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Abstract—Synthetic Aperture Radar (SAR) imagery has a
great potential in remote sensing field in order to maintain aerial,
land and maritime surveillance. To improve this potential for
several goals, Machine Learning (ML) techniques are used for
effective and efficient classification of remotely sensed imagery.
The strengths of machine learning include the capacity to handle
data of high dimensionality with several modality and to map
classes with very complex and varied characteristics.

We focus in this paper on the ship classification from SAR
imagery using a deep learning algorithms with transfer leaning
mechanisms. To improve the recognition performances, several
learning strategies are proposed. We illustrate these issues
through applying a transfer learning on deep learning ship
classification with several learning strategies. We used in this
work especially no huge labelled dataset available for training.
The aim is thus to see how to leverage knowledge from models
pre-trained on other tasks (source tasks) and use them for target
classification (target task).

Index Terms—Automatic Target Recognition, Deep learning,
SARShip Classification, Transfer learning, Learning strategy.

I. INTRODUCTION

The environment characterization and fine description given
by sensors for detection, localization, tracking targets (aircraft,
ship, vehicle ...) and classification present an essential tasks
for civil and military applications (on and/or under the sea
surface). This characterization is thus important to improve
aerial, land and maritime surveillance systems. Also, the
threats generated by legal or illegal trade such as drug/weapons
trafficking, illegal immigration, illegal fishing, pollution (hy-
drocarbons) or disaster management have shown the impor-
tance of a maritime/terrestrial surveillance areas. Thus, the
areas surveillance constitutes today a very important stake
for the states not only in the security sector, but also in the
economic field. This surveillance can be carried out by means
of airborne or satellite sensors, fixed and/or mobile, depending
on the extent of the territory to be monitored and the targeted
applications [1], [2].

In this study, we are interested in methods from Deep Learning
and different architectures in a context of target classification
on SAR images. In this context of the study, we focused
on Machine Learning technologies in the context of Radar
Remote Sensing problems related to the maritime domain.
For detection, from SAR images, it is a matter of locating
(targeting) the light points (if possible relevant) in large images
(example of the reflectivity of ships more important than the

sea surface). Classification is located further downstream from
detection. It is in this step to discriminate (identify) more
finely the detected objects. Classically, this step requires a
higher level of feature extraction than the detection step. In this
context, Convolutional Neural Networks (CNN) and transfer
learning [3], [4] potentially offer a rather elegant and adequate
solution to such a problem.

This paper is organized as follows. In section II we are also
interested in the potential of transfer learning and learning
strategies applied to proposed CNN architectures. In this
section, we expose the proposed CNN architectures for target
detection and classification/recognition on SAR images and
their evaluation experimentation. In section IV, the obtained
results and performances of the proposed DNN methods are
presented and discussed. Finally, we give conclusions and
perspectives.

II. TRANSFER LEARNING METHOD FOR TARGET
RECOGNITION

In this section, the Automatic Target Recognition system is
introduced. We present briefly the principle of Deep Neu-
ral Network steps and describe the proposed Deep Neural
Network approaches.The proposed CNN architecture which
adopted from Zhang et al. [5] is presented by the figure 1 .
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Fig. 1. ”Zhang” Architecture [5].

This CNN architecture has the advantage of being simpler
and well adapted to this work and evaluation of the different
architectures presented in the following. Deep Neural Network
which is specialized in object recognition and classification.
During the feature extraction, the CNN architectures use the
convolution operations to extract different features that are rep-
resented by generated filters. It is composed of 2 convolution
layers, 2 Max Pooling layers and 3 fully connected layers and



uses ReLU type activations (see Figure 1 and the Table I for
its descriptions).

TABLE 1

CHARACTERISTICS OF THE "ZHANG” ARCHITECTURE.
Layer name | Channels | Kernel | Stride | Nb params
InputLayer 1 - - 0
conv_1 32 3x3 1 288
max_pool_1 | 32 2x2 2 0
conv_2 64 3x3 1 18432
max_pool_2 | 64 2x2 2 0
fc_1 120 - - 7680
flat_1 122880 - - 0
fc_2 64 - - 7896320
fc_3 n_class - - 64 * n_class

III. LEARNING STRATEGY
A. Early stopping techniques

The “early stopping” technique makes it possible to adjust
the training process (number of epochs) according to the
performance training evolution on the validation dataset. The
objective is to train the network long enough to reach the
best performance. To do this, we follow the evolution of the
classification accuracy at each learning epoch, measured on the
validation base. When it stops increasing, we stop the learning.
We consider that the accuracy stops increasing when it does
not increase during a predetermined number of epochs (Early
Stopping number). Moreover, to ensure minimum learning, a
minimum number of learning epochs is defined. When the
training process is stopped, the training parameters which give
us the best performance (accuracy) with the “’best epoch” in
the training process are retained and stored.

