leviate catastrophic forgetting in the field of incremental
learning. We refer the interested reader to the following sur-
veys [4,16] for a detailed presentation of the state-of-the-art
and a comparison of the different algorithms of incremental
learning, allowing us to focus on the main components in
the following paragraphs.

Knowledge distillation was first introduced to the field
of incremental learning by Li et al. [13] and amounts to the
addition of a regularisation term to the training loss function
with the aim of transferring the knowledge from a teacher
model to a student model. In this work, the model from
the previous incremental step was used as a teacher and the
current model as a student to compare both models softened
output probability distributions. This method was shown to
transfer knowledge about the previous tasks into the new
model, therefore alleviating catastrophic forgetting.

This idea has been employed in numerous works includ-
ing iCarL [18] that first introduced the concept of data re-
hearsal to the incremental learning field. The optimal strat-
egy in term of performance would be to rehearse all of the
data previously seen, which is equivalent to ordinary clas-
sification. Conversely, in iCarL and most other works us-
ing rehearsal that emerged since then, the memory size was
considered very limited and fixed during the whole incre-
mental process in order to avoid oversimplifying the prob-
lem.

Another major bottleneck in incremental learning lies in
the fact that the dataset used for training is imbalanced. In
order to remove the bias towards recent classes, in iCarL,
Rebuffi et al. proposed to use a nearest-exemplar-mean
(NEM) classifier at test time instead of the classification
layer. Nevertheless, better performance was then achieved
in other works [1,21,24] by keeping the classification layer
while adding a post training phase to remove the bias from
the layer.

2.2. Contrastive learning

Initially introduced for unsupervised learning in sim-
CLR [3], contrastive methods have been shown to learn
discriminative representations also in supervised scenar-
ios [11]. Conceptually, the idea is to use heavy data aug-
mentation to create different views of each image and con-
sider views of the same samples as ”positives” and views
of different ones as ”negatives”. Then a contrastive loss
is used to pull the feature vectors of positive examples to-
gether while pushing negative ones apart. Khosla et al. [11]
showed that this approach learns more discriminative repre-
sentations with better generalisation capabilities than ones
learnt with conventional cross-entropy. Moreover, in incre-

mental learning it has been shown to learn representations
that contain general knowledge useful for the classification
of unseen classes which is particularly beneficial to transfer
to upcoming incremental steps [2].

In the field of transfer learning, while standard knowl-
edge distillation compares output probability distributions
to transfer knowledge from a teacher to a student model,
recent works showed that richer knowledge can be trans-
ferred from the features of the models [5, 6, 23]. Therefore
numerous methods based on contrastive learning have been
developed to transfer knowledge from models representa-
tions. In CRD [20], authors considered the representation of
the teacher as a different view of the same image and maxi-
mized mutual information between image views. Recently,
in SEED [7] and SSKD [22], state-of-the-art performance
was achieved in transfer learning by comparing pairwise
similarities between contrastive samples in the representa-
tion of the teacher and student [7, 22]. A simplified version
of SEED has further been applied to incremental learning to
alleviate forgetting of previous representations [2].

Overall, in [2] and [15] contrastive learning methods
were successfully applied to incremental learning to learn
more discriminative representations and allieviate forget-
ting of previous classes. However, the performances re-
mained limited due to the fact that contrastive learning
methods train only the feature extractor and have no impact
on the classification layer of the model. In order to circum-
vent this limitation, authors used a NEM classifier in [15]
and added another training step only for the classification
layer in [2], but our method is the first to our knowledge that
learns jointly the feature extractor and classification layer in
contrastive incremental learning.

3. The problem setting
In the class incremental problem setting that we consider,

a model is trained sequentially on multiple classification
tasks indexed by t ∈ {1, ..., T}. For a given classification
task at step t, a dataset {Xt,Yt} containing data belong-
ing to Ct classes is drawn randomly from a distribution Dt,
where Xt is a set of images and Yt the associated ground-
truth labels. For each task, the classes Ct are considered
disjoint and the data from the previous tasks is supposed
unavailable.

