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In this paper, we consider problem of estimating diffraction attenuation from approximation of a terrain using multiple bridged knife-edge model. This model can be considered as a generalization of well-known multiple knife-edge one where spaces between knife-edge are bridged by reflecting surfaces. A series based-standard solution is presented in the literature but suffers from its very high computational complexity. We, thus, propose to generalize the recursive Vogler algorithm developed for multiple knife-edge model to tackle this problem. To reduce complexity, the proposed algorithm exploit the recursive form to avoid repeated calculations of the existing solution. Moreover, we provide a complexity analysis of both the standard algorithm and the proposed algorithm based on number of computed integrals. Both theoretical and numerical results show that our proposed algorithm is faster than the original one while having identical accuracy, hence proving the effectiveness of our solution.

I. INTRODUCTION

Estimation of diffraction attenuation is an important problem used in radar [START_REF] Saunders | Antennas and propagation for wireless communication systems[END_REF], [START_REF] Ozgun | New software tool (GO+UTD) for visualization of wave propagation [testing ourselves[END_REF], propagation loss over irregular terrains [START_REF] Saunders | Antennas and propagation for wireless communication systems[END_REF], [START_REF] Erricolo | Two-dimensional simulator for propagation in urban environments[END_REF]- [START_REF] Goldsmith | Wireless communications[END_REF], wireless sensor network [START_REF] Alwajeeh | An efficient ray-tracing based model dedicated to wireless sensor network simulators for smart cities environments[END_REF], and 5G wireless communication and beyond [START_REF] He | The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial[END_REF]. Considering, for example, a low altitude transmission among aeronautical systems and ground stations in mountain regions, diffraction plays one of dominant roles in mechanism due to the presence of terrain irregularities and obstacles. Accurate estimation of diffraction can, thus, provide advantages for channel modeling, radar coverage, or interference calculation and suppression, to name a few.

A. Related works

In the literature, depending on specific applications and their corresponding terrains of interest, we can model terrains by several basic geometric shapes such as single knifeedge [START_REF] Saunders | Antennas and propagation for wireless communication systems[END_REF], multiple knife-edges [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF]- [START_REF] Nguyen | On the proof of recursive Vogler algorithm for multiple knife-edge diffraction[END_REF], cylinders [START_REF] Assis | A simplified solution to the problem of multiple diffraction over rounded obstacles[END_REF]- [START_REF]Propagation by diffraction[END_REF], wedges [START_REF] Luebbers | Propagation prediction for hilly terrain using GTD wedge diffraction[END_REF]- [START_REF] Daniele | The double PEC wedge problem: Diffraction and total far field[END_REF] or combination of several basic shapes [START_REF] Koutitas | A slope UTD solution for a cascade of multishaped canonical objects[END_REF].

Different from those approaches, we are interested in the case where a terrain can be approximately represented by multiple bridged knife-edges model [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF]. This model is formed by bridging spaces among knife-edges (see Fig. 1). Moreover, the model also considers ground reflection of each bridged segment and hence are suitable for characterizing both solid terrains and irregular terrains (i.e., in the case where number of knife-edges and segments are selected to be big enough).

The main advantage of this approach is its flexibility. We mean that, i) it includes the most simple and popular model, multiple knife-edges, as a particular case and takes into account ground reflection which is often omitted in some models; ii) it allows to obtain a good approximation of curved terrains or small radius hills by a series of segments. In applications such as prediction of diffraction over a spherical Earth [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] or in transition region between knife edge theory to smooth earth diffraction one [START_REF] Vogler | Radio wave diffraction by a rounded obstacle[END_REF], the later is essential.

In [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF], the multiple bridged knife-edges model is introduced first in the framework of Fresnel-Kirchhoff theory for estimating multiple knife-edge diffraction of a solid terrain. The disadvantage of this method is, however, its numerical error of evaluating an integration to infinity of an oscillating function which is difficult to preserve its accuracy.

Later on, in [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], the author presents a connection between the derivation of [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF] with the seminar work of Vogler [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF]. A series solution, in a similar form as the Vogler algorithm, is also given for diffraction estimation. This solution overcomes the mentioned error and is accurate with confirmation from some standard tests. Still, its high computational complexity limits its potential applications in practice.

In terms of modeling, multiple knife-edge model combined with ground reflection is presented in [START_REF] Zhao | Diffraction over typical-shaped terrain obstacles[END_REF] and [START_REF] Zhao | Multipath propagation study combining terrain diffraction and reflection[END_REF]. It is shown that the overall attenuation is combination of field components related to a specific parameter of multiple knifeedge diffraction one. However, in a direct implementation, the number of component fields that the method needs to compute increases significantly to number of knife-edges (i.e., precisely, 2 N where N is number of knife-edges). Moreover, for approximation of curved terrains or hills, this approach can be inappropriate. Other approach for estimating diffraction attenuation in different edge setups is to use 2D transition function in the uniform geometrical theory of diffraction (UTD) (see [START_REF] Pathak | The uniform geometrical theory of diffraction and some of its applications[END_REF], [START_REF] Puggelli | An efficient algorithm for the computation of the UTD T transition function[END_REF], [START_REF] Daniele | The scattering of electromagnetic waves by two opposite staggered perfectly electrically conducting half-planes[END_REF] and references therein for more details).

B. Main contributions

To tackle the high computation complexity problem in [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], we propose a generalized recursive Vogler algorithm for multiple bridged knife-edge diffraction. The proposed algorithm takes advantage of the recursive form to avoid repeated calculation as the direct series solution, thus speeding up the Wave number calculation time. Moreover, we analyze in detail the computational complexity of four algorithms: our proposed algorithm, the series solution [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] as well as direct and recursive Vogler algorithms [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] in terms of number of computed integrals. The numerical results in several standard scenarios show that our proposed algorithm is much faster than the original series solution while having identical accuracy, thus proving the effectiveness of our analysis. The initial result of this study is reported in [START_REF] Nguyen | A fast recursive algorithm for multiple bridged knife-edge diffraction[END_REF]. Here, we provide an improved algorithm and additional performance analysis and assessments.

The remainder of paper is organize as follow. In Section II, we provide the background and existing solution of multiple bridged knife-edge diffraction. Then, the proposed algorithm is described in Section III. We illustrate a special case of N = 4 in Section IV. In Section V, we provide a complexity analysis and comparison. Numerical results are given in Section VI. Finally, Section VII concludes the paper. Notation: The functions and symbols used throughout this paper is presented in Table I.

II. THE SERIES BASED SOLUTION FOR MULTIPLE BRIDGED

KNIFE-EDGE DIFFRACTION θ 1 θ 2 θ N . . . . . . h 0 h 1 h 2 h N h N +1 r 1 r 2 r N +1
Fig. 1: Illustration of geometry for multiple bridged knifeedges.

In this section, we summarize the results of applying the Fresnel-Kirchhoff theory to multiple bridged knife-edge diffraction presented in [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF] and [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] and assumptions used to derive such results.

