
HAL Id: hal-03761769
https://ensta-bretagne.hal.science/hal-03761769

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generalized recursive Vogler algorithm for multiple
bridged knife-edge diffraction

Viet-Dung Nguyen, Ali Mansour, Arnaud Coatanhay, Thierry Marsault

To cite this version:
Viet-Dung Nguyen, Ali Mansour, Arnaud Coatanhay, Thierry Marsault. A generalized recursive
Vogler algorithm for multiple bridged knife-edge diffraction. IEEE Transactions on Antennas and
Propagation, 2023, pp.1-1. �10.1109/TAP.2022.3187495�. �hal-03761769�

https://ensta-bretagne.hal.science/hal-03761769
https://hal.archives-ouvertes.fr


1

A generalized recursive Vogler algorithm for
multiple bridged knife-edge diffraction

Viet-Dung Nguyen, Member, IEEE, Ali Mansour, Senior Member, IEEE, Arnaud Coatanhay, Thierry Marsault

Abstract—In this paper, we consider problem of estimating
diffraction attenuation from approximation of a terrain using
multiple bridged knife-edge model. This model can be considered
as a generalization of well-known multiple knife-edge one where
spaces between knife-edge are bridged by reflecting surfaces. A
series based-standard solution is presented in the literature but
suffers from its very high computational complexity. We, thus,
propose to generalize the recursive Vogler algorithm developed
for multiple knife-edge model to tackle this problem. To reduce
complexity, the proposed algorithm exploit the recursive form to
avoid repeated calculations of the existing solution. Moreover, we
provide a complexity analysis of both the standard algorithm and
the proposed algorithm based on number of computed integrals.
Both theoretical and numerical results show that our proposed
algorithm is faster than the original one while having identical
accuracy, hence proving the effectiveness of our solution.

Index Terms—Multiple knife-edge diffraction, Vogler method,
recursive algorithm, terrain and radio propagation modeling

I. INTRODUCTION

Estimation of diffraction attenuation is an important prob-
lem used in radar [1], [2], propagation loss over irregular
terrains [1], [3]–[5], wireless sensor network [6], and 5G wire-
less communication and beyond [7]. Considering, for example,
a low altitude transmission among aeronautical systems and
ground stations in mountain regions, diffraction plays one of
dominant roles in mechanism due to the presence of terrain
irregularities and obstacles. Accurate estimation of diffraction
can, thus, provide advantages for channel modeling, radar
coverage, or interference calculation and suppression, to name
a few.

A. Related works

In the literature, depending on specific applications and
their corresponding terrains of interest, we can model ter-
rains by several basic geometric shapes such as single knife-
edge [1], multiple knife-edges [8]–[11], cylinders [12]–[14],
wedges [15]–[21] or combination of several basic shapes [22].

Different from those approaches, we are interested in the
case where a terrain can be approximately represented by
multiple bridged knife-edges model [23]. This model is formed
by bridging spaces among knife-edges (see Fig. 1). Moreover,
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the model also considers ground reflection of each bridged
segment and hence are suitable for characterizing both solid
terrains and irregular terrains (i.e., in the case where number
of knife-edges and segments are selected to be big enough).

The main advantage of this approach is its flexibility.
We mean that, i) it includes the most simple and popular
model, multiple knife-edges, as a particular case and takes
into account ground reflection which is often omitted in some
models; ii) it allows to obtain a good approximation of curved
terrains or small radius hills by a series of segments. In
applications such as prediction of diffraction over a spherical
Earth [23] or in transition region between knife edge theory
to smooth earth diffraction one [24], the later is essential.

In [25], the multiple bridged knife-edges model is intro-
duced first in the framework of Fresnel-Kirchhoff theory for
estimating multiple knife-edge diffraction of a solid terrain.
The disadvantage of this method is, however, its numerical
error of evaluating an integration to infinity of an oscillating
function which is difficult to preserve its accuracy.

Later on, in [23], the author presents a connection between
the derivation of [25] with the seminar work of Vogler [8]. A
series solution, in a similar form as the Vogler algorithm, is
also given for diffraction estimation. This solution overcomes
the mentioned error and is accurate with confirmation from
some standard tests. Still, its high computational complexity
limits its potential applications in practice.

In terms of modeling, multiple knife-edge model combined
with ground reflection is presented in [26] and [27]. It is
shown that the overall attenuation is combination of field
components related to a specific parameter of multiple knife-
edge diffraction one. However, in a direct implementation,
the number of component fields that the method needs to
compute increases significantly to number of knife-edges (i.e.,
precisely, 2N where N is number of knife-edges). Moreover,
for approximation of curved terrains or hills, this approach
can be inappropriate. Other approach for estimating diffraction
attenuation in different edge setups is to use 2D transition
function in the uniform geometrical theory of diffraction
(UTD) (see [18], [28], [29] and references therein for more
details).

B. Main contributions

To tackle the high computation complexity problem in [23],
we propose a generalized recursive Vogler algorithm for
multiple bridged knife-edge diffraction. The proposed algo-
rithm takes advantage of the recursive form to avoid repeated
calculation as the direct series solution, thus speeding up the
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TABLE I: Functions and symbols used throughout this paper.

Symbol/function Definition

i ,
√
−1 Complex number

I (m,β) , 2
m!
√
π

∫∞
β (u− β)m exp

(
−u2

)
du Repeated integrals

of the complementary
error function [31](n

m

)
, n!

(n−m)!m!
Binomial coefficient

k , 2π
λ

Wave number

calculation time. Moreover, we analyze in detail the computa-
tional complexity of four algorithms: our proposed algorithm,
the series solution [23] as well as direct and recursive Vogler
algorithms [8] in terms of number of computed integrals. The
numerical results in several standard scenarios show that our
proposed algorithm is much faster than the original series
solution while having identical accuracy, thus proving the
effectiveness of our analysis. The initial result of this study
is reported in [30]. Here, we provide an improved algorithm
and additional performance analysis and assessments.

The remainder of paper is organize as follow. In Section II,
we provide the background and existing solution of multiple
bridged knife-edge diffraction. Then, the proposed algorithm is
described in Section III. We illustrate a special case of N = 4
in Section IV. In Section V, we provide a complexity analysis
and comparison. Numerical results are given in Section VI.
Finally, Section VII concludes the paper.
Notation: The functions and symbols used throughout this
paper is presented in Table I.

II. THE SERIES BASED SOLUTION FOR MULTIPLE BRIDGED
KNIFE-EDGE DIFFRACTION

θ1 θ2

θN

. . .

. . .

h0 h1 h2 hN hN+1

r1 r2 rN+1

Fig. 1: Illustration of geometry for multiple bridged knife-
edges.

In this section, we summarize the results of applying
the Fresnel-Kirchhoff theory to multiple bridged knife-edge
diffraction presented in [25] and [23] and assumptions used to
derive such results.