Let us denote by L the loss function used for the optimi-
sation, θ the parameters of the model trained for the incre-
mental learning step t, and Mt

θ the function representing
the model that we further decompose into Mt

θ = F t
ω ◦ φtϑ,

with φtϑ being the feature extractor, ◦ the composition op-
erator and F t

ω the classifier. If we consider the task at in-
cremental step T then the goal of the incremental learning
process is to minimize the empirical risk of all seen tasks
given limited access to data {Xt,Yt} from previous tasks
t < T and total access to data {XT ,YT } from the current
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task T :

L(θ) :=
1

T

T∑
t=1

EDt [L(Mt
θ(Xt),Yt)] (1)

4. Method

Like most state-of-the-art methods for incremental learn-
ing [18,21,24], we employ rehearsal-based training with the
cross-entropy loss LCE to learn new classes during each
incremental step and the distillation loss LD to preserve
knowledge about previously learnt classes. The usual base-
line incremental loss used in most studies is :

L = (1− λ)LCE + λLD (2)

With λ set to Cold
Cnew+Cold

[21, 24], Cold representing the
number of past classes andCnew the number of new classes.

Using this loss as a basis we add a contrastive learning
version of both LCE and LD in order to focus on the fea-
tures extracted by the model to learn better representations
for new classes, and extract and preserve richer knowledge
about the previous tasks. We therefore introduce the follow-
ing total loss function :

L = (1− λ)(
LCE + Lcon

2
) + λ(

LD + LDcon
2

) (3)

With Lcon being the contrastive loss described in section 4.2
learning better representations for new classes, and LDcon
the contrastive distillation loss described in section 4.3 pre-
serving the representation of past classes. During each
incremental step we then optimize the parameters of the
model in order to minimize the loss function described in
equation (3) over the incremental dataset containing the data
from new classes and the rehearsal memory. The overall
pipeline of our framework is shown in Figure 1 and ex-
plained in detail in the following subsections.

4.1. Baseline incremental learning method

In this section we will describe the incremental learn-
ing scheme using knowledge distillation and data rehearsal
on which is based our method. Let us consider the clas-
sification task at time t with Ct classes comprising Cnew
new classes and Cold past classes, the task dataset {Xt,Yt}
contains all the available data about the Cnew classes and
only the rehearsal samples stored about the previous Cold
classes. The model parameters θ are initialized with the
values obtained at the previous incremental step t − 1, and
Cnew new randomly initialized output nodes are added for
the new classes. Then the model is trained with the cross en-
tropy loss LCE to learn knowledge about new classes and

with the knowledge distillation loss LD to alleviate forget-
ting of the previous classes :

LCE(x, y) =
Ct∑
c=1

−δc=y log(pc(x)) (4)

LD(x) =
Cold∑
c=1

−qt−1
c (x) log(qtc(x)) (5)

where δc=y is the indicator function, pc(x) the output soft-
max probability for the cth class, qtc(x) =

eoc(x)/τ∑Cold
i=1 eoi(x)/τ

is

the softened softmax probability obtained from output node
oc of the model, τ is a temperature parameter, and qt−1

c (x)
is the same softened softmax probability but obtained from
the outputs of the model from task t− 1.

Furthermore, following each incremental learning step
we adopt the weight aligning bias correction method
from [24] that proved to be very effective in removing the
classification layer bias while requiring negligible compu-
tation time.

4.2. Supervised contrastive representation learning

In order to learn good representations for new classes
with contrastive learning, we use a setup similar to
CO2L [2]. First, when a batch of N samples {(xi, yi)}N1
is drawn from the dataset we use heavy data augmentation
to generate 2 augmentations {(x̂i, yi)}2N1 of each image.
Then, considering the augmented minibatch {(x̃i, yi)}3N1 ,
we extract the features ϕi = φtϑ(x̃i). Following [2,7,20,22],
a projection map Γtψ parametrized by ψ is used to project
features onto a d-dimensional unit hypersphere : z̃i =
Γtψ(ϕi)

∥Γtψ(ϕi)∥
, and the parameters ψ are optimized together with

the model parameters to minimize our overall loss described
in eq. 3. Finally, the contrastive features z̃i of the aug-
mented batch are used to minimize the asymmetric super-
vised contrastive loss introduced in [2] :

Lcon =
∑
i∈S

−1

|Pi|
∑
j∈Pi

log(
exp(z̃i · z̃j/τ)∑
k∈I
k ̸=i

exp(z̃i · z̃k/τ)
) (6)

where I is the augmented minibatch, S is the subset of I
containing only samples of new classes, Pi the subset of S
containing the positives of sample i, i.e. all the samples and
augmented samples of the same label, and τ is a temperature
hyperparameter.