An illustration of of geometry for multiple bridged knifeedges is shown in Fig. 1. We denote: i) h 0 and h N +1 are the transmitter and receiver heights respectively; ii) {h n } N n=1 are the knife-edge heights to a reference surface; iii) {θ n } N n=1 are diffraction angles; and iv) {r n } N +1 n=1 are N + 1 separation distances among knife-edges. Moreover, for sake of simplicity, the reflecting surfaces is assumed be perfect. It means that their reflection coefficients are -1. Following derivation from [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF] and [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], the diffraction attention, A N , for the multiple bridged knife-edge model is obtained by computing the following integral

A N =(1/π) N/2 K N exp (σ N -σ N ) × ∞ β1 • • • ∞ β N µ1 q1=1-λ1 • • • µ N -1 q N -1 =1-λ N -1 (-1) s × exp (2f ) exp - N n=1 u 2 n du 1 • • • du N (1) 
where

K N =    1 for N = 1 ( N +1 n=1 rn) N n=1 rn N n=1 (rn+rn+1) 1/2 , N ≥ 2 , (2) 
σ N = N n=1 β 2 n , (3) 
σ N = ik N n=0 (h n+1 -h n ) 2 2r n , (4) 
s = N -1 n=1 q n , (5) 
f =    0 for N = 1 N -1 n=1 γ n , N ≥ 2, (6) 
γ n = α n (-1) qn (u n -β n ) (u n+1 -β n+1 ) (7) 
α n = r n r n+1 (r n + r n+1 ) (r n+1 + r n+2 ) 1/2 , 1 ≤ n ≤ N -1, (8) 
β n = θ n ikr n r n+1 2 (r n + r n+1 ) 1/2 , 1 ≤ n ≤ N. (9) 
Here, λ n and µ n are set to one for the initial MBKED problem. If the nth reflecting bridge is omitted, we will assign µ n to zero. Moreover, as mentioned in [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], λ n will be set to zero occasionally if the Babinet's principle1 [START_REF] Kong | Electromagnetic Wave Theory[END_REF] is applied. . This result is obtained by adapting the Helmholtz integral to multiple bridged knife-edge diffraction for radio propagation [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF]. In particular, the Helmholtz integral which represents the field E at a point X n+1 = (x n+1 , y n+1 , z n+1 ) T is written as (see Eq. 1 in [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF])

E (X n+1 ) = 1 4π S E (X n ) ∂ ∂x j exp (ikR) R - exp (ikR) R ∂E (X n ) ∂x dS (10) 
where E (X n ) refers to the field at X n = (x n , y n , z n ) T on surface S, dS defines a surface element at point Y, and R is the distance between X and Y. The following assumptions (AS) are, then, used to make evaluation of the Helmholtz integral tractable [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF]:

• AS-1: small wavelength approximation. It means that the wavelength is supposed to be much smaller than length of any segment of the considered propagation path. This assumption holds for very high frequency (VHF) and ultra high frequency (UHF) bands. • AS-2: paraxial approximation. This assumption corresponds to the small angle approximation. • AS-3: the regions of terrain perpendicular to the considered path is uniform. It means that the considered terrain is simplified from three dimensions to two ones. In our case, the direction along x-axis is propagation direction and the terrain height is along z-axis. • AS-4: backscattered fields are not used in the Kirchhoff approximation. By exploiting those assumptions and taking into account perfect reflecting surfaces, the field relative to free-space one is presented as in (1) after applying the result from evaluation of (10) repeatedly for N knife-edges.

A series based solution to compute (1) is proposed in [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] as follows Theorem 1. (Evaluation of A N [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF]): Given the following notation, p 1 ≡ p, p N ≡ 0, p N +1 ≡ 0, α N ≡ 1,

A N =2 N -N K N ∞ p=0 2 p p1=p p2=0 • • • p N -2 p N -1 =0 ε × N n=1 (p n-1 -p n+1 )!α pn-pn+1 n I (p n-1 -p n+1 , β n ) (p n -p n+1 )! ( 11 
)
where N is number of n values, n = 1, • • • , N , for which λ n = µ n = 1; the value of ε is given by the following condition: if there is at least one n so that λ n = µ n = 1 and p n -p n+1 is even, then ε = 0. Otherwise, ε = (-1) q with q is the number of values of n for which λ n = 0 and p n -p n+1 is even.

Even providing accurate result, the calculation of A N as presented in Theorem 1 is not efficient in terms of computational complexity. To overcome this problem, we propose in next section a fast recursive algorithm which is inspired by the recursive Vogler algorithm introduced in [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] and proved later in [START_REF] Nguyen | On the proof of recursive Vogler algorithm for multiple knife-edge diffraction[END_REF]. We note that the series based algorithm following Theorem 1 and our proposed algorithm have a series based form. To distinguish two algorithms, we will use the term "recursive" for our algorithm to emphasize its key implementation characteristic.

III. PROPOSED METHOD: GENERALIZED RECURSIVE VOGLER ALGORITHM

Before presenting the main results, we first introduce the following lemma which is useful for algorithm derivation and analysis later.

Lemma 1. (A recursive representation of multinomial theorem [START_REF] Nguyen | On the proof of recursive Vogler algorithm for multiple knife-edge diffraction[END_REF]) Following [START_REF] Alwajeeh | An efficient ray-tracing based model dedicated to wireless sensor network simulators for smart cities environments[END_REF], f m can be given by [START_REF] Assis | A simplified solution to the problem of multiple diffraction over rounded obstacles[END_REF] for N ≥ 3 at the top of the next page By applying Lemma 1, we benefit from avoiding repeated calculation (see Section V for a detail analysis). We propose the following two main results:

Theorem 2. (Recursive computation of A N ): Let C (N -1, m N -2 , m N -3 ) = (-1) q N -1 m N -2 × (m N -3 )!α m N -2 N -1 I (m N -3 , β N -1 ) I (m N -2 , β N ) . (13)
Then, given the following notation

i = m N -L , j = m N -L-1 , k = m N -L-2 2 ≤ L ≤ N -2, N ≥ 4
and the recursive relationship

C (N -L, j, k) = j i=0 (-1) q N -L (j-i) × (k -i)! (j -i)! α j-i N -L I (k -i, β N -L ) C (N -L + 1, i, j) , (14) 
the diffraction attenuation of MBKE, A N is given by

A N = 1 2 N K N exp (σ N -σ N ) × µ1 q1=1-λ1 • • • µ N -1 q N -1 =1-λ N -1 (-1) s ∞ m=0 I m
where I m is computed recursively as follows

I m = 2 m m m1=0 (-1) q1(m-m1) × α m-m1 1 I (m -m 1 , β 1 ) C (2, m 1 , m) . (15) 
Proof. See Appendix A Compared to the recursive Vogler algorithm [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF], the proposed theorem here is more general with the appearance the sums over {q n } N n=1 which takes into account reflecting surfaces. In the other words, the recursive Vogler algorithm [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] is a specific case of the proposed algorithm. Now we present our case of interest where bridging terrains are presented among all the knife edges, but not on either side of them. This case corresponds to full multiple bridged knifeedge model as in Fig. 1. In terms of mathematical representation, the sums over {q n } N n=1 in Theorem 2 are 'absorbed' through some factors and we obtain a 'compacter' form. In particular, we achieve a generalized result of the recursive Vogler algorithm for multiple knife-edge model where the main differences are the factors presenting the appearance of perfect reflecting surfaces (i.e., 1 -(-1)

m N -2 , 1 -(-1) j-i ,
and 1 -(-1) m-m1 in ( 16), ( 17) and (18) respectively) Theorem 3. (Recursive computation of A N where bridging terrains are presented among all the knife edges, but not on either side of them): Let

C (N -1, m N -2 , m N -3 ) = (1 -(-1) m N -2 ) × (m N -3 )!α m N -2 N -1 I (m N -3 , β N -1 ) I (m N -2 , β N ) . ( 16 
)
f m = m m1=0 m m 1 γ m-m1 1 m1 m2=0 m 1 m 2 γ m1-m2 2 . . . m N -3 m N -2 =0 m N -3 m N -2 γ m N -3 -m N -2 N -2 γ m N -2 N -1 1 st term (N -3) th term (N -2) th term (12)
Then, given the following notation

i = m N -L , j = m N -L-1 , k = m N -L-2 2 ≤ L ≤ N -2, N ≥ 4
and the recursive relationship

C (N -L, j, k) = j i=0 1 -(-1) j-i × (k -i)! (j -i)! α j-i N -L I (k -i, β N -L ) C (N -L + 1, i, j) , (17) 
the diffraction attenuation of MBKE, A N is given by

A N = 1 2 N K N exp (σ N -σ N ) ∞ m=0 I m
where I m is computed recursively as follows

I m = 2 m m m1=0 1 -(-1) m-m1 × α m-m1 1 I (m -m 1 , β 1 ) C (2, m 1 , m) (18) 
Proof. See Appendix B Implementation details: For implementation, we provide the following details to reduce the number of computed integrals significantly. First, if

(m i -m i+1 ) is even, then 1 -(-1)
mi-mi+1 = 0. Thus, we do not need to compute the corresponding coefficients and save the overall complexity. Second, we note that the calculation of coefficients C in [START_REF] Erricolo | Two-dimensional simulator for propagation in urban environments[END_REF] in a recursive way include two steps: forward and backward.