An illustration of of geometry for multiple bridged knife-
edges is shown in Fig. 1. We denote: i) h0 and hN+1 are
the transmitter and receiver heights respectively; ii) {hn}Nn=1

are the knife-edge heights to a reference surface; iii) {θn}Nn=1

are diffraction angles; and iv) {rn}N+1
n=1 are N + 1 separation

distances among knife-edges. Moreover, for sake of simplicity,
the reflecting surfaces is assumed be perfect. It means that their
reflection coefficients are -1. Following derivation from [25]
and [23], the diffraction attention, AN , for the multiple bridged

knife-edge model is obtained by computing the following
integral

AN =(1/π)
N/2

KN exp (σN − σ′N )

×
∞∫
β1

· · ·
∞∫

βN

µ1∑
q1=1−λ1

· · ·
µN−1∑

qN−1=1−λN−1

(−1)
s

× exp (2f) exp

(
−

N∑
n=1

u2
n

)
du1 · · · duN (1)

where

KN =


1 for N = 1[

(
∑N+1

n=1 rn)
∏N

n=1 rn∏N
n=1 (rn+rn+1)

]1/2

, N ≥ 2
, (2)

σN =

N∑
n=1

β2
n, (3)

σ′N = ik

N∑
n=0

(hn+1 − hn)
2

2rn
, (4)

s =

N−1∑
n=1

qn, (5)

f =


0 for N = 1
N−1∑
n=1

γn , N ≥ 2,
(6)

γn = αn(−1)
qn (un − βn) (un+1 − βn+1) (7)

αn =

[
rnrn+1

(rn + rn+1) (rn+1 + rn+2)

]1/2

, 1 ≤ n ≤ N − 1,

(8)

βn = θn

[
ikrnrn+1

2 (rn + rn+1)

]1/2

, 1 ≤ n ≤ N. (9)

Here, λn and µn are set to one for the initial MBKED problem.
If the nth reflecting bridge is omitted, we will assign µn to
zero. Moreover, as mentioned in [23], λn will be set to zero
occasionally if the Babinet’s principle1 [32] is applied. .

This result is obtained by adapting the Helmholtz integral
to multiple bridged knife-edge diffraction for radio propaga-
tion [23]. In particular, the Helmholtz integral which represents
the field E at a point Xn+1 = (xn+1, yn+1, zn+1)T is written
as (see Eq. 1 in [25])

E (Xn+1) =

1

4π

∫∫
S

[
E (Xn)

∂

∂xj

(
exp (ikR)

R

)
− exp (ikR)

R

∂E (Xn)

∂x

]
dS

(10)

where E (Xn) refers to the field at Xn = (xn, yn, zn)T on
surface S, dS defines a surface element at point Y, and R is
the distance between X and Y. The following assumptions
(AS) are, then, used to make evaluation of the Helmholtz
integral tractable [25]:
• AS-1: small wavelength approximation. It means that the

wavelength is supposed to be much smaller than length

1Following the Babinet’s principle, we can convert a diffraction problem
involving thin diffracting screens into two new easier problems to solve.
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of any segment of the considered propagation path. This
assumption holds for very high frequency (VHF) and
ultra high frequency (UHF) bands.

• AS-2: paraxial approximation. This assumption corre-
sponds to the small angle approximation.

• AS-3: the regions of terrain perpendicular to the consid-
ered path is uniform. It means that the considered terrain
is simplified from three dimensions to two ones. In our
case, the direction along x-axis is propagation direction
and the terrain height is along z-axis.

• AS-4: backscattered fields are not used in the Kirchhoff
approximation.

By exploiting those assumptions and taking into account
perfect reflecting surfaces, the field relative to free-space one
is presented as in (1) after applying the result from evaluation
of (10) repeatedly for N knife-edges.

A series based solution to compute (1) is proposed in [23]
as follows

Theorem 1. (Evaluation of AN [23]): Given the following
notation, p1 ≡ p, pN ≡ 0, pN+1 ≡ 0, αN ≡ 1,

AN =2N
′−NKN

∞∑
p=0

2p
p1=p∑
p2=0

· · ·
pN−2∑
pN−1=0

ε

×
N∏
n=1

(pn−1 − pn+1)!α
pn−pn+1
n I (pn−1 − pn+1, βn)

(pn − pn+1)!

(11)

where N ′ is number of n values, n = 1, · · · , N , for which
λn = µn = 1; the value of ε is given by the following
condition: if there is at least one n so that λn = µn = 1
and pn − pn+1 is even, then ε = 0. Otherwise, ε = (−1)q

with q is the number of values of n for which λn = 0 and
pn − pn+1 is even.

Even providing accurate result, the calculation of AN as
presented in Theorem 1 is not efficient in terms of computa-
tional complexity. To overcome this problem, we propose in
next section a fast recursive algorithm which is inspired by the
recursive Vogler algorithm introduced in [8] and proved later
in [11]. We note that the series based algorithm following
Theorem 1 and our proposed algorithm have a series based
form. To distinguish two algorithms, we will use the term “re-
cursive” for our algorithm to emphasize its key implementation
characteristic.

III. PROPOSED METHOD: GENERALIZED RECURSIVE
VOGLER ALGORITHM

Before presenting the main results, we first introduce the
following lemma which is useful for algorithm derivation and
analysis later.

Lemma 1. (A recursive representation of multinomial theo-
rem [11]) Following (6), fm can be given by (12) for N ≥ 3
at the top of the next page

By applying Lemma 1, we benefit from avoiding repeated
calculation (see Section V for a detail analysis). We propose
the following two main results:

Theorem 2. (Recursive computation of AN ): Let

C (N − 1,mN−2,mN−3)

= (−1)
qN−1mN−2

× (mN−3)!α
mN−2

N−1 I (mN−3, βN−1) I (mN−2, βN ) . (13)

Then, given the following notation

i = mN−L, j = mN−L−1, k = mN−L−2

2 ≤ L ≤ N − 2, N ≥ 4

and the recursive relationship

C (N − L, j, k)

=

j∑
i=0

(−1)
qN−L(j−i)

× (k − i)!
(j − i)!

αj−iN−LI (k − i, βN−L)C (N − L+ 1, i, j) ,

(14)

the diffraction attenuation of MBKE, AN is given by

AN =
1

2N
KN exp (σN − σ′N )

×
µ1∑

q1=1−λ1

· · ·
µN−1∑

qN−1=1−λN−1

(−1)
s
∞∑
m=0

Im

where Im is computed recursively as follows

Im = 2m
m∑

m1=0

(−1)
q1(m−m1)

× αm−m1
1 I (m−m1, β1)C (2,m1,m) . (15)

Proof. See Appendix A

Compared to the recursive Vogler algorithm [8], the pro-
posed theorem here is more general with the appearance
the sums over {qn}Nn=1 which takes into account reflecting
surfaces. In the other words, the recursive Vogler algorithm [8]
is a specific case of the proposed algorithm.

Now we present our case of interest where bridging terrains
are presented among all the knife edges, but not on either side
of them. This case corresponds to full multiple bridged knife-
edge model as in Fig. 1. In terms of mathematical represen-
tation, the sums over {qn}Nn=1 in Theorem 2 are ’absorbed’
through some factors and we obtain a ’compacter’ form. In
particular, we achieve a generalized result of the recursive
Vogler algorithm for multiple knife-edge model where the
main differences are the factors presenting the appearance of
perfect reflecting surfaces (i.e., 1 − (−1)

mN−2 , 1 − (−1)
j−i,

and 1− (−1)
m−m1 in (16), (17) and (18) respectively)

Theorem 3. (Recursive computation of AN where bridging
terrains are presented among all the knife edges, but not on
either side of them): Let

C (N − 1,mN−2,mN−3)

= (1− (−1)
mN−2)

× (mN−3)!α
mN−2

N−1 I (mN−3, βN−1) I (mN−2, βN ) . (16)
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fm =

m∑
m1=0

(
m
m1

)
γm−m1

1

[
m1∑
m2=0

(
m1

m2

)
γm1−m2

2

[
. . .
[ mN−3∑
mN−2=0

(
mN−3

mN−2

)
γ
mN−3−mN−2

N−2 γ
mN−2

N−1︸ ︷︷ ︸
1stterm

]]

︸ ︷︷ ︸
(N−3)thterm

]

︸ ︷︷ ︸
(N−2)thterm

(12)

Then, given the following notation

i = mN−L, j = mN−L−1, k = mN−L−2

2 ≤ L ≤ N − 2, N ≥ 4

and the recursive relationship

C (N − L, j, k)

=

j∑
i=0

(
1− (−1)

j−i
)

× (k − i)!
(j − i)!