B. Setting the learning rate

To adjust the learning rate in order to get the most out of
each learning, the ”1-cycle” method is used. This strategy
method is introduced by [6] and then recommended by Fastai
[7]. To study this method and compare it with more classical
methods of learning rate adjustment, several simulations are
performed. We note that, in the ’1-cycle” method, the learning
rate is varied and changed during the learning process, over
a cycle: first by increasing the learning rate and then by
decreasing it. This method is thus parameterized by different
hyperparameters below:

o The maximum value of the learning rate (the one reached
in the middle of the cycle).

e The starting ratio: determines the initial value of the
learning rate in relation to the maximum value of learn-
ing.

o The final ratio: determines the final value of the learning
rate in relation to the maximum value of learning rate.

e The length of the cycle.

o The share of the rising part of the cycle in relation to the
total.

o The function used to increase and decrease the learning
rate.

In this work, we have used the cosine function as a function for
the increase and decrease of the learning rate in the learning

cycle [7]. To illustrate this method, the Figure 2 shows the
evolution of the learning rate following the ”1-cycle” method
with the following hyperparameters:

o Function used : cosine function.

o Maximum value of the learning rate : 0.003.

o Starting ratio : 1/25.

« Final ratio: 1/300.

e Cycle time: 100 epochs.

« Share of the rising part of the cycle compared to the total:
25%.
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Fig. 2. The evolution example of the learning rate in the learning process for
”1-cycle” method.

To evaluate the 1-Cycle strategy method, some experimenta-
tion’s are made and presented in the next section.

C. Classification Performance Measurement

In this paper, the performance measurements are evaluated for
the proposed method on ship classification from SAR images
using the OpenSARShip dataset. This dataset is limited in
classes number and class representation (images/class) [8]. The
small dataset and a reduced number of images per class leads
to problems and poor performance measurements. Indeed,
we generally obtain a wide variety of results for a given
training setup on several independent achievements. This is
due to the randomness of the setup initialization (such as the
initialization of the network parameters) and to the learning
optimization. In the other hande, the small number of images
in the test dataset can induce a high variability of the network
performances. Indeed, if only some images are well recognized
(or false recognized) can increase (or decrease) significantly
the performance measurements.

To address this problem, we therefore evaluate performance
measurements by reproducing the learning process and per-
formance measurement several times for a given learning
configuration. These realizations are done independently. In
order to obtain a number of samples that allows to correctly
represent the performance, we choose to perform 15 indepen-
dent training realizations for each training configuration using
TensorFlow v2.3.0 Library.

To illustrate this proposal, we present in Table II a set of
performance measurements obtained from a given training
configuration which the significant variability on results can
be observed. So, we present in Table II the 15 realizations
and their classification accuracy (noted Acc). This accuracy
distribution is presented by Figure 3 which we visualize
the estimation of the associated probability density (using



a Gaussian kernel) as well as the average values to make
comparison.

TABLE 11
CHARACTERISTICS OF THE "ZHANG” ARCHITECTURE.

Realization number | 1 2 3 4 5 6
Acc % 64.7 | 923 | 96.2 | 95.1 | 959 | 569
Realization number | 7 8 9 10 11 12
Acc % 94.6 | 96.0 | 86.6 | 86.4 | 96.0 | 64.9
Realization number | 13 14 15 - - -
Acc % 90.6 | 955 | 81.2 | - - -

Once the samples have been obtained, it was necessary to
determine a simple way to represent the corresponding distri-
bution. We did not choose the mean / standard deviation pair.
Indeed, the mean is sensitive to the value of the extreme cases
and can therefore vary a lot for two measurements series of
the same training configuration. We thus used the median of
the distribution, which does not have this disadvantage.
Moreover, to represent the samples variability linked to the
median, given the asymmetry of the distributions encountered
in this study, we have used a asymmetrical difference averages:
for each sample, we calculate the value (sample — median)
and then estimate the average of the obtained negative values
as well as the average of the obtained positive values. We thus
obtain the average difference of the samples to the median
below the median on the one hand and for the samples above
the median on the other hand. The Figure 3 illustrate an
example to illustrate the performance measurement problem.
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Fig. 3. Probability density estimation of the performance measurement
distribution.

As summary of this step, we estimate the training perfor-
mances on 15 times (independently) for a given configuration.
Then, we obtain 3 quantitative indicators that represents the
corresponding measurements:
o Median.
o Average of differences (sample — median) that are
negative, the “negative mean difference”.
o Average of differences (sample — median) that are
positive, the ”positive mean difference”.
To complete the evaluation performances of the proposed
model, we present in the next section the effect of the
activation function.