In the forward step, we verify if the term 1 -(-1)

j-i of C (N -L, j, k) is zero or nonzero.
If it is zero, we omit and continue to the next step. Otherwise, the integral will not be computed yet until we continue to check through C (N -L + 1, i, j) at the backward step be nonzero. It means that the integrals will only be computed if both 1 -(-1)

j-i
and C (N -L + 1, i, j) are nonzero. In this way, there is no redundant computed integral. Moreover, we also apply this procedure to compute I m in [START_REF] Pathak | The uniform geometrical theory of diffraction and some of its applications[END_REF]. By applying this procedure, we gain in terms of complexity considerably (see proof of Proposition 4 for a detailed analysis).

IV. CASE STUDY OF FOUR KNIFE-EDGES (N = 4)

To illustrate key steps, we consider a case study of N = 4. Using Taylor series expansion of exp(2f ), we can rewrite (1) as

A 4 = (1/π) 2 K 4 exp (σ 4 -σ 4 ) × µ1 q1=1-λ1 • • • µ3 q3=1-λ3 (-1) s ∞ m=0 I m (19) 
where

I m = 2 m m! 2 √ π 4 ∞ β1 ∞ β2 ∞ β3 ∞ β4 m m1=0 m m 1 γ m-m1 1 m1 m2=0 m 1 m 2 γ m1-m2 2 γ 3 m2 × exp - 4 n=1 u 2 n du 1 • • • du 4 . (20) 

A. General case

Recall that, from ( 6) and [START_REF] He | The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial[END_REF], for N = 4,

γ n = (-1) qn α n (u n -β n ) (u n+1 -β n+1 ) , n = 1, 2, 3. (21) 
Substituting ( 21) into [START_REF] Daniele | Arbitrarily oriented perfectly conducting wedge over a dielectric half-space: Diffraction and total far field[END_REF] yields

I m = 2 m m! 2 √ π 4 ∞ β1 ∞ β2 ∞ β3 ∞ β4 m m1=0 m! (m -m 1 )!m 1 ! (-1) q1(m-m1) × α m-m1 1 (u 1 -β 1 ) m-m1 (u 2 -β 2 ) m-m1 × m1 m2=0 m 1 ! (m 1 -m 2 )!m 2 ! (-1) q2(m1-m2) α m1-m2 2 × (u 2 -β 2 ) m1-m2 (-1) q3m2 α m2 3 (u 3 -β 3 ) m1 (u 4 -β 4 ) m2 (22) 
Let

C (3, m 2 , m 1 ) = (-1) q3m2 m 1 !α m2 3 I (m 1 , β 3 ) I (m 2 , β 4 ) . ( 23 
)
Then we can simplify [START_REF] Koutitas | A slope UTD solution for a cascade of multishaped canonical objects[END_REF] as

I m = 2 m m! 2 √ π ∞ β1 m m1=0 m! (m -m 1 )! (-1) q1(m-m1) × α m-m1 1 (u 1 -β 1 ) m-m1 C (2, m 1 , m) exp -u 2 1 du 1 (24) 
where

C (2, m 1 , m) = m1 m2=0 (m -m 2 )! (m 1 -m 2 )! (-1) q2(m1-m2) × α m1-m2 2 I (m -m 2 , β 2 ) C (3, m 2 , m 1 ) (25) 
Finally, we obtain

I m = 2 m m m1=0 α m-m1 1 (-1) q1(m-m1) × I (m -m 1 , β 1 ) C (2, m 1 , m) . (26) 

B. Specific case: full multiple bridged knife edges

In this section, we present a specific case where bridging terrains are presented among the knife edges, but not on either side of them. This case of interest is equivalent to a 'full' multiple bridged knife edges and allows to simplify the final form of A 4 . In particular, q i = 0 and 1 for i = 1, • • • , 3 and we can exchange the sum related to q i to the coefficient C (3, m 2 , m 1 ). Thus, we can rewrite A 4 as follows

A 4 = 1 2 4 C 4 exp (σ 4 -σ 4 ) ∞ m=0 I m (27) 
where

I m = 2 m m m1=0 α m-m1 1 I (m -m 1 , β 1 )C (2, m 1 , m) (28) 
C (2, m 1 , m) = m1 m2=0 (m -m 2 )! (m 1 -m 2 )! × α m1-m2 2 I (m -m 2 , β 2 ) C (3, m 2 , m 1 ) C (3, m 2 , m 1 ) = m 1 !α m2 3 I (m 1 , β 3 ) I (m 2 , β 4 ) × q1 q2 q3 ρ q1,q2,q3 (29) 
with

ρ q1,q2,q3 = (-1) ψ(q1,q2,q3) (30) 
and

ψ (q 1 , q 2 , q 3 ) = q 1 (m -m 1 + 1) + q 2 (m 1 -m 2 + 1) + q 3 (m 2 + 1) . (31) 
Indeed, we grouped the coefficients related to q i in ( 26), [START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF], and ( 23) to obtain ρ q1,q2,q3 . Let

Θ = q1 q2 q3 ρ q1,q2,q3 . (32) 
Considering all combination of q i , the sum of all corresponding ρ q1,q2,q3 can be computed by Θ = (-1) ψ(0,0,0) + (-1) ψ(0,0,1) + (-1) ψ(0,1,0) + (-1)

ψ(0,1,1) + (-1) ψ(1,0,0) + (-1) ψ(1,0,1) + (-1) ψ(1,1,0) + (-1) ψ(1,1,1) = 1 + (-1) m1-m2+1 1 + (-1) m2+1 + (-1) m-m1+1 1 + (-1) (m1-m2+1) 1 + (-1) (m2+1) = 1 -(-1) m-m1 1 -(-1) m1-m2 1 -(-1) m2 . (33) 
Then, by re-arranging those factors, we obtain the exact result of Theorem 3 for N = 4

I m = 2 m m m1=0 1 -(-1) m-m1 × α m-m1 1 I (m -m 1 , β 1 ) C (2, m 1 , m) (34) 
where

C (2, m 1 , m) = m1 m2=0 1 -(-1) m1-m2 × (m -m 2 )! (m 1 -m 2 )! α m1-m2 2 I (m -m 2 , β 2 ) C (3, m 2 , m 1 ) (35) 
and

C (3, m 2 , m 1 ) = (1 -(-1) m2 ) (m 1 )!α m2 3 I (m N -3 , β 3 ) I (m 2 , β 4
) . (36) Moreover, by applying the procedure as described in the implementation details, we gain number of computed integrals significantly.