αj−iN−LI (k − i, βN−L)C (N − L+ 1, i, j) ,

(17)

the diffraction attenuation of MBKE, AN is given by

AN =
1

2N
KN exp (σN − σ′N )

∞∑
m=0

Im

where Im is computed recursively as follows

Im = 2m
m∑

m1=0

(
1− (−1)

m−m1

)
× αm−m1

1 I (m−m1, β1)C (2,m1,m) (18)

Proof. See Appendix B

Implementation details: For implementation, we provide
the following details to reduce the number of computed
integrals significantly. First, if (mi − mi+1) is even, then(

1− (−1)
mi−mi+1

)
= 0. Thus, we do not need to compute

the corresponding coefficients and save the overall complexity.
Second, we note that the calculation of coefficients C in (17)
in a recursive way include two steps: forward and backward.
In the forward step, we verify if the term

(
1− (−1)

j−i
)

of
C (N − L, j, k) is zero or nonzero. If it is zero, we omit
and continue to the next step. Otherwise, the integral will
not be computed yet until we continue to check through
C (N − L+ 1, i, j) at the backward step be nonzero. It means
that the integrals will only be computed if both

(
1− (−1)

j−i
)

and C (N − L+ 1, i, j) are nonzero. In this way, there is no
redundant computed integral. Moreover, we also apply this
procedure to compute Im in (18). By applying this procedure,
we gain in terms of complexity considerably (see proof of
Proposition 4 for a detailed analysis).

IV. CASE STUDY OF FOUR KNIFE-EDGES (N = 4)

To illustrate key steps, we consider a case study of N = 4.
Using Taylor series expansion of exp(2f), we can rewrite (1)
as

A4 = (1/π)
2
K4 exp (σ4 − σ′4)

×
µ1∑

q1=1−λ1

· · ·
µ3∑

q3=1−λ3

(−1)
s
∞∑
m=0

Im (19)

where

Im =

(
2m

m!

)(
2√
π

)4
∞∫
β1

∞∫
β2

∞∫
β3

∞∫
β4(

m∑
m1=0

(
m
m1

)
γm−m1

1

m1∑
m2=0

(
m1

m2

)
γm1−m2

2 γ3
m2

)

× exp

(
−

4∑
n=1

u2
n

)
du1 · · · du4. (20)

A. General case

Recall that, from (6) and (7), for N = 4,

γn = (−1)
qnαn (un − βn) (un+1 − βn+1) , n = 1, 2, 3.

(21)

Substituting (21) into (20) yields

Im =

(
2m

m!

)(
2√
π

)4
∞∫
β1

∞∫
β2

∞∫
β3

∞∫
β4( m∑

m1=0

m!

(m−m1)!m1!
(−1)

q1(m−m1)

× αm−m1
1 (u1 − β1)

m−m1(u2 − β2)
m−m1

×
( m1∑
m2=0

m1!

(m1 −m2)!m2!
(−1)

q2(m1−m2)
αm1−m2

2

× (u2 − β2)
m1−m2(−1)

q3m2αm2
3 (u3 − β3)

m1(u4 − β4)
m2

))
(22)

Let

C (3,m2,m1) = (−1)
q3m2m1!αm2

3 I (m1, β3) I (m2, β4) .
(23)
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Then we can simplify (22) as

Im =

(
2m

m!

)(
2√
π

)∫ ∞
β1

m∑
m1=0

m!

(m−m1)!
(−1)

q1(m−m1)

× αm−m1
1 (u1 − β1)

m−m1C (2,m1,m) exp
(
−u2

1

)
du1

(24)

where

C (2,m1,m) =

m1∑
m2=0

(m−m2)!

(m1 −m2)!
(−1)

q2(m1−m2)

× αm1−m2
2 I (m−m2, β2)C (3,m2,m1)

(25)

Finally, we obtain

Im = 2m
m∑

m1=0

αm−m1
1 (−1)

q1(m−m1)

× I (m−m1, β1)C (2,m1,m) . (26)

B. Specific case: full multiple bridged knife edges

In this section, we present a specific case where bridging
terrains are presented among the knife edges, but not on either
side of them. This case of interest is equivalent to a ‘full’
multiple bridged knife edges and allows to simplify the final
form of A4. In particular, qi = 0 and 1 for i = 1, · · · , 3
and we can exchange the sum related to qi to the coefficient
C (3,m2,m1). Thus, we can rewrite A4 as follows

A4 =
1

24
C4 exp (σ4 − σ′4)

∞∑
m=0

Im (27)

where

Im = 2m
m∑

m1=0

αm−m1
1 I (m−m1, β1)C (2,m1,m)

(28)

C (2,m1,m) =

m1∑
m2=0

(m−m2)!

(m1 −m2)!

× αm1−m2
2 I (m−m2, β2)C (3,m2,m1)

C (3,m2,m1) = m1!αm2
3 I (m1, β3) I (m2, β4)

×
∑
q1

∑
q2

∑
q3

ρq1,q2,q3 (29)

with

ρq1,q2,q3 = (−1)
ψ(q1,q2,q3) (30)

and

ψ (q1, q2, q3) =

q1 (m−m1 + 1) + q2 (m1 −m2 + 1) + q3 (m2 + 1) .
(31)

Indeed, we grouped the coefficients related to qi in (26), (25),
and (23) to obtain ρq1,q2,q3 . Let

Θ =
∑
q1

∑
q2

∑
q3

ρq1,q2,q3 . (32)

Considering all combination of qi, the sum of all correspond-
ing ρq1,q2,q3 can be computed by

Θ =

(−1)
ψ(0,0,0)

+ (−1)
ψ(0,0,1)

+ (−1)
ψ(0,1,0)

+ (−1)
ψ(0,1,1)

+ (−1)
ψ(1,0,0)

+ (−1)
ψ(1,0,1)

+ (−1)
ψ(1,1,0)

+ (−1)
ψ(1,1,1)

=
[
1 + (−1)

m1−m2+1
] [

1 + (−1)
m2+1

]
+ (−1)

m−m1+1
[
1 + (−1)

(m1−m2+1)
] [

1 + (−1)
(m2+1)

]
=
[
1− (−1)

m−m1

] [
1− (−1)

m1−m2

] [
1− (−1)

m2
]
.

(33)

Then, by re-arranging those factors, we obtain the exact result
of Theorem 3 for N = 4

Im = 2m
m∑

m1=0

(
1− (−1)

m−m1

)
× αm−m1

1 I (m−m1, β1)C (2,m1,m) (34)

where

C (2,m1,m) =

m1∑
m2=0

(
1− (−1)

m1−m2

)
× (m−m2)!

(m1 −m2)!
αm1−m2

2 I (m−m2, β2)C (3,m2,m1) (35)

and

C (3,m2,m1)

= (1− (−1)
m2) (m1)!αm2

3 I (mN−3, β3) I (m2, β4) . (36)

Moreover, by applying the procedure as described in the
implementation details, we gain number of computed integrals
significantly.

V. COMPLEXITY ANALYSIS AND COMPARISON

In this section, we use number of repeated integrals of the
complementary error function computed, referred here as ηNI ,
as a complexity index for comparison. The motivation behind
using this index is that it contributes the dominant part and
correlates well with overall complexity of algorithms.

We provide an analysis of four algorithms: Vogler and
recursive Vogler algorithms [8], the series based algorithm [23]
and our proposed algorithm. Four algorithms have a similar
form and can be considered as a class.

Let M be a truncated value of the index m. The complexity
of the Vogler algorithm [8] is given by the following propo-
sition.