D. The Activation Function Modification

We replace the ReLU activation function of fc_2by a Leaky-
ReLU function in order to “force” the different channels of
fc_2 to be non-zero in order ton increase the classification
accuracy [9]. The ReLU and Leaky — ReLU activation
functions are represented on the Figure 4.
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Fig. 4. ReLU and Leaky-ReLU activation functions.

IV. RESULTS AND DISCUSSIONS

In this section, we present the different simulations obtained
in order to evaluate the strategies methods presented in the
previous section. So, we discuss the different results obtained
in order to dress best practice rules.

A. Experimental Setup

For the use of transfer learning in the context of SAR images,
the MSTAR dataset [10] is used. The MSTAR database
(Moving and stationary Target Acquisition and Recognition)
brings together a set of images collected in 1996 in X band
(8 — 12GHz) with an H H polarization and a resolution of 30
cm. The MSTAR base consists of 5165 images of 10 military
vehicles (classes). The size of images is 128 x 128 pixels.
The train dataset contains 2740 images (53%), and the test
dataset contains 2425 images (47%). As second dataset, the
OpenSARShip (version 1.0) set [8] is used in order to perform
ship classification due to its public availability and thus the
potential for performance comparison with other works. This
dataset can then also be used as an intermediate dataset
for further maritime datasets, in order to perform transitive
transfer learning; providing a more similar task to other
ship classification problems than MSTAR. The OpenSARShip
database is a medium-resolution ship dataset that contains
11346 image ships cropped from a total of 41 Sentinel-1
images, and it covers mainly 5 ports in Asia and it has 17 ships
classes (AIS types). The image sizes range from 9 x 9 pixels
to 445 x 445 pixels, with 80% of the image sizes ranging from
33 x 33 to 169 x 169 pixels.But, the class distribution of the
whole OpenSARShip database are not uniformly distributed
[8]. Therefore, we have select 4 classes ships from the initial
classes which are : Cargo (with 925 images), Container Ship
(with 218 images) and Bulk Carrier (with 813 images).

B. Comparison of strategies for learning rate

To choose the ”1-cycle” method presented in the section III,
we performed simulations to compare different learning rate
tuning methods: Constant, Decreasing and ”1-cycle”. The
corresponding evolution of the learning rate during training is
illustrated by the Figure 2. The 3 learning rate setting scenarios
are configured as follows:
« Constant learning rate:
— Learning rate : 3*10-3.
o Decreasing learning rate:
— Maximum value of the learning rate : 3*10-3.



— Learning rate decrease period: 1 epoch.
— Learning rate decrease factor: 0.8.

o Learning rate ” 1-cycle:

— Maximum value of the learning rate: 3*10-3.

— Starting factor : 1/25.

— Final factor: 1/300.

— Cycle time: 20 epochs.

— Share of the rising part of the cycle compared to the
total: 25%.

— Function used to increase then decrease the learning
rate : cosine.

To perform this comparison, we have used the “Zhang”
architecture (CF. Figure 1) on MSTAR dataset to perform a
simulations process. Then, we measure the performance of
the trained network as well as the number of epochs required
to trigger the learning interruption (by the early stopping
mechanism). The learning configuration of the architecture
remains identical (except for the learning rate):

« Batch size: 32.

e Optimizer: Adam.

o Minimum number of epochs of learning (early stopping):
20.

e Minimum number of epochs without improvement to
declare learning complete (early stopping): 15.

The results of the corresponding simulations are given by
Table III. The median accuracy obtained is higher for the
”1-cycle” learning rate than in the other cases. We can also
see that the learning performed with this method presents
results with a lower variability compared to the other methods.
Finally, we notice that the learning converges more quickly
with this method. Note that these elements support the results
of [7] which recommends, as a good practice, to use the 1-
cycle” learning rate adjustment method.

TABLE III
RESULTS FOR THE COMPARISON OF LEARNING RATE ADJUSTMENT
METHODS.

n_epoch
Constant learning rate
median = 15.0 92.8%
mean_below | -5.9 -6.9%
mean_above | 15.0 2.4%

accuracy

Decreasing learning rate

median | 14.0 92.3%
mean_below | -3.0 -14.4%
mean_above | 9.2 2.9%

Learning rate " Icycle
median | 10.0 94.9%

mean_below | -1.4 -1.5%
mean_above | 1.1 1.0%

C. Comparison of strategies for Transfer Learning

We measure the performance of the ”Zhang” architecture in
classification only on the OpenSARShip dataset due to lack of
space. However, we note that the learning step on the "Zhang”
architecture provides a good classification accuracy on the