V. COMPLEXITY ANALYSIS AND COMPARISON

In this section, we use number of repeated integrals of the complementary error function computed, referred here as η N I , as a complexity index for comparison. The motivation behind using this index is that it contributes the dominant part and correlates well with overall complexity of algorithms.

We provide an analysis of four algorithms: Vogler and recursive Vogler algorithms [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF], the series based algorithm [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] and our proposed algorithm. Four algorithms have a similar form and can be considered as a class.

Let M be a truncated value of the index m. The complexity of the Vogler algorithm [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] is given by the following proposition.

Proposition 1. Number of repeated integrals of the complementary error function of the Vogler algorithm [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] is given by

η N I = N N -1 n=1 (M + n) n . (37) 
Proof. See Appendix C.

The complexity of the recursive Vogler algorithm is presented as follows. 

η N I = N N -1 n=1 (M +n) n Recursive Vogler algorithm [8] η N I = 3 N -1 n=1 (M +n) n + N -2 n=1 (M +n) n + • • • + 2 n=1 (M +n) n

MBKE

Series based-algorithm [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] if N is even,

η N I =        N N -1 n=1 (M -1)+(N -1)-2(n-1) 2n , if M is even N N -1 n=1 M +(N -1)-2(n-1) 2n , otherwise if N is odd, η N I =        N N -1 n=1 M +(N -1)-2(n-1) 2n , if M is even N N -1 n=1 (M -1)+(N -1)-2(n-1) 2n 
, otherwise Generalized Recursive Vogler algorithm Upper bounded by η N I of the series based algorithm.

Proposition 2. Following the recursive implementation in [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF], number of repeated integrals of the complementary error function is given by

η N I = 3 N -1 n=1 (M + n) n + N -2 n=1 (M + n) n + • • • + 2 n=1 (M + n) n . (38) 
Proof. See Appendix D.

The complexity of the series based-algorithm is given by the following proposition. Proposition 3. Following Theorem 1, number of repeated integrals of the complementary error function of the series based algorithm is given by

• If N is even, η N I =        N N -1 n=1 (M -1)+(N -1)-2(n-1) 2n , if M is even N N -1 n=1 M +(N -1)-2(n-1) 2n , otherwise (39) 
• If N is odd,

η N I =        N N -1 n=1 M +(N -1)-2(n-1) 2n , if M is even N N -1 n=1 (M -1)+(N -1)-2(n-1) 2n , otherwise (40) 
Proof. See Appendix E. Now, we present the complexity of our proposed algorithm. For N > 3, the recursive form presents its advantage where for both MKE and MBKE, the recursive algorithms have lower value of η N I than their non-recursive ones. The gain in terms of complexity become significantly when M increases (i.e., the accuracy increase). For MBKE model, by providing an upper bound, the complexity of our proposed algorithm is always lower than or equal to that of the series based-algorithm, thus proving the effectiveness of the proposed solution (see also Fig. 2 for an illustration). 

VI. NUMERICAL RESULTS

We provide numerical results to assess the effectiveness of our proposed algorithm. We compare our algorithm with series based algorithm in [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF] and the recursive Vogler algorithms in [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] in terms of accuracy and complexity. For the complexity, we provide the running time of CPU results as an additional and relative assessment besides theoretical analysis in Section V. To this end, we use several standard scenarios suggested in the literature [START_REF] Saunders | Antennas and propagation for wireless communication systems[END_REF], [START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF], [START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], [START_REF] Zhao | Multipath propagation study combining terrain diffraction and reflection[END_REF]. The truncated value M of index m has impact on both accuracy and computational complexity. The effect of M on the complexity of algorithms has already shown in Table II and Fig. 2. Thus, before comparing algorithms, we illustrate the effect of M on the accuracy of final result (see Fig. 3) in the following experiment: we study a propagation path with a distance of 30 km where there are two fixed knife-edges, h 1 and h 3 , at distances of 10 km and 20 km from the transmitter respectively (see also Fig. 4 for this setup). A knife-edge with variable height, h 2 , is placed at middle of two fixed knifeedge. Bridging terrain is presented between h 1 and h 2 as well as h 2 and h 3 . The operation frequency is at 100 MHz. The transmitter and receiver are replaced in the reference plane (i.e., h 0 = h 4 = 0). Two fixed knife-edges have the same height of 100 m (i.e., h 1 = h 3 = 100m ). When h 2 increases, the diffraction attenuation curves converges toward the curve of a single knife edge for multiple knife-edges and a wedgeshape terrain for multiple bridged knife-edges respectively.

A. Effect of truncated value M on accuracy

We implement our proposed algorithm as described in Theorem 3. Here, we choose M from 5 to 90. We can see that the larger value of M is, the more precise result we obtain. For our tests presented later, we found by experiments that M = 90 is a good balance between accuracy and running time.

B. Multiple knife-edges vs multiple bridged knife-edges

We consider two experiments for the cases of N = 3 and N = 5 knife-edges respectively.

1) N = 3: In the first experiment, we use the same setup for N = 3 as described in the previous section. Since there exists two reflecting surfaces, the attenuation of multiple bridged knife-edges is larger than that of multiple edges. Moreover, the interference from two reflecting surfaces makes the corresponding attenuation curve fluctuate smaller than the curve with effect from two knife-edges. In terms of accuracy, as we can see in Fig. 4, the proposed algorithm is as accurate as the series based algorithm. In terms of speed (see Fig. 5), the proposed algorithm and the series based algorithm have similar running times and are faster than the recursive Vogler algorithm. This observation is correlation with our complexity analysis in Section V where values of η N I of the proposed algorithm and the series based algorithm are identical and smaller than and the recursive Vogler algorithm. Fig. 4: Illustration on the accuracy for N = 3. Our recursive algorithm is as good as the series based algorithm. In this scenario, the diffraction attenuation from multiple bridged knifeedge model is significantly different from that of multiple knife-edge model. Thus, choosing a suitable model is essential.

2) N = 5: In the second experiment, we study a propagation path with a distance of 60 km (see Fig. 6). The transmitter and receiver heights are of 100 m above the reference plane. Three fixed knife-edges, h 1 , h 3 , and h 5 at distances of 10 km, 30 km and 50 km from the transmitter respectively are fixed. They have the same heights and are of 100 m (i.e., h 1 = h 3 = h 5 = 100 m). At the exact middle of two fixed knife-edges, there are two knife-edges with variable heights, h 2 and h 4 . Bridging terrains are presented between knifeedges but not either side of them. The operation frequency is at 100 MHz. Two configurations are examined: The former is referred to as 'h 4 only' in Fig. 6 where h 2 is fixed at 100 m below the reference plane (i.e., -100 m) and h 4 varies; The latter is referred to as h 2 , h 4 where both h 2 and h 4 vary. We can observe in those configurations that, for accuracy, the proposed algorithm is, again, as accurate as the series based algorithm in both cases. However, in terms of speed (see Fig. 7, our proposed algorithm is faster than the series based, proving the effectiveness of proposed solution and analysis. Here, we Fig. 5: Illustration on running time for N = 3. In this scenario, the proposed algorithm and the series based algorithm have similar running times and are faster than the recursive Vogler algorithm. This trend is consistent with our complexity analysis.

report the case where both h 2 and h 4 change. We confirm that a similar trend is observed for the case only h 4 changes. Compared to the recursive Volger algorithm, the running time of our proposed algorithm and the series based algorithm are lower because of smaller number of computed integrals. This is consistent with our analysis in Section V. Fig. 6: Illustration on the accuracy for N = 5. In this scenario, again, our recursive algorithm has identical accuracy as the series based in both cases: i) h 4 changes and h 2 is fixed at -100 m; ii) both h 2 and h 4 change.