Proposition 1. Number of repeated integrals of the comple-
mentary error function of the Vogler algorithm [8] is given
by

ηNI = N

N−1∏
n=1

(M + n)

n
. (37)

Proof. See Appendix C.

The complexity of the recursive Vogler algorithm is pre-
sented as follows.
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TABLE II: Complexity comparison in terms of computed integrals among algorithms for multiple knife-edge (MKE) and
mutiple bridged knife-edge (MBKE) models.

MKE
Vogler algorithm [8] ηNI = N

N−1∏
n=1

(M+n)
n

Recursive Vogler algorithm [8] ηNI = 3
N−1∏
n=1

(M+n)
n

+
N−2∏
n=1

(M+n)
n

+ · · ·+
2∏

n=1

(M+n)
n

MBKE

Series based-algorithm [23]

if N is even, ηNI =


N
N−1∏
n=1

(M−1)+(N−1)−2(n−1)
2n

, if M is even

N
N−1∏
n=1

M+(N−1)−2(n−1)
2n

, otherwise

if N is odd, ηNI =


N
N−1∏
n=1

M+(N−1)−2(n−1)
2n

, if M is even

N
N−1∏
n=1

(M−1)+(N−1)−2(n−1)
2n

, otherwise

Generalized Recursive Vogler algorithm Upper bounded by ηNI of the series based algorithm.

Proposition 2. Following the recursive implementation in [8],
number of repeated integrals of the complementary error
function is given by

ηNI = 3

N−1∏
n=1

(M + n)

n
+

N−2∏
n=1

(M + n)

n
+ · · ·+

2∏
n=1

(M + n)

n
.

(38)

Proof. See Appendix D.

The complexity of the series based-algorithm is given by
the following proposition.

Proposition 3. Following Theorem 1, number of repeated
integrals of the complementary error function of the series
based algorithm is given by
• If N is even,

ηNI =


N

N−1∏
n=1

(M−1)+(N−1)−2(n−1)
2n , if M is even

N
N−1∏
n=1

M+(N−1)−2(n−1)
2n , otherwise

(39)

• If N is odd,

ηNI =


N

N−1∏
n=1

M+(N−1)−2(n−1)
2n , if M is even

N
N−1∏
n=1

(M−1)+(N−1)−2(n−1)
2n , otherwise

(40)

Proof. See Appendix E.

Now, we present the complexity of our proposed algorithm.

Proposition 4. Following the recursive implementation in The-
orem 3, the number of repeated integrals of the complementary
error function is upper bounded by that of the series based-
algorithm.

Proof. See Appendix F.

It is worth mentioning that, by comparing the result from
Proposition 1 and 2, for N = 3, η3

I of the Vogler algorithm
and the recursive Vogler algorithm are identical in the case of
the multiple knife edge (MKE) model; by comparing the result
from Proposition 3 and 4, η3

I of the series based algorithm and

the proposed algorithm are the same in the case of multiple
bridged knife edge (MBKE) model; If we compare between
the cases of MKE and MBKE, algorithms in MKE has higher
complexity than those in MBKE.

For N > 3, the recursive form presents its advantage where
for both MKE and MBKE, the recursive algorithms have lower
value of ηNI than their non-recursive ones. The gain in terms of
complexity become significantly when M increases (i.e., the
accuracy increase). For MBKE model, by providing an upper
bound, the complexity of our proposed algorithm is always
lower than or equal to that of the series based-algorithm, thus
proving the effectiveness of the proposed solution (see also
Fig. 2 for an illustration).

M
10 20 30 40 50 60 70 80 90

η
N I

×106

0

2

4

6

8

10

12

14

16
Number of integrals as a function of M: N = 5

Vogler alg.(MKE)
Recursive Vogler alg.(MKE)
Series based alg.(MBKE)
Proposed alg.(MBKE)

M
60 70 80 90

×106

-1

-0.5

0

0.5

1

upper bound

Fig. 2: Computational complexity comparison: number of
computed integrals ηNI as a function of the truncated value
M . The lower curve is, the lower complexity is. The figure
on the bottom left corner is a zoomed version of the main
figure at the upper bound. The complexity of our proposed
algorithm is lower than that of series based one.

VI. NUMERICAL RESULTS

We provide numerical results to assess the effectiveness of
our proposed algorithm. We compare our algorithm with series
based algorithm in [23] and the recursive Vogler algorithms
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in [8] in terms of accuracy and complexity. For the complexity,
we provide the running time of CPU results as an additional
and relative assessment besides theoretical analysis in Section
V. To this end, we use several standard scenarios suggested
in the literature [1], [8], [23], [27].

A. Effect of truncated value M on accuracy

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

22

24

26

28

30

32

34

36

38

40

Fig. 3: Illustration of effect of truncated value M on accuracy.
Four different values M = 5, 10, 50, 90 are chosen. The accu-
racy is proportional to values of M . When M is large enough
(i.e., M = 50) in this experiment, increasing M has negligible
errors. Here, the accuracy of final results corresponding to
M = 50 and 90 are almost identical.

The truncated value M of index m has impact on both
accuracy and computational complexity. The effect of M on
the complexity of algorithms has already shown in Table II
and Fig. 2. Thus, before comparing algorithms, we illustrate
the effect of M on the accuracy of final result (see Fig. 3) in
the following experiment: we study a propagation path with a
distance of 30 km where there are two fixed knife-edges, h1

and h3, at distances of 10 km and 20 km from the transmitter
respectively (see also Fig. 4 for this setup). A knife-edge with
variable height, h2, is placed at middle of two fixed knife-
edge. Bridging terrain is presented between h1 and h2 as well
as h2 and h3. The operation frequency is at 100 MHz. The
transmitter and receiver are replaced in the reference plane
(i.e., h0 = h4 = 0). Two fixed knife-edges have the same
height of 100 m (i.e., h1 = h3 = 100m ). When h2 increases,
the diffraction attenuation curves converges toward the curve
of a single knife edge for multiple knife-edges and a wedge-
shape terrain for multiple bridged knife-edges respectively.

We implement our proposed algorithm as described in
Theorem 3. Here, we choose M from 5 to 90. We can see that
the larger value of M is, the more precise result we obtain.
For our tests presented later, we found by experiments that
M = 90 is a good balance between accuracy and running
time.

B. Multiple knife-edges vs multiple bridged knife-edges
We consider two experiments for the cases of N = 3 and

N = 5 knife-edges respectively.

1) N = 3: In the first experiment, we use the same
setup for N = 3 as described in the previous section. Since
there exists two reflecting surfaces, the attenuation of multiple
bridged knife-edges is larger than that of multiple edges.
Moreover, the interference from two reflecting surfaces makes
the corresponding attenuation curve fluctuate smaller than the
curve with effect from two knife-edges. In terms of accuracy,
as we can see in Fig. 4, the proposed algorithm is as accurate
as the series based algorithm. In terms of speed (see Fig. 5),
the proposed algorithm and the series based algorithm have
similar running times and are faster than the recursive Vogler
algorithm. This observation is correlation with our complexity
analysis in Section V where values of ηNI of the proposed
algorithm and the series based algorithm are identical and
smaller than and the recursive Vogler algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

20

25

30

35

40

45

Fig. 4: Illustration on the accuracy for N = 3. Our recursive
algorithm is as good as the series based algorithm. In this sce-
nario, the diffraction attenuation from multiple bridged knife-
edge model is significantly different from that of multiple
knife-edge model. Thus, choosing a suitable model is essential.