Since the z̃i and z̃j represent the projection of the fea-
tures onto a d-dimensional unit hypersphere, the dot product
is equivalent to a cosine similarity. Therefore, this loss can
be seen as maximizing similarity between new classes sam-
ples and their positives while minimizing similarity with
negatives. Thus ”pulling” together new classes samples and
their positives in the representation while ”pushing” away
all other samples.
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Figure 1. Pipeline of the proposed approach. During each incremental step, images are sampled in minibatches from the incremental
dataset containing new data and rehearsal data in order to compute the four losses LCE , Lcon, LD , and LDcon used in eq. 3.

4.3. Contrastive past knowledge distillation

Using the asymmetric supervised contrastive loss allows
the model to learn better representations for new classes but
not for past classes. In order to preserve the good represen-
tation learnt previously for those classes we introduce a new
supervised contrastive distillation loss inspired from [22].
The general goal of this loss is to allow the representation
of the model to change to extract discriminative features
for new classes but to ensure the new features produce the
same similarities between rehearsal samples than the pre-
vious features. This way the representation is allowed to
adapt to new classes but the underlying information about
past classes is preserved.

Since the model Mt−1
θ from the previous incremental

step has not been trained on data about the new classes, the
representation obtained for the {(xi, yi)}yi∈Cnew is not nec-
essarily a very discriminative one. We therefore ignore sam-
ples from new classes when computing this distillation loss
in order to focus on preserving similarities between repre-
sentations of samples kept in the rehearsal memory.

Similarly to the loss Lcon described in the previous sec-
tion, using {(xi, yi), yi ∈ Cold} and {(x̂i, yi), yi ∈ Cold},
we compute zti , and ẑti , but also zt−1

i and ẑt−1
i , to obtain

the contrastive representation produced by Mt
θ and Mt−1

θ

for each image of past classes from the minibatch and the
augmented versions of these images. We then compute the
pairwise similarities between zi and ẑi for each model and
organize them into matrices Bt and Bt−1 with :

Bti,j =
zti · ẑtj
τ

(7)

where Bti,j contains the similarity between the contrastive
representation ofMt for xi and x̂j , and τ is another temper-

ature hyperparameter. We then apply softmax to each row
of the matrices Bt and Bt−1 to obtain probability distribu-
tions, and in analogy to the distillation process described
in eq. 5, we minimise the divergence between those two
probability matrices :

LDcon = −τ2
∑
i,j

Bt−1
i,j log(Bti,j) (8)

Overall, this loss allows the representation of the model to
adapt to new classes but ensures that the representation of
samples from previous incremental steps produce the same
similarities than in the representation of the previous model.

5. Experiments
In the following sections we will describe the details of

our algorithm and the general incremental setup we used,
compare our algorithm to other state-of-the-art methods and
conduct ablation studies to validate the effectiveness of our
method.

5.1. Experimental setup

We evaluate our algorithm and other methods on two
datasets that are widely used in incremental learning [18,21,
24], Cifar-100 and ImageNet-100. Cifar-100 [12] contains
32 × 32 pixel color images of 100 classes, with 500 images
per class for training and 100 images per class for valida-
tion. ImageNet-100 on the other hand contains images of 64
× 64 pixels and represents a subset of 100 random classes
from the ImageNet ILSVRC 2012 [19] dataset containing
1000 classes. Imagenet-100 contains 500 images per class
for training and 50 images per class for validation.

We employed PyTorch in our implementation and fol-
lowing [18, 21, 24] we chose the 32-layer Resnet model for
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Cifar-100 ImageNet-100
last Acc avg Acc last Acc avg Acc

Finetuning 8.81 ±0.38% 18.76 ±0.14% 8.66 ±0.28% 17.58 ±0.43%

iCarL CNN 39.47 ±0.75% 54.78 ±1.24% 40.65 ±1.17% 53.58 ±1.66%

iCarL NEM 47.80 ±0.73% 59.51 ±1.28% 47.82 ±1.07% 57.83 ±1.60%

CO2L 32.15 ±0.18% 47.27 ±0.10% 33.51 ±0.20% 50.01 ±1.03%

MDFCIL 50.43 ±0.71% 62.02 ±2.14% 46.29 ±1.84% 56.08 ±1.75%

Ours 50.81 ±0.59% 64.13 ±0.52% 47.64 ±1.32% 59.13 ±1.59%

Joint Training 69.39 ±0.26% 69.39 ±0.26% 67.24 ±0.78% 67.24 ±0.78%

Table 1. Class incremental learning performance on Cifar-100 and ImageNet-100 with 10 incremental steps and 10 classes added per step.
The top-1 average accuracy over all the incremental steps aswell as the accuracy after the last one are reported. For each method we report
the mean over 10 runs with random class orderings for fair comparison. For the method iCarL we report performances using the model
classification layer (iCarL CNN) and using their nearest exemplar mean classifier (iCarL NEM).