VII. CONCLUSION

In this paper, we have proposed a generalized recursive Vogler algorithm for multiple bridged knife-edge diffraction. The proposed algorithm is fast and accurate comparing to the existing solution. Its effectiveness is confirmed by both theoretical complexity analysis and numerical results. In a near future work, we will adapt a deep learning approach [START_REF] Nguyen | VoglerNet: Multiple knife-edge diffraction using deep neural network[END_REF] proposed for multiple knife-edges diffraction to obtain a tradeoff between accuracy and running time, aiming for real-time applications.

APPENDIX A. Proof of Theorem 2

We provide a proof of Theorem 2 which is a generalization of the result in [START_REF] Nguyen | On the proof of recursive Vogler algorithm for multiple knife-edge diffraction[END_REF] for multiple knife edge diffraction. The proof can be outlined as follows. First, we transform (1) into a series by using Taylor series expansion of exp(2f ) and Lemma 1. Then, we define a set of integrals, denoted as

{I n } N -2
n=1 , that will provide a convenient way to link the result of the series from the previous step with the computation result of this set. Finally, we provide a formula representing the link and thus prove the Theorem 2. The proof thus can be divided into three steps:

• Step 1: We show the result of computing I 1 .

• Step 2: We provide a general expression for computing I n and prove it by induction. • Step 3: We show the relationship between I n and I m and conclude the proof. By using Taylor series expansion of exp(2f ), we can rewrite (1) as

A N = 1 2 N K N exp (σ N -σ N ) × µ1 q1=1-λ1 • • • µ N -1 q N -1 =1-λ N -1 (-1) s ∞ m=0 I m ( 41 
)
where

I m ∆ = 2 m m! 2 √ π N ∞ β1 • • • ∞ β N f m exp - N n=1 u 2 n du 1 • • • du N (42)
Furthermore, we want to compute N integrals of one-fold instead of one integral N -fold. To this end, we can expand f m by applying Lemma 1. For convenience, we define the following set of integrals {I n } N -2 n=1 related to each term of f m after moving the integral to the desired term:

I n ∆ = 2 √ π n+1 ∞ β N -n • • • ∞ β N m N -n-2 m N -n-1 =0 m N -n-2 m N -n-1 × γ m N -n-2 -m N -n-1 N -n-1 N -1 i=N -n γ i m N -n-1 × exp - N i=N -n u 2 i du N -n • • • du N (43)
Next, we show how we compute those integrals and link them to computation of I m .

Step 1: We show the result of computing I 1 . Following (43) , I 1 is defined as

I 1 = 2 √ π 2 ∞ β N -1 ∞ β N m N -3 m N -2 =0 m N -3 m N -2 × γ m N -3 -m N -2 N -2 γ m N -2 N -1 exp -u 2 N -1 + u 2 N du N -1 du N (44) 
By substituting

γ m N -3 -m N -2 N -2 γ m N -2 N -1 = (-1) q N -2 (m N -3 -m N -2 ) α m N -3 -m N -2 N -2 × (u N -2 -β N -2 ) m N -3 -m N -2 (-1) q N -1 m N -2 × α m N -2 N -1 (u N -1 -β N -1 ) m N -3 (u N -β N ) m N -2 (45)
into (44), we obtain the following result

I 1 = m N -3 m N -2 =0
(-1)

q N -2 (m N -3 -m N -2 ) (m N -3 )! (m N -3 -m N -2 )! × α m N -3 -m N -2 N -2 (u N -2 -β N -2 ) m N -3 -m N -2 × C (N -1, m N -2 , m N -3 ) (46) 
where

C (N -1, m N -2 , m N -3 ) = (-1) q N -1 m N -2 (m N -3 )!α m N -2 N -1 I (m N -3 , β N -1 ) I (m N -2 , β N ) ( 47 
)
Step 2: We provide a general expression for computing I n and prove it by induction. We introduce the following proposition used later in the proof of the main result and next steps Proposition 5. (A relationship between I n-1 and I n ) The following relationship holds for I n-1 and I n , 2 ≤ n ≤ N -2:

I n = 2 √ π ∞ β N -n m N -n-2 m N -n-1 =0 m N -n-2 m N -n-1 × γ m N -n-2 -m N -n-1 m N -n-1 I n-1 exp -u 2 N -n du N -n (48)
Proof. From the definition (43), we can re-arrange I n as

I n = 2 √ π ∞ β N -n m N -n-2 m N -n-1 =0 m N -n-2 m N -n-1 γ m N -n-2 -m N -n-1 N -n-1 × 2 √ π n ∞ β N -n+1 • • • ∞ β N N -1 i=N -n γ i m N -n-1 exp - N i=N -n+1 u 2 i du N -n-1 • • • du N exp u 2 N -n du N -n (a) = 2 √ π ∞ β N -n m N -n-2 m N -n-1 =0 m N -n-2 m N -n-1 × γ m N -n-2 -m N -n-1 m N -n-1 × I n-1 exp -u 2 N -n du N -n ( 49 
)
where the equality (a) is achieved by expanding

N -1 i=N -n γ i m N -n-1
with Lemma 1. We thus conclude the proof.

The result of computing the integral I n can be obtained by the following proposition Proposition 6. For 2 ≤ n ≤ N -2, I n is given by

I n = m N -n-2 m N -n-1 =0 (-1) q N -n-1 (m N -n-2 -m N -n-1 ) × (m N -n-2 )! (m N -n-2 -m N -n-1 )! α m N -n-2 -m N -n-1 N -n-1 × (u N -n-1 -β N -n-1 ) m N -n-2 -m N -n-1 × C (N -n, m N -n-1 , m N -n-2 ) ( 50 
)
where

C (N -n, m N -n-1 , m N -n-2 ) = m N -n-1 m N -n =0 (-1) q N -n (m N -n-1 -m N -n ) (m N -n-2 -m N -n )! (m N -n-1 -m N -n )! × α m N -n-1 -m N -n N -n I (m N -n-2 -m N -n , β N -n ) × C (N -n + 1, m N -n , m N -n-1 ) . ( 51 
)
Proof. We prove this proposition by induction. First, we show that the result holds for I 2 . We then assume that the result (51) is true. Finally, we prove that it also holds for I n+1 . Following Lemma 5, I 2 is given by

I 2 = 2 √ π ∞ β N -2 m N -4 m N -3 =0 m N -4 m N -3 γ m N -4 -m N -3 N -3 × I 1 exp -u 2 N -2 du N -2 (52) 
We then substitute

γ m N -4 -m N -3 N -3 = (-1) q N -3 (m N -4 -m N -3 ) α m N -4 -m N -3 N -3 × (u N -3 -β N -3 ) m N -4 -m N -3 (u N -2 -β N -2 ) m N -4 -m N -3 (53) 
and calculate the integral to achieve

I 2 = m N -4 m N -3 =0
(-1)

q N -3 (m N -4 -m N -3 ) (m N -4 )! (m N -4 -m N -3 )! × α m N -4 -m N -3 N -3 (u N -3 -β N -3 ) m N -4 -m N -3 × C (N -2, m N -3 , m N -4 ) (54) 
where

C (N -2, m N -3 , m N -4 ) = m N -3 m N -2 =0 (-1) q N -2 (m N -3 -m N -2 ) (m N -4 -m N -2 )! (m N -3 -m N -2 )! × α m N -3 -m N -2 N -2 I (m N -4 -m N -2 , β N -2 ) × C (N -1, m N -2 , m N -3 ) (55) 
In a similar way as for I 2 , we can reach I n+1 by substituting