2) N = 5: In the second experiment, we study a propaga-
tion path with a distance of 60 km (see Fig. 6). The transmitter
and receiver heights are of 100 m above the reference plane.
Three fixed knife-edges, h1, h3, and h5 at distances of 10
km, 30 km and 50 km from the transmitter respectively are
fixed. They have the same heights and are of 100 m (i.e.,
h1 = h3 = h5 = 100 m). At the exact middle of two fixed
knife-edges, there are two knife-edges with variable heights,
h2 and h4 . Bridging terrains are presented between knife-
edges but not either side of them. The operation frequency is
at 100 MHz. Two configurations are examined: The former is
referred to as ‘h4 only’ in Fig. 6 where h2 is fixed at 100
m below the reference plane (i.e., -100 m) and h4 varies;
The latter is referred to as h2, h4 where both h2 and h4 vary.
We can observe in those configurations that, for accuracy, the
proposed algorithm is, again, as accurate as the series based
algorithm in both cases. However, in terms of speed (see Fig. 7,
our proposed algorithm is faster than the series based, proving
the effectiveness of proposed solution and analysis. Here, we
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h2 [km]
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
[s
]
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Recursive Vogler alg.(MKE)
Proposed recursive alg.(MBKE)
Series-based alg.(MBKE)

Fig. 5: Illustration on running time for N = 3. In this sce-
nario, the proposed algorithm and the series based algorithm
have similar running times and are faster than the recursive
Vogler algorithm. This trend is consistent with our complexity
analysis.

report the case where both h2 and h4 change. We confirm
that a similar trend is observed for the case only h4 changes.
Compared to the recursive Volger algorithm, the running time
of our proposed algorithm and the series based algorithm are
lower because of smaller number of computed integrals. This
is consistent with our analysis in Section V.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

35

40

45

50

Fig. 6: Illustration on the accuracy for N = 5. In this scenario,
again, our recursive algorithm has identical accuracy as the
series based in both cases: i) h4 changes and h2 is fixed at
-100 m; ii) both h2 and h4 change.

VII. CONCLUSION

In this paper, we have proposed a generalized recursive
Vogler algorithm for multiple bridged knife-edge diffraction.
The proposed algorithm is fast and accurate comparing to
the existing solution. Its effectiveness is confirmed by both
theoretical complexity analysis and numerical results. In a
near future work, we will adapt a deep learning approach [33]

10 20 30 40 50 60 70

100

200

300

400

500

600

20 40 60

20

30

40

50

60

70

Fig. 7: Illustration on running time for N = 5, where both h2

and h4 change. The figure on the top right corner is a zoomed
version of the main figure to compare proposed algorithm and
the series based algorithm. Our proposed algorithm is faster
than the series based algorithm. Moreover, both algorithms are
much faster than the recursive Vogler agorithm.

proposed for multiple knife-edges diffraction to obtain a trade-
off between accuracy and running time, aiming for real-time
applications.

APPENDIX

A. Proof of Theorem 2

We provide a proof of Theorem 2 which is a generalization
of the result in [11] for multiple knife edge diffraction. The
proof can be outlined as follows. First, we transform (1) into
a series by using Taylor series expansion of exp(2f) and
Lemma 1. Then, we define a set of integrals, denoted as
{In}N−2

n=1 , that will provide a convenient way to link the result
of the series from the previous step with the computation result
of this set. Finally, we provide a formula representing the link
and thus prove the Theorem 2. The proof thus can be divided
into three steps:
• Step 1: We show the result of computing I1.
• Step 2: We provide a general expression for computing
In and prove it by induction.

• Step 3: We show the relationship between In and Im and
conclude the proof.

By using Taylor series expansion of exp(2f), we can
rewrite (1) as

AN =
1

2N
KN exp (σN − σ′N )

×
µ1∑

q1=1−λ1

· · ·
µN−1∑

qN−1=1−λN−1

(−1)
s
∞∑
m=0

Im (41)

where

Im
∆
=

2m

m!

(
2√
π

)N ∞∫
β1

· · ·
∞∫

βN

fm exp

(
−

N∑
n=1

u2
n

)
du1 · · · duN

(42)
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Furthermore, we want to compute N integrals of one-fold
instead of one integral N -fold. To this end, we can expand
fm by applying Lemma 1. For convenience, we define the
following set of integrals {In}N−2

n=1 related to each term of
fm after moving the integral to the desired term:

In
∆
=

(
2√
π

)n+1
∞∫

βN−n

· · ·
∞∫

βN

mN−n−2∑
mN−n−1=0

(
mN−n−2

mN−n−1

)

× γmN−n−2−mN−n−1

N−n−1

(
N−1∑
i=N−n

γi

)mN−n−1

× exp

(
−

N∑
i=N−n

u2
i

)
duN−n · · · duN (43)

Next, we show how we compute those integrals and link them
to computation of Im.
Step 1: We show the result of computing I1.
Following (43) , I1 is defined as

I1 =

(
2√
π

)2
∞∫

βN−1

∞∫
βN

mN−3∑
mN−2=0

(
mN−3

mN−2

)
× γmN−3−mN−2

N−2 γ
mN−2

N−1 exp
(
−
(
u2
N−1 + u2

N

))
duN−1duN

(44)

By substituting

γ
mN−3−mN−2

N−2 γ
mN−2

N−1 =

(−1)
qN−2(mN−3−mN−2)

α
mN−3−mN−2

N−2

× (uN−2 − βN−2)
mN−3−mN−2(−1)

qN−1mN−2

× αmN−2

N−1 (uN−1 − βN−1)
mN−3(uN − βN )

mN−2 (45)

into (44), we obtain the following result

I1 =

mN−3∑
mN−2=0

(−1)
qN−2(mN−3−mN−2) (mN−3)!

(mN−3 −mN−2)!

× αmN−3−mN−2

N−2 (uN−2 − βN−2)
mN−3−mN−2

× C (N − 1,mN−2,mN−3) (46)

where

C (N − 1,mN−2,mN−3) =

(−1)
qN−1mN−2 (mN−3)!α

mN−2

N−1 I (mN−3, βN−1) I (mN−2, βN )
(47)

Step 2: We provide a general expression for computing In and
prove it by induction.
We introduce the following proposition used later in the proof
of the main result and next steps

Proposition 5. (A relationship between In−1 and In) The
following relationship holds for In−1 and In, 2 ≤ n ≤ N−2:

In =
2√
π

∞∫
βN−n

mN−n−2∑
mN−n−1=0

(
mN−n−2

mN−n−1

)
× γmN−n−2−mN−n−1

mN−n−1
In−1 exp

(
−u2

N−n
)
duN−n (48)

Proof. From the definition (43), we can re-arrange In as

In =
2√
π

∞∫
βN−n

mN−n−2∑
mN−n−1=0

(
mN−n−2

mN−n−1

)
γ
mN−n−2−mN−n−1

N−n−1

×
[(

2√
π

)n ∞∫
βN−n+1

· · ·
∞∫

βN

(
N−1∑
i=N−n

γi

)mN−n−1

exp

(
−

N∑
i=N−n+1

u2
i

)
duN−n−1 · · · duN

]
exp

(
u2
N−n

)
duN−n

(a)
=

2√
π

∞∫
βN−n

mN−n−2∑
mN−n−1=0

(
mN−n−2

mN−n−1

)
× γmN−n−2−mN−n−1

mN−n−1

× In−1 exp
(
−u2

N−n
)
duN−n (49)

where the equality (a) is achieved by expanding(
N−1∑
i=N−n

γi

)mN−n−1

with Lemma 1. We thus conclude

the proof.

The result of computing the integral In can be obtained by
the following proposition

Proposition 6. For 2 ≤ n ≤ N − 2, In is given by

In =

mN−n−2∑
mN−n−1=0

(−1)
qN−n−1(mN−n−2−mN−n−1)

× (mN−n−2)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

× (uN−n−1 − βN−n−1)
mN−n−2−mN−n−1

× C (N − n,mN−n−1,mN−n−2) (50)

where

C (N − n,mN−n−1,mN−n−2) =
mN−n−1∑
mN−n=0

(−1)
qN−n(mN−n−1−mN−n) (mN−n−2 −mN−n)!