Cifar-100 dataset and 18-layer Resnet [9] for ImageNet-
100. We used the optimizer SGD with a momentum of
0.9, a batch size of 128, and a weight decay of 0.0002. We
trained our models for 250 epochs during each incremental
step, the learning rate starts at 0.1 and is divided by ten after
150, 180, and 210 epochs. The data augmentation applied
to training images consists in random cropping, horizontal
flip and normalization. The temperature parameter τ was
set to 2 in LD and 0.2 for the contrastive losses Lcon and
LDcon. Moreover, for the contrastive losses we create 2 im-
ages with the same data augmentation than the initial image
with the addition of color jitter and random color dropping
similarly to [2]. Following other contrastive learning meth-
ods [22] we use a 2-layer MLP to project features onto the
contrastive unit hypersphere. We separate each dataset in 10
incremental steps, starting initial learning with 10 classes
and adding 10 classes per step. Following [18] we use a
rehearsal memory of 2000 images and use the herding sam-
pling strategy.

5.2. Comparison to other methods

We compare our method to several other rehearsal based
competitive incremental learning algorithms :

Incremental Classifier And Representation Learning
(iCarL). [18] This algorithm uses a nearest-exemplar-mean
(NEM) classifier to remove new classes bias during eval-
uation time, trains the model using a binary cross-entropy
based classification and distillation loss, and uses data re-
hearsal with the herding selection strategy.

Maintaining Discrimination and Fairness in Class In-
cremental Learning (MDFCIL). [24] This method differ-
entiates itself from iCarL by using the conventional cross-
entropy for the classification and distillation losses and
adding the weight alignment step that we used in our al-
gorithm after each incremental training step to remove bias
from the classification layer of the model.

Contrastive Continual Learning (CO2L). [2] This
method trains a feature extractor using contrastive versions

of the classification and distillation losses used in incre-
mental learning. Compared to the contrastive losses used
in our method the main difference is the equation of their
contrastive distillation loss and its computation on all sam-
ples from the minibatches instead of just samples coming
from the rehearsal memory. Since their method trains only
a feature extractor they further add a second training step to
train a classifier with the conventional cross-entropy.

Finetuning. Finetuning represents the lower bound of
performance achievable in incremental learning. Finetuning
is a simple training setup with only the conventional cross
entropy applied to finetune the model with each incremental
dataset and no other incremental learning parts.

Joint-training. Joint-training in the other hand rep-
resents the upper bound of performances. It corresponds
to training a model from scratch with conventional cross-
entropy during each incremental steps with the total dataset
containing all data about new and past classes.

For thorough comparison of our method to state-of-
the-art ones we run each algorithm 10 times on the two
datasets considered with random class orderings. For fair
comparison, we use the same models for each algorithms,
so 32-layer Resnet for the dataset Cifar-100 and 18-layer
Resnet for the dataset Imagenet-100. Performances of con-
trastive methods are positively correlated with large batch
sizes [3, 20], but it is not the case for incremental methods.
Therefore we run all algorithms with a batch size of 128
on both datasets for an unbiased comparison and coherence
with other incremental non-contrastive studies. We report
in table 1 the top-1 accuracy obtained after the last incre-
mental step and the average incremental accuracy over all
incremental steps, ignoring the accuracy of the initial non-
incremental learning step. We further provide in figure 2 the
accuracy of each method on Cifar-100 as a function of the
number of classes seen during the incremental process.

As can be seen in table 1 and in figure 2 our method
slightly surpass all other methods on both datasets, ver-
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Figure 2. Evolution of the accuracy as a function of the number
of classes learnt incrementally. The mean performance obtained
on Cifar-100 over 10 training trials with random class orderings is
shown, excluding standard deviations for clarity.

ifying our idea that contrastive methods can be used to-
gether with current state-of-the-art incremental methods to
improve the representation of the model which in turn im-
proves downstream classification accuracy. Besides, we can
also observe on the figure 2 that the performances of the
other contrastive learning method CO2L are quite low on
Cifar-100 which can be explained by the batch size used
relatively low for the dataset compared to usual contrastive
learning batch sizes. However, since our method uses con-
trastive losses jointly with incremental losses we can see
that it is much more robust to small batch sizes.