γ m N -n-3 -m N -n-2 m N -n-2 = (-1) qm N -n-2 (m N -n-3 -m N -n-2 ) × α m N -n-3 -m N -n-2 m N -n-2 u m N -n-2 -β m N -n-2 m N -n-3 -m N -n-2 × u m N -n-1 -β m N -n-1 m N -n-3 -m N -n-2 (56) into (48) (i 
.e., we replace index n by n + 1) as follows

I n+1 = 2 √ π ∞ β N -n-1 m N -n-3 m N -n-2 =0 m N -n-3 m N -n-2 γ m N -n-3 -m N -n-2 m N -n-2 I n exp -u 2 N -n-1 du N -n-1 = m N -n-3 m N -n-2 =0
(-1)

qm N -n-2 (m N -n-3 -m N -n-2 ) × (m N -n-3 )! (m N -n-3 -m N -n-2 )! (m N -n-2 )! α m N -n-3 -m N -n-2 N -n-2 × (u N -n-2 -β N -n-2 ) m N -n-3 -m N -n-2 × m N -n-2 m N -n-1 =0
(-1)

q N -n-1 (m N -n-2 -m N -n-1 ) (m N -n-2 )! (m N -n-2 -m N -n-1 )! α m N -n-2 -m N -n-1 N -n-1 × C (N -n, m N -n-1 , m N -n-2 ) × 2 √ π ∞ β N -n-1 u N -n-1 -β N -n-1 m N -n-3 -m N -n-1 exp -u 2 N -n-1 du N -n-1 = m N -n-3 m N -n-2 =0
(-1)

qm N -n-2 (m N -n-3 -m N -n-2 ) × (m N -n-3 )! (m N -n-3 -m N -n-2 )! α m N -n-3 -m N -n-2 N -n-2 × (u N -n-2 -β N -n-2 ) m N -n-3 -m N -n-2 × C (N -n -1, m N -n-2 , m N -n-3 ) (57) 
where

C (N -n -1, m N -n-2 , m N -n-3 ) = m N -n-2 m N -n-1 =0 (-1) q N -n-1 (m N -n-2 -m N -n-1 ) × (m N -n-3 -m N -n-1 )! (m N -n-2 -m N -n-1 )! α m N -n-2 -m N -n-1 N -n-1 ×I (m N -n-3 -m N -n-1 , β N -n-1 ) × C (N -n, m N -n-1 , m N -n-2 ) (58) 
It is straightforward to verify that the result for I n+1 is true from the statement of Proposition 6. We thus conclude the proof.

Based on (47), (55), and (58), we then obtain the following corollary from Proposition 6 .

Corollary 1. (The recursive relationship of C) Let

m 0 = m, i = m N -L , j = m N -L-1 , k = m N -L-2 2 ≤ L ≤ N -2, N ≥ 4.
The following expression holds

C (N -L, j, k) = j i=0 (-1) q N -L (j-i) × (k -i)! (j -i)! α j-i N -L I (k -i, β N -L ) C (N -L + 1, i, j) .
Step 3: We show the relationship between I n and I m and conclude the proof. The relationship between I n and I m is given by the following proposition Proposition 7. (A relationship between I N -2 and I m ) The following relationship holds

I m = 2 m m! 2 √ π ∞ β1 I N -2 exp -u 2 1 du 1 . (59) 
Proof. Recall that, from the definition of (43), I N -2 is given by

I N -2 = 2 √ π N -1 ∞ β2 • • • ∞ β N m m1=0 m m 1 γ m-m1 1 N -1 i=2 γ i m1 × exp - N i=2 u 2 i du 2 • • • du N (60) 
Moreover, we can represent an expansion of f m by using the binomial theorem as

f m = m m1=0 m m 1 γ m-m1 1 N -1 i=2 γ i m1 (61) 
By substituting (61) into (42) and rearranging the integrals corresponding to the suitable variables, we obtain

I m = 2 m m! 2 √ π ∞ β1 du 1 × 2 √ π N -1 ∞ β2 du 2 • • • ∞ β N du N f m exp - N n=2 u 2 n × exp -u 2 1 du 1 = 2 m m! 2 √ π ∞ β1 I N -2 exp -u 2 1 du 1 (62) 
We thus conclude the proof.

Moreover, recall from Proposition 6 that

I N -2 = m m1=0 (-1) q1(m-m1) (m)! (m -m 1 )! × α m-m1 1 (u 1 -β 1 ) m-m1 C (2, m 1 , m) (63) 
Finally, by substituting (63) into (59) of Proposition 7, I m is given by

I m = 2 m m! m m1=0 (-1) q1(m-m1) (m)! (m -m 1 )! α m-m1 1 × C (2, m 1 , m)    2 √ π ∞ β1 (u 1 -β 1 ) m-m1 exp -u 2 1 du 1    = 2 m m m1=0 (-1) q1(m-m1) α m-m1 1 I (m -m 1 , β 1 ) C (2, m 1 , m) (64) 
which is exact result of Theorem 2. We thus conclude the proof.

B. Proof of Theorem 3

Theorem 3 is a special case of Theorem 2 where the sum over q i , i = 1, • • • , N -1 can be factorized into simple terms as presented in the following proposition.

Proposition 8. Let Ω q1,••• ,q N -1 (-1) N -1 i=1 qi(mi-1-mi+1) , N > 2 (65)
Given the following notation,

m 0 = m, m N = 0,
we obtain

Θ N ∆ = 1 q1=0 • • • 1 q N -1 =0 Ω q1,••• ,q N -1 = N -1 i=1 1 -(-1) mi-1-mi . ( 66 
)
Proof. We also prove this lemma by induction. For N = 3 and 4, the result of lemma holds (see Section IV-B). We assume that the lemma is true for N = n and prove it true for N = n + 1.

For N = n + 1, we can compute Θ n+1 as

Θ n+1 = 1 q1=0 1 q2=0 • • • 1 qn=0 (-1) n i=1 qi(mi-1-mi+1) = 1 q1=0 1 q2=0 • • • 1 qn=0 (-1) q1(m-m1+1)+ n i=2 qi(mi-1-mi+1) = 1 q1=0 (-1) q1(m-m1+1) (67) 
× 1 q2=0 • • • 1 qn=0 (-1) n i=2 qi(mi-1-mi+1) (a) = 1 q1=0 (-1) q1(m-m1+1) n i=2 1 -(-1) mi-1-mi = n i=1 1 -(-1) mi-1-mi (68) 
where the equality (a) is reached by using (66). We thus conclude the proof.

Finally, by applying Proposition 8, it is straightforward to obtain the Theorem 3 by re-arranging factors from Theorem 2.