(mN−n−1 −mN−n)!

× αmN−n−1−mN−n

N−n I (mN−n−2 −mN−n, βN−n)

× C (N − n+ 1,mN−n,mN−n−1) . (51)

Proof. We prove this proposition by induction. First, we show
that the result holds for I2. We then assume that the result (51)
is true. Finally, we prove that it also holds for In+1.
Following Lemma 5, I2 is given by

I2 =
2√
π

∞∫
βN−2

mN−4∑
mN−3=0

(
mN−4

mN−3

)
γ
mN−4−mN−3

N−3

× I1 exp
(
−u2

N−2

)
duN−2 (52)

We then substitute

γ
mN−4−mN−3

N−3 =

(−1)
qN−3(mN−4−mN−3)

α
mN−4−mN−3

N−3

× (uN−3 − βN−3)
mN−4−mN−3(uN−2 − βN−2)

mN−4−mN−3

(53)
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and calculate the integral to achieve

I2 =

mN−4∑
mN−3=0

(−1)
qN−3(mN−4−mN−3) (mN−4)!

(mN−4 −mN−3)!

× αmN−4−mN−3

N−3 (uN−3 − βN−3)
mN−4−mN−3

× C (N − 2,mN−3,mN−4) (54)

where

C (N − 2,mN−3,mN−4) =
mN−3∑
mN−2=0

(−1)
qN−2(mN−3−mN−2) (mN−4 −mN−2)!

(mN−3 −mN−2)!

× αmN−3−mN−2

N−2 I (mN−4 −mN−2, βN−2)

× C (N − 1,mN−2,mN−3) (55)

In a similar way as for I2, we can reach In+1 by substituting

γmN−n−3−mN−n−2
mN−n−2

=

(−1)
qmN−n−2

(mN−n−3−mN−n−2)

× αmN−n−3−mN−n−2
mN−n−2

(
umN−n−2

− βmN−n−2

)mN−n−3−mN−n−2

×
(
umN−n−1

− βmN−n−1

)mN−n−3−mN−n−2 (56)

into (48) (i.e., we replace index n by n+ 1) as follows

In+1 =
2√
π

∞∫
βN−n−1

mN−n−3∑
mN−n−2=0

(
mN−n−3

mN−n−2

)
γmN−n−3−mN−n−2
mN−n−2

In exp
(
−u2

N−n−1

)
duN−n−1

=

mN−n−3∑
mN−n−2=0

(−1)
qmN−n−2

(mN−n−3−mN−n−2)

× (mN−n−3)!

(mN−n−3 −mN−n−2)! (mN−n−2)!
α
mN−n−3−mN−n−2

N−n−2

× (uN−n−2 − βN−n−2)
mN−n−3−mN−n−2

×
mN−n−2∑
mN−n−1=0

(−1)
qN−n−1(mN−n−2−mN−n−1)

(mN−n−2)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

× C (N − n,mN−n−1,mN−n−2)

×
[

2√
π

∞∫
βN−n−1

(
u

N−n−1
− β

N−n−1

)mN−n−3−mN−n−1

exp
(
−u2

N−n−1

)
duN−n−1

]
=

mN−n−3∑
mN−n−2=0

(−1)
qmN−n−2

(mN−n−3−mN−n−2)

× (mN−n−3)!

(mN−n−3 −mN−n−2)!
α
mN−n−3−mN−n−2

N−n−2

× (uN−n−2 − βN−n−2)
mN−n−3−mN−n−2

× C (N − n− 1,mN−n−2,mN−n−3) (57)

where

C (N − n− 1,mN−n−2,mN−n−3)

=

mN−n−2∑
mN−n−1=0

(−1)
qN−n−1(mN−n−2−mN−n−1)

× (mN−n−3 −mN−n−1)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

×I (mN−n−3 −mN−n−1, βN−n−1)

× C (N − n,mN−n−1,mN−n−2) (58)

It is straightforward to verify that the result for In+1 is true
from the statement of Proposition 6. We thus conclude the
proof.

Based on (47), (55), and (58), we then obtain the following
corollary from Proposition 6 .

Corollary 1. (The recursive relationship of C) Let

m0 = m,

i = mN−L, j = mN−L−1, k = mN−L−2

2 ≤ L ≤ N − 2, N ≥ 4.

The following expression holds

C (N − L, j, k)

=

j∑
i=0

(−1)
qN−L(j−i)

× (k − i)!
(j − i)!

αj−iN−LI (k − i, βN−L)C (N − L+ 1, i, j) .

Step 3: We show the relationship between In and Im and
conclude the proof.
The relationship between In and Im is given by the following
proposition

Proposition 7. (A relationship between IN−2 and Im) The
following relationship holds

Im =

(
2m

m!

)
2√
π

∞∫
β1

IN−2 exp
(
−u2

1

)
du1. (59)

Proof. Recall that, from the definition of (43), IN−2 is given
by

IN−2 =(
2√
π

)N−1
∞∫
β2

· · ·
∞∫

βN

m∑
m1=0

(
m
m1

)
γm−m1

1

(
N−1∑
i=2

γi

)m1

× exp

(
−

N∑
i=2

u2
i

)
du2 · · · duN (60)

Moreover, we can represent an expansion of fm by using the
binomial theorem as

fm =

m∑
m1=0

(
m
m1

)
γm−m1

1

(
N−1∑
i=2

γi

)m1

(61)
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By substituting (61) into (42) and rearranging the integrals
corresponding to the suitable variables, we obtain

Im =

(
2m

m!

)
2√
π

∞∫
β1

du1

×
[(

2√
π

)N−1
∞∫
β2

du2 · · ·
∞∫

βN

duNf
m exp

(
−

N∑
n=2

u2
n

)]
× exp

(
−u2

1

)
du1

=

(
2m

m!

)
2√
π

∞∫
β1

IN−2 exp
(
−u2

1

)
du1 (62)

We thus conclude the proof.

Moreover, recall from Proposition 6 that

IN−2 =

m∑
m1=0

(−1)
q1(m−m1) (m)!

(m−m1)!

× αm−m1
1 (u1 − β1)

m−m1C (2,m1,m) (63)

Finally, by substituting (63) into (59) of Proposition 7, Im is
given by

Im =(
2m

m!

) m∑
m1=0

(−1)
q1(m−m1) (m)!

(m−m1)!
αm−m1

1

× C (2,m1,m)

 2√
π

∞∫
β1

(u1 − β1)
m−m1 exp

(
−u2

1

)
du1


= 2m

m∑
m1=0

(−1)
q1(m−m1)

αm−m1
1 I (m−m1, β1)C (2,m1,m)

(64)

which is exact result of Theorem 2. We thus conclude the
proof.

B. Proof of Theorem 3

Theorem 3 is a special case of Theorem 2 where the sum
over qi, i = 1, · · · , N − 1 can be factorized into simple terms
as presented in the following proposition.