5.3. Ablation Study

In order to validate the effectiveness of our method we
performed the following ablation studies :

• Ablation A. Ablation of LDcon. We remove the con-
trastive distillation loss from the optimization process
to evaluate the impact of this new distillation.

• Ablation B. Ablation of all contrastive losses. Remov-
ing only Lcon would also impact LDcon because Γt−1

ψ

would not have been trained by Lcon during the previ-
ous incremental step. Therefore we instead perform an
ablation of both Lcon and LDcon to see the added ben-
efit of contrastive losses and compare to ablation A to
see the added benefit of individual contrastive losses.

• Ablation C. Ablation of non-contrastive losses. In or-
der to observe the impact of the incremental losses we
perform an ablation of LCE and LD and keep only
Lcon and LDcon.

For a more straightforward comparison and since the fo-
cus of this ablation study is to evaluate the impact of each
part of our method and not to evaluate differences between
datasets, we compared performances only on the dataset
Cifar-100. We can see that the performances of our method
in table 1 and 2 are similar but not exactly the same, this is
the case because of different class orderings, therefore for
fair comparison we used the same random class orderings
for each ablation. We report in table 2 the top-1 average in-
cremental accuracy obtained with the model classifier and
with the nearest exemplar mean (NEM) classifier from [18].

The NEM classifier allows us to evaluate the represen-
tations of models without being impacted by the classifica-
tion layer. This classifier first computes the mean feature
vector of each class using the incremental training set and
the rehearsal memory after each incremental step. Then,
at test time, images are classified to the closest mean vec-
tor, therefore classifying images directly within the feature
space without the use of the classification layer or any other
parameters. Since all incremental losses are removed in ab-
lation C, the classification layer of the model is not trained
at all, therefore we make use of the NEM classifier to com-
pare its performances to the other ablations.

By comparing the full method and ablation C in table 2,
we can clearly see that adding incremental losses to the con-
trastive ones improves the method. Indeed, in ablation C the
top-1 accuracy is not provided because contrastive losses
only train the representation of the neural network and not
the classifier. This is the most straightforward benefit of
using them with incremental losses, the classifier is trained
jointly with the representation. Moreover, comparing NEM
accuracies we can see that incremental losses also improve
the representation of the model which is mainly due to LD

Top-1 accuracy Top-1 NEM accuracy
Full method 63.91 ±0.96% 63.10 ±1.10%

Ablation A 63.33 ±1.18% 62.71 ±1.28%

Ablation B 62.65 ±1.32% 61.39 ±1.18%

Ablation C - 58.51 ±1.05%

Table 2. Ablation study done on CIFAR100 with 10 incremental steps. We report the top-1 average incremental accuracy and NEM
accuracy. Each method was run 10 times with random class orders but with the same ones for each ablation for fair comparison. Ablation
C does not train a classification layer therefore top-1 accuracy can not reported and NEM accuracy is used instead to compare performances.
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that can extract knowledge about past classes from images
of new classes where LDcon uses only the rehearsal mem-
ory to extract knowledge about past classes.

On the other hand, comparing ablations A and B to
the full method shows that incremental losses also benefit
from contrastive ones as the addition of each contrastive
loss slightly improves accuracies. Indeed, in ablation A
where only Lcon is added compared to ablation B, the ac-
curacies are slightly higher which can be explained by the
representation of new classes during each incremental step
that is improved. And the same observation can be done
when comparing the full method to ablation A, the addi-
tion of LDcon further improves the representation of the
model by alleviating catastrophic of the features from pre-
vious classes therefore improving accuracy.

Overall, the ablation results show that the removal of
the incremental and contrastive losses both decrease per-
formances, therefore validating our hypothesis that both the
standard distillation and the contrastive distillation allevi-
ate forgetting and that the model benefits from using both.
Performance gains from contrastive losses however remain
moderate, we therefore believe it would be interesting for
subsequent works to increase overall importance of con-
trastive losses compared to incremental ones during training
and validate the method on large scale datasets.

6. Conclusion
In this work we adapted contrastive learning concepts to

the incremental learning problem. In particular, we showed
that while conventional incremental learning methods are
effective in alleviating catastrophic forgetting, they can fur-
ther benefit from contrastive learning losses both for learn-
ing more general knowledge from new classes and remem-
bering better the representation of past classes. This al-
lowed our proposed approach using both incremental and
contrastive learning concepts to jointly train the represen-
tation and classifier of the model and attain noticeable im-
provements over other state-of-the-art methods in the incre-
mental learning baseline scenario on two different datasets.
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