C. Proof of Proposition 1

We prove this proposition by induction. We first consider the Vogler algorithm. Recall that M is a truncated value of the index m. For N ≥ 3, a general solution for computing multiple knife-edge A MKE N is given by [8]

A MKE N = 1 2 N C N exp (σ N ) ∞ m=0 I m (69) 
where

I m = 2 m m m1=0 • • • m N -3 m N -2 N i=1 (m i-1 -m i+1 )! (m i -m i+1 )! α mi-1-mi i I (n i , β i ) (70) 
with, by using notation m 0 = m,

n i =      m 0 -m 1 i = 1 m i-2 -m i 2 ≤ i ≤ N -1 m N -2 -m N -1 i = N . ( 71 
)
For N = 3, number of integrals inside summation is given by

η 3 I = 3 M m=0 (m + 1) = 3 (M + 1) (M + 2) 1 × 2 (72) 
For N = 4, we apply the result from N = 3 and thus obtain

η 4 I = 4 M m=0 (m + 1) (m + 2) 2 (73) 
To evaluate η 4 I , we build a telescoping sum as follows. We note that

(m + 1) (m + 2) 2 = 1 6 [(m + 1) (m + 2) (m + 3) -m (m + 1) (m + 2)] . (74) 
Thus, we can rewrite (73) as

η 4 I = 4 M m=0 (m + 1) (m + 2) 2 = 4 6 M m=0 (m + 1) (m + 2) (m + 3) -m (m + 1) (m + 2) = 4 (M + 1) (M + 2) (M + 3) 1 × 2 × 3 . ( 75 
)
where the last equality is obtain by canceling pairs of consecutive terms. Now, we assume that, the expression of η N -1 I is true. We show that it is also true for η

N I η N I = N M m=0 N -2 n=1 (m + n) n (76) 
In a similar way as for N = 4, we note that

N -2 n=1 (m + n) n = 1 (N -1)! N -1 n=1 (m + n) - N -2 n=0 (m + n) (77)
By substituting (77) into (93), we obtain

η N I = N (N -1)! M m=0 N -1 n=1 (m + n) - N -2 n=0 (m + n) = N N -1 n=1 (M + n) n . (78) 
We thus conclude the proof.

D. Proof of Proposition 2

The recursive algorithm for MKE has the same number of loops but the difference in terms of integrals arrangement, leading to different number of computed integrals. The proof is similar to that of Proposition 1. We illustrate this point for the case of N = 3 and 4. For N = 3, following Theorem 3, we can write A N explicitly as follows

A N = 1 2 N K N exp (σ N -σ N ) M m=0 I m
where

I m = 2 m m m1=0 α m-m1 1 m!α m1 2 × I (m -m 1 , β 1 ) I (m, β 2 ) I (m 1 , β 3 ) . ( 79 
)
Thus, it is clear that,

η 3 I = 3 (M + 1) (M + 2) 2 . ( 80 
)
For N = 4, from ( 26), ( 25) and ( 23), after removing the related reflecting coefficients, we can express I m as

I m = 2 m m m1=0 α m-m1 1 × I (m -m 1 , β 1 ) m1 m2=0 (m -m 2 )! (m 1 -m 2 )! × α m1-m2 2 m 1 !α m2 3 × I (m -m 2 , β 2 ) I (m 1 , β 3 ) I (m 2 , β 4 ) . (81) 
We can count number of integrals as

η 4 I = 3 3 n=1 (M + n) n + 2 n=1 (M + n) n (82) 
where the first term includes three times (i.e., I (m -m 2 , β 2 ) , I (m 1 , β 3 ) , I (m 2 , β 4 )) number of terms inside the loops and the second term includes number of integrals I (m -m 1 , β 1 ). From those cases, we can generalize for arbitrary N > 3 by using the same method as the proof of Proposition 1 as

η N I = 3 N -1 n=1 (M + n) n + N -2 n=1 (M + n) n + • • • + 2 n=1 (M + n) n . (83) 
We thus conclude the proof.

E. Proof of Proposition 3

Before providing the details, we note that, a necessary condition for = 0 is that the last index of loops is odd. For example, for N = 3 and 4 , their corresponding last indices, m 1 and m 2 , are odd. To see this point, we consider the case of N = 3 and 4 first.

For N = 3, we have

= 1 -(-1) m-m1 (1 -(-1) m1 ) . (84) 
Observe that, we only need take into account the case of m is even and m 1 is odd (i.e., = 0). We note further that, index m 1 runs from 0 to m. Thus, we obtain

• if the truncated value M is even, then

η 3 I = 3 M m=0 m even m 2 = 3 (M + 2)M (2 × 1) × (2 × 2) (85) 
• if the truncated value M is odd, we have

η 3 I = 3 M ( M + 2) (2 × 1) × (2 × 2) = 3 (M + 1)(M -1) (2 × 1) × (2 × 2) (86) 
with M = M -1. Since all items corresponding to odd index m are eliminated, number of integrals for index m = M is zero. For N = 4, we can observe that = (1 -(-1) m-m1 ) (1 -(-1) m1-m2 ) (1 -(-1) m2 ) = 0 if the following condition is meet: m is odd, m 1 is even and m 2 is odd. By taking into account this condition, we use the formula for odd M from N = 3 as follows

η 4 I = 4 M m=0 m odd (m + 1)(m -1) 8 (87) 
Let m = 2n + 1. Then we can rewrite η 4 I as

η 4 I = (M -1)/2 n=0 (n + 1)n 2 (88) 
In a similar way as in Proposition 1, we build a telescoping sum as follows. We note that

(n + 1)n 2 = 1 6 [(n + 2)(n + 1)n -(n + 1)n (n -1)] (89) 
Then, we can calculate η 4 I as

η 4 I = 4 (M -1)/2 n=0 (n + 1)n 2 (90) = 4 6 (M -1)/2 n=0 [(n + 2)(n + 1)n -(n + 1)n (n -1)] = 4 (M + 3)(M + 1)(M -1) (2 × 1) × (2 × 2) × (2 × 3) (91) 
Again, by replacing M with M -1, we obtain the result of η 4 I for M even as follows

η 4 I = 4 (M + 2)M (M -2) (2 × 1) × (2 × 2) × (2 × 3) (92) 
Now, we assume that, the expression of η N -1 I is true. We show that it is also true for η N I . Without loss of the generality, we assume that N is even and M is odd. We use the formula from odd N -1 with odd M to compute η N I as follows

η N I = N M m=0 m odd N -2 i=1 (m -1) + (N -2) -2 (i -1) 2i (93) 
Let m = 2n + 1. Then we obtain η N I as

η N I = N (M -1)/2 n=0 N -2 i=1 2n + (N -2) -2 (i -1) 2i (94) 
To build a telescoping sum, the expression inside the square brackets can be represented as

N -2 i=1 2n + (N -2) -2 (i -1) 2i = 1 2 N -1 (N -1)! N -2 i=0 (2n + (N -2) -2 (i -1)) - N -1 i=1 (2n + (N -2) -2 (i -1)) (95)
Thus, we achieve the following result

η N I = N 2 N -1 (N -1)! × (M -1)/2 n=0 N -2 i=0 (2n + (N -2) -2 (i -1)) - N -1 i=1 (2n + (N -2) -2 (i -1)) = N 2 N -1 (N -1)! N -2 i=0 ((M -1) + (N -2) -2 (i -1)) (96) 
Let n = i + 1. Then, after rearranging coefficients, we obtain the exact result of η N I as presented in Proposition 3 for even N and odd M η

N I = N N -1 n=1 M + (N -1) -2 (n -1) 2n . (97) 
By replacing M by M -1, we attain the exact result of η N I as presented in Proposition 3 for even N and even M η

N I = N N -1 n=1 (M -1) + (N -1) -2 (n -1) 2n . (98) 
In a similar way, we now prove the result for odd N and even and odd M . Without loss of the generality, we assume that N is odd and M is even. We use the formula from even N -1 with even M to compute η N I as follows

η N I = N M m=0 m even N -2 i=1 (m -1) + (N -2) -2 (i -1) 2i (99) 
Let m = 2n. Then we obtain η N I as