Proposition 8. Let

Ωq1,··· ,qN−1
, (−1)

N−1∑
i=1

qi(mi−1−mi+1)
, N > 2 (65)

Given the following notation,

m0 = m,mN = 0,

we obtain

ΘN
∆
=

1∑
q1=0

· · ·
1∑

qN−1=0

Ωq1,··· ,qN−1

=

N−1∏
i=1

(
1− (−1)

mi−1−mi

)
. (66)

Proof. We also prove this lemma by induction. For N = 3 and
4, the result of lemma holds (see Section IV-B). We assume
that the lemma is true for N = n and prove it true for N =
n+ 1.
For N = n+ 1, we can compute Θn+1 as

Θn+1 =
1∑

q1=0

1∑
q2=0

· · ·
1∑

qn=0

(−1)

n∑
i=1

qi(mi−1−mi+1)

=

1∑
q1=0

[
1∑

q2=0

· · ·
1∑

qn=0

(−1)
q1(m−m1+1)+

n∑
i=2

qi(mi−1−mi+1)

]

=

1∑
q1=0

(−1)
q1(m−m1+1) (67)

×

[
1∑

q2=0

· · ·
1∑

qn=0

(−1)

n∑
i=2

qi(mi−1−mi+1)

]
(a)
=

1∑
q1=0

(−1)
q1(m−m1+1)

n∏
i=2

(
1− (−1)

mi−1−mi

)
=

n∏
i=1

(
1− (−1)

mi−1−mi

)
(68)

where the equality (a) is reached by using (66). We thus
conclude the proof.

Finally, by applying Proposition 8, it is straightforward to
obtain the Theorem 3 by re-arranging factors from Theorem 2.

C. Proof of Proposition 1

We prove this proposition by induction. We first consider
the Vogler algorithm. Recall that M is a truncated value of
the index m. For N ≥ 3, a general solution for computing
multiple knife-edge AMKE

N is given by [8]

AMKE
N =

1

2N
CN exp (σN )

∑∞

m=0
Im (69)

where

Im =

2m
m∑

m1=0

· · ·
mN−3∑
mN−2

N∏
i=1

(mi−1 −mi+1)!

(mi −mi+1)!
α
mi−1−mi

i I (ni, βi)

(70)

with, by using notation m0 = m,

ni =


m0 −m1 i = 1

mi−2 −mi 2 ≤ i ≤ N − 1

mN−2 −mN−1 i = N

. (71)

For N = 3, number of integrals inside summation is given by

η3
I = 3

M∑
m=0

(m+ 1)

= 3
(M + 1) (M + 2)

1× 2
(72)
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For N = 4, we apply the result from N = 3 and thus obtain

η4
I = 4

M∑
m=0

(m+ 1) (m+ 2)

2
(73)

To evaluate η4
I , we build a telescoping sum as follows. We

note that
(m+ 1) (m+ 2)

2
=

1

6
[(m+ 1) (m+ 2) (m+ 3)−m (m+ 1) (m+ 2)] . (74)

Thus, we can rewrite (73) as

η4
I = 4

M∑
m=0

(m+ 1) (m+ 2)

2

=
4

6

M∑
m=0

[
(m+ 1) (m+ 2) (m+ 3)−m (m+ 1) (m+ 2)

]
= 4

(M + 1) (M + 2) (M + 3)

1× 2× 3
. (75)

where the last equality is obtain by canceling pairs of consec-
utive terms.
Now, we assume that, the expression of ηN−1

I is true. We show
that it is also true for ηNI

ηNI = N

M∑
m=0

N−2∏
n=1

(m+ n)

n
(76)

In a similar way as for N = 4, we note that
N−2∏
n=1

(m+ n)

n
=

1

(N − 1)!

[
N−1∏
n=1

(m+ n)−
N−2∏
n=0

(m+ n)

]
(77)

By substituting (77) into (93), we obtain

ηNI =
N

(N − 1)!

M∑
m=0

[
N−1∏
n=1

(m+ n)−
N−2∏
n=0

(m+ n)

]

= N

N−1∏
n=1

(M + n)

n
. (78)

We thus conclude the proof.

D. Proof of Proposition 2
The recursive algorithm for MKE has the same number of

loops but the difference in terms of integrals arrangement,
leading to different number of computed integrals. The proof
is similar to that of Proposition 1. We illustrate this point for
the case of N = 3 and 4.
For N = 3, following Theorem 3, we can write AN explicitly
as follows

AN =
1

2N
KN exp (σN − σ′N )

M∑
m=0

Im

where

Im = 2m
m∑

m1=0

αm−m1
1 m!αm1

2

× I (m−m1, β1) I (m,β2) I (m1, β3) . (79)

Thus, it is clear that,

η3
I = 3

(M + 1) (M + 2)

2
. (80)

For N = 4, from (26), (25) and (23), after removing the related
reflecting coefficients, we can express Im as

Im = 2m
m∑

m1=0

αm−m1
1

× I (m−m1, β1)

m1∑
m2=0

(m−m2)!

(m1 −m2)!

× αm1−m2
2 m1!αm2

3

× I (m−m2, β2) I (m1, β3) I (m2, β4) . (81)

We can count number of integrals as

η4
I = 3

3∏
n=1

(M + n)

n
+

2∏
n=1

(M + n)

n
(82)

where the first term includes three times (i.e.,
I (m−m2, β2) , I (m1, β3) , I (m2, β4)) number of terms
inside the loops and the second term includes number of
integrals I (m−m1, β1). From those cases, we can generalize
for arbitrary N > 3 by using the same method as the proof
of Proposition 1 as

ηNI = 3

N−1∏
n=1

(M + n)

n
+

N−2∏
n=1

(M + n)

n
+ · · ·+

2∏
n=1

(M + n)

n
.

(83)

We thus conclude the proof.

E. Proof of Proposition 3

Before providing the details, we note that, a necessary
condition for ε 6= 0 is that the last index of loops is odd. For
example, for N = 3 and 4 , their corresponding last indices,
m1 and m2, are odd. To see this point, we consider the case
of N = 3 and 4 first.

For N = 3, we have

ε =
(
1− (−1)m−m1

)
(1− (−1)m1) . (84)

Observe that, we only need take into account the case of m is
even and m1 is odd (i.e., ε 6= 0). We note further that, index
m1 runs from 0 to m. Thus, we obtain
• if the truncated value M is even, then

η3
I = 3

M∑
m=0
m even

m

2

= 3
(M + 2)M

(2× 1)× (2× 2)
(85)

• if the truncated value M is odd, we have

η3
I = 3

M̃(M̃ + 2)

(2× 1)× (2× 2)

= 3
(M + 1)(M − 1)

(2× 1)× (2× 2)
(86)
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with M̃ = M − 1. Since all items corresponding to odd
index m are eliminated, number of integrals for index
m = M is zero.

For N = 4, we can observe that ε =
(1− (−1)m−m1) (1− (−1)m1−m2) (1− (−1)m2) 6= 0 if
the following condition is meet: m is odd, m1 is even and
m2 is odd. By taking into account this condition, we use the
formula for odd M from N = 3 as follows

η4
I = 4

M∑
m=0
m odd

(m+ 1)(m− 1)

8
(87)

Let m = 2n+ 1. Then we can rewrite η4
I as

η4
I =

(M−1)/2∑
n=0

(n+ 1)n

2
(88)

In a similar way as in Proposition 1, we build a telescoping
sum as follows. We note that

(n+ 1)n

2
=

1

6
[(n+ 2)(n+ 1)n− (n+ 1)n (n− 1)] (89)

Then, we can calculate η4
I as

η4
I = 4

(M−1)/2∑
n=0

(n+ 1)n

2
(90)

=
4

6

(M−1)/2∑
n=0

[(n+ 2)(n+ 1)n− (n+ 1)n (n− 1)]

= 4
(M + 3)(M + 1)(M − 1)

(2× 1)× (2× 2)× (2× 3)
(91)

Again, by replacing M with M − 1, we obtain the result of
η4
I for M even as follows

η4
I = 4

(M + 2)M(M − 2)

(2× 1)× (2× 2)× (2× 3)
(92)

Now, we assume that, the expression of ηN−1
I is true. We show

that it is also true for ηNI . Without loss of the generality, we
assume that N is even and M is odd. We use the formula
from odd N − 1 with odd M to compute ηNI as follows

ηNI = N

M∑
m=0
m odd

N−2∏
i=1

(m− 1) + (N − 2)− 2 (i− 1)

2i
(93)

Let m = 2n+ 1. Then we obtain ηNI as

ηNI = N

(M−1)/2∑
n=0

[
N−2∏
i=1

2n+ (N − 2)− 2 (i− 1)

2i

]
(94)

To build a telescoping sum, the expression inside the square
brackets can be represented as
N−2∏
i=1

2n+ (N − 2)− 2 (i− 1)

2i
=

1

2N−1 (N − 1)!