η N I = N M/2 n=0 N -2 i=1 (2n -1) + (N -2) -2 (i -1) 2i (100) 
To build a telescoping sum, we represent the expression inside the square brackets as Our aim now is to show that η 4 I for the proposed algorithm is less than or equal to that of the series based algorithm. To simplify analysis and without loss of generality, we simplify the expression for computing A in the proposed algorithm (refer to as A pro 4 ) and the series based algorithm (refer to as III. We use this table to analyze the computational differences between two algorithms. First, we observe that there is no difference in terms of η 4 I in the case of two successive values of M , for example M = 1, 2 or M = 3, 4. This is due to the fact that we count the number of integrals (for this case) if m 2 is odd AND m 1 is even AND m is odd. Second, let us consider the difference between two algorithms appearing in the case of M = 5, 6. The series based-algorithm computes 4 integrals corresponding to 4 couples indices, resulting in η 4 I = 16 in total (see Eq. ( 108) and Table III). TABLE III In contrast, our algorithm computes 8 integrals for the first two couple indices (i.e.,(m, m 1 , m 2 ) = (3, 2, 1) and (m, m 1 , m 2 ) = (5, 2, 1)). For the last two couple indices (i.e.,(5, 4, 1) and (5, 4, 3)), our algorithm, however, compute 1 integral corresponding to (m, m 1 ) = (5, 4) and 6 integrals insides the loops of m 2 = 1 and m 2 = 3, resulting in 15 in total (see Eq. ( 109) and Table III). Thus, we gain 1 computed integral. In a similar way, for M = 7, 8, we gain 4 computed integrals. When M increases, this gain increases significantly.

N -2 i=1 (2n -1) + (N -2) -2 (i -1) 2i = 1 2 N -1 (N -1)! N -2
In practice, we saw that, it increases exponentially to M . Again, for N > 4, the structure of problem is in the similar way. Using the same argument, we can show that η N I of proposed algorithm is upper bounded by η N I of the series based-algorithm. We thus conclude the proof.

β

  (u -β) m exp -u 2 du Repeated integrals of the complementary error function[START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical table[END_REF] 

Proposition 4 .

 4 Following the recursive implementation in Theorem 3, the number of repeated integrals of the complementary error function is upper bounded by that of the series basedalgorithm. Proof. See Appendix F. It is worth mentioning that, by comparing the result from Proposition 1 and 2, for N = 3, η 3 I of the Vogler algorithm and the recursive Vogler algorithm are identical in the case of the multiple knife edge (MKE) model; by comparing the result from Proposition 3 and 4, η 3 I of the series based algorithm and the proposed algorithm are the same in the case of multiple bridged knife edge (MBKE) model; If we compare between the cases of MKE and MBKE, algorithms in MKE has higher complexity than those in MBKE.

Fig. 2 :

 2 Fig. 2: Computational complexity comparison: number of computed integrals η N I as a function of the truncated value M . The lower curve is, the lower complexity is. The figure on the bottom left corner is a zoomed version of the main figure at the upper bound. The complexity of our proposed algorithm is lower than that of series based one.

Fig. 3 :

 3 Fig. 3: Illustration of effect of truncated value M on accuracy. Four different values M = 5, 10, 50, 90 are chosen. The accuracy is proportional to values of M . When M is large enough (i.e., M = 50) in this experiment, increasing M has negligible errors. Here, the accuracy of final results corresponding to M = 50 and 90 are almost identical.The truncated value M of index m has impact on both accuracy and computational complexity. The effect of M on the complexity of algorithms has already shown in TableIIand Fig.2. Thus, before comparing algorithms, we illustrate the effect of M on the accuracy of final result (see Fig.3) in the following experiment: we study a propagation path with a distance of 30 km where there are two fixed knife-edges, h 1 and h 3 , at distances of 10 km and 20 km from the transmitter respectively (see also Fig.4for this setup). A knife-edge with variable height, h 2 , is placed at middle of two fixed knifeedge. Bridging terrain is presented between h 1 and h 2 as well as h 2 and h 3 . The operation frequency is at 100 MHz. The transmitter and receiver are replaced in the reference plane (i.e., h 0 = h 4 = 0). Two fixed knife-edges have the same height of 100 m (i.e., h 1 = h 3 = 100m ). When h 2 increases, the diffraction attenuation curves converges toward the curve of a single knife edge for multiple knife-edges and a wedgeshape terrain for multiple bridged knife-edges respectively.We implement our proposed algorithm as described in Theorem 3. Here, we choose M from 5 to 90. We can see that the larger value of M is, the more precise result we obtain. For our tests presented later, we found by experiments that M = 90 is a good balance between accuracy and running time.

Fig. 7 :

 7 Fig. 7: Illustration on running time for N = 5, where both h 2 and h 4 change. The figure on the top right corner is a zoomed version of the main figure to compare proposed algorithm and the series based algorithm. Our proposed algorithm is faster than the series based algorithm. Moreover, both algorithms are much faster than the recursive Vogler agorithm.

F. Proof of Proposition 4 3 I× α m-m1 1 I× m!α m1 2 I 1 I 2 I (m -m 2 , β 2 ) C ( 3 , m 2 , m 1 )C ( 3 , m 2 , m 1 )= ( 1 -

 431212223213211 i=0((2n -1) + (N -2) -2 (i -1))-N -1 i=1 ((2n -1) + (N -2) -2 (i -1)) (101)Thus, we achieve the exact result for odd N and even M -1) + (N -2) -2 (i -1))replacing M by M -1, we attain the exact result of η N I for odd N and odd Mη N I = N N -1 n=1 (M -1) + (N -1) -2 (n -1) 2n . (103)We thus conclude the proof.Recall that, for MBKE ofN = (m -m 1 , β 1 ) (1 -(-1) m1 ) (m, β 2 ) I (m 1 , β 3 ) . (104)Thus, the number of integrals η 3 I is identical to the case of Proposition 3. For N = 4, from[START_REF] Zhao | Diffraction over typical-shaped terrain obstacles[END_REF],[START_REF] Whitteker | Fresnel-kirchhoff theory applied to terrain diffraction problems[END_REF] and[START_REF] Whitteker | A series solution for diffraction over terrain modeled as multiple bridged knife edges[END_REF], we can express I m asI m (m -m 1 , β 1 ) C (2, m 1 , m) (-1)m2 ) (m 1 )!α m2 3 I (m N -3 , β 3 ) I (m 2 , β 4 ) . (107)

A ser 4 )× 1 - 1 - 4 I

 4114 respectively by keeping only integrals and their related factors as presented in (108) and (109).I (m -m 1 , β 1 ) I (m -m 2 , β 2 ) I (m N -3 , β 3 ) I (m 2 , β 4 ) (-1) m-m1 I (m -m 1 , β 1 ) m1 m2=0 (-1) m1-m2 (1 -(-1) m2 ) × I (m -m 2 , β 2 ) I (m N -3 , β 3 ) I (m 2 , β 4 )(109)Several values of M and the corresponding indices (m, m 1 , m 2 ) to count the number of computed integrals η for two algorithms is given in Table

: 8 (

 8 Illustration of indices (m, m 1 , m 2 ) to count the number of computed integrals η 4 I . Underlined indices show the difference between number of computed integrals of the series based algorithm and proposed algorithm. The more M increases, the more significantly our proposed algorithm gains. M = 1, 2 M = 3, 4 M = 5, 6 M = 7,

TABLE I :

 I Functions and symbols used throughout this paper.

	Symbol/function i √ -1	Definition Complex number
	I (m, β)	

TABLE II :

 II Complexity comparison in terms of computed integrals among algorithms for multiple knife-edge (MKE) and mutiple bridged knife-edge (MBKE) models.

MKE

Vogler algorithm

[START_REF] Vogler | An attenuation function for multiple knife-edge diffraction[END_REF] 

Following the Babinet's principle, we can convert a diffraction problem involving thin diffracting screens into two new easier problems to solve.