[N−2∏
i=0

(2n+ (N − 2)− 2 (i− 1))

−
N−1∏
i=1

(2n+ (N − 2)− 2 (i− 1))

]
(95)

Thus, we achieve the following result

ηNI =
N

2N−1 (N − 1)!

×
(M−1)/2∑
n=0

[N−2∏
i=0

(2n+ (N − 2)− 2 (i− 1))

−
N−1∏
i=1

(2n+ (N − 2)− 2 (i− 1))

]

=
N

2N−1 (N − 1)!

N−2∏
i=0

((M − 1) + (N − 2)− 2 (i− 1))

(96)

Let n = i+ 1. Then, after rearranging coefficients, we obtain
the exact result of ηNI as presented in Proposition 3 for even
N and odd M

ηNI = N

N−1∏
n=1

M + (N − 1)− 2 (n− 1)

2n
. (97)

By replacing M by M − 1, we attain the exact result of ηNI
as presented in Proposition 3 for even N and even M

ηNI = N

N−1∏
n=1

(M − 1) + (N − 1)− 2 (n− 1)

2n
. (98)

In a similar way, we now prove the result for odd N and even
and odd M .
Without loss of the generality, we assume that N is odd and
M is even. We use the formula from even N − 1 with even
M to compute ηNI as follows

ηNI = N

M∑
m=0
m even

N−2∏
i=1

(m− 1) + (N − 2)− 2 (i− 1)

2i
(99)

Let m = 2n. Then we obtain ηNI as

ηNI = N

M/2∑
n=0

[
N−2∏
i=1

(2n− 1) + (N − 2)− 2 (i− 1)

2i

]
(100)

To build a telescoping sum, we represent the expression inside
the square brackets as

N−2∏
i=1

(2n− 1) + (N − 2)− 2 (i− 1)

2i
=

1

2N−1 (N − 1)!

[N−2∏
i=0

((2n− 1) + (N − 2)− 2 (i− 1))

−
N−1∏
i=1

((2n− 1) + (N − 2)− 2 (i− 1))

]
(101)
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Thus, we achieve the exact result for odd N and even M

ηNI =
N

2N−1 (N − 1)!

×
M/2∑
n=0

[N−2∏
i=0

((2n− 1) + (N − 2)− 2 (i− 1))

−
N−1∏
i=1

((2n− 1) + (N − 2)− 2 (i− 1))

]

=
N

2N−1 (N − 1)!

N−2∏
i=0

((M − 1) + (N − 2)− 2 (i− 1))

= N

N−1∏
n=1

M + (N − 1)− 2 (n− 1)

2n
. (102)

Again, by replacing M by M − 1, we attain the exact result
of ηNI for odd N and odd M

ηNI = N

N−1∏
n=1

(M − 1) + (N − 1)− 2 (n− 1)

2n
. (103)

We thus conclude the proof.

F. Proof of Proposition 4

Recall that, for MBKE of N = 3

Im = 2m
m∑

m1=0

(
1− (−1)

m−m1

)
× αm−m1

1 I (m−m1, β1) (1− (−1)
m1)

×m!αm1
2 I (m,β2) I (m1, β3) . (104)

Thus, the number of integrals η3
I is identical to the case of

Proposition 3. For N = 4, from (26), (25) and (23), we can
express Im as

Im = 2m
m∑

m1=0

(
1− (−1)

m−m1

)
× αm−m1

1 I (m−m1, β1)C (2,m1,m) (105)

where

C (2,m1,m) =

m1∑
m2=0

(
1− (−1)

m1−m2

)
× (m−m2)!

(m1 −m2)!
αm1−m2

2 I (m−m2, β2)C (3,m2,m1)

(106)

and

C (3,m2,m1)

= (1− (−1)
m2) (m1)!αm2

3 I (mN−3, β3) I (m2, β4) . (107)

Our aim now is to show that η4
I for the proposed algorithm

is less than or equal to that of the series based algorithm. To
simplify analysis and without loss of generality, we simplify
the expression for computing A in the proposed algorithm
(refer to as Apro

4 ) and the series based algorithm (refer to as

Aser
4 ) respectively by keeping only integrals and their related

factors as presented in (108) and (109).

Aser
4 =
M∑
m=0

m∑
m1=0

m1∑
m2=0

(
1− (−1)

m−m1

)(
1− (−1)

m1−m2

)
(1− (−1)

m2)

× I (m−m1, β1) I (m−m2, β2) I (mN−3, β3) I (m2, β4)
(108)

Apro
4 =

M∑
m=0

m∑
m1=0

(
1− (−1)

m−m1

)
I (m−m1, β1)

m1∑
m2=0

(
1− (−1)

m1−m2

)
(1− (−1)

m2)

× I (m−m2, β2) I (mN−3, β3) I (m2, β4) (109)

Several values of M and the corresponding indices
(m,m1,m2) to count the number of computed integrals η4

I

for two algorithms is given in Table III. We use this table to
analyze the computational differences between two algorithms.
First, we observe that there is no difference in terms of η4

I in
the case of two successive values of M , for example M = 1, 2
or M = 3, 4. This is due to the fact that we count the
number of integrals (for this case) if m2 is odd AND m1

is even AND m is odd. Second, let us consider the difference
between two algorithms appearing in the case of M = 5, 6.
The series based-algorithm computes 4 integrals corresponding
to 4 couples indices, resulting in η4

I = 16 in total (see Eq.
(108) and Table III).
TABLE III: Illustration of indices (m,m1,m2) to count the
number of computed integrals η4

I . Underlined indices show
the difference between number of computed integrals of the
series based algorithm and proposed algorithm. The more M
increases, the more significantly our proposed algorithm gains.

M = 1, 2 M = 3, 4 M = 5, 6 M = 7, 8

(m,m1,m2) (3, 2, 1) (3, 2, 1) (3, 2, 1)

(5, 2, 1) (5, 2, 1)

(5, 4, 1) (5, 4, 1)

(5, 4, 3) (5, 4, 3)

(7, 4, 1)

(7, 4, 3)

(7, 6, 1)

(7, 6, 3)

(7, 6, 5)

η4I (series based) 0 4 16 40

η4I (proposed) 0 4 15 36

Our gain 0 0 1 4

In contrast, our algorithm computes 8 integrals for the
first two couple indices (i.e.,(m,m1,m2) = (3, 2, 1) and
(m,m1,m2) = (5, 2, 1)). For the last two couple indices
(i.e.,(5, 4, 1) and (5, 4, 3)), our algorithm, however, compute
1 integral corresponding to (m,m1) = (5, 4) and 6 integrals
insides the loops of m2 = 1 and m2 = 3, resulting in 15 in
total (see Eq. (109) and Table III). Thus, we gain 1 computed
integral. In a similar way, for M = 7, 8, we gain 4 computed
integrals. When M increases, this gain increases significantly.
In practice, we saw that, it increases exponentially to M .
Again, for N > 4, the structure of problem is in the similar
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way. Using the same argument, we can show that ηNI of
proposed algorithm is upper bounded by ηNI of the series
based- algorithm. We thus conclude the proof.
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