MSTAR dataset with a median accuracy around 94.8% on the
test dataset. Six learning strategies are performed: without and
with a learning transfer from MSTAR to OpenSARShip:

o The model is fully trained with a random initialization
of the network parameters. We noted this model ”from
scratch”.

o The model is initialized with the trained parameters from
the model trained from the MSTAR dataset. Then, all the
layers of this model are re-trained. We noted this model
“no freeze”.

o The model parameters are initialized from the training
on the MSTAR dataset. Then all layers of the model
are re-trained except the layers between the input and
the conv_1 layer (included). We noted this model “freeze
conv_1".

o The model parameters are initialized from the training
on the MSTAR dataset. Then all layers of the model
are re-trained except the layers between the input and
the conv_2 layer (included). We noted this model “freeze
conv_2”.

o The model parameters are initialized from the training on
the MSTAR dataset. Then all layers of the model are re-
trained except the layers between the input and the fc_1
layer (included). We noted this model “freeze fc_1".

o The model parameters are initialized from the training on
the MSTAR dataset. Then all layers of the model are re-
trained except the layers between the input and the fc_2
layer (included). We noted this model “freeze fc_2".

We used the following hyperparameters for these learnings:

« Batch size: 32.
o Optimizer: Adam.
o Learning rate ’1-cycle”:
— Maximum value : 0.003.
— Cycle time: 20 epochs.
Share of the upstream phase: 25%.
Initial ratio: 1/25.
Final ratio: 1/300.
Rise and fall function: cosine.

Early stopping:

— Minimum number of epochs: 20.

— Number of epochs without improvement to stop

learning: 15.

The results for OpenSARShip are given on the Table IV. It
can be observed that the learning is not as good as on the
MSTAR database on the OpenSARShip database (from scratch
scenario), which is explained by the small amount of annotated
data available.
The transfer learning compensates for this effect, with a slight
improvement in classification accuracy in the “no freeze”,
”freeze conv_1" and “freeze conv_2” cases. The transfer
scenarios “freeze fc_1" and “freeze fc_2" do not improve the
classification performance. In particular, we notice that the
performance is very degraded for “freeze fc_2”. This is also
visible on the corresponding confusion matrix: the objects are
mostly misclassified and no object is classified in the "Cargo”



class. We also notice from the observation of the confusion
matrices that the “no freeze”, "freeze conv_1" and “freeze
conv_2" cases improve the performance over “from scratch”
by improving the performance on “Cargo” and “Container
Ship”, the minority classes.

TABLE IV

PERFORMANCE OF THE "ZHANG” ARCHITECTURE ON THE OPENSARSHIP
DATASET FOR THE DIFFERENT TRANSFER LEARNING SCENARIOS.

OpenSARShip  from no freeze freeze freeze freeze
scratch freeze conv_1 conv_2 fc_1 fc_2

median | 72.8% 75.7% 74.6% 73.4% 71.6% 41.4%
mean_below | -0.8% -2.6% -2.8% -2.1% -2.1% -3.3%
mean_above | 1.2% 0.4% 1.1% 2.0% 2.4% 6.5%

If the global performance is not improved when the number
of frozen layers is increased, we notice however a change in
the distribution of the classes which are correctly classified.
The performance is indeed improved for the minority classes
when we increase the number of frozen layers at the cost of a
degraded performance for the majority class; this results in a
degraded global performance. To go further, we could explore
the compensation mechanism of the unequal distribution of
the classes in the OpenSARShip database.

D. Comparison of strategies for activation function

In this simulation, the activation function is replaced and the
architecture is trained with a random parameter initialization.
The results are presented in the Table V and VI

TABLE V
THE PERFORMANCES COMPARISON ON MSTAR DATASET ON ORIGINAL
”ZHANG” MODEL USING THE LEAKY-RELU ACTIVATION FUNCTION IN
THE FC_2 LAYER WITH A DROPOUT (30, 50, 80).

Original LeakyReLu LeakyReLu_Dropout30  LeakyReLu_Dropout50  LeakyRelu_Dropout80

median = 94.8% 95.1% 94.8% 94.4% 95.8%
mean_below | -1.6% -0.7% -0.2% -0.4% -0.5%
mean_above | 0.6% 0.3% 0.5% 0.6% 0.6%

TABLE VI
THE PERFORMANCES COMPARISON ON MSTAR DATASET USING
DROPOUT ALONE WITH THE COUPLED USE OF DROPOUT AND THE
LEAKY-RELU ACTIVATION FUNCTION IN THE FC_2 LAYER.

orig_Dropout30 LeakyRelu_Dro  orig_Dropout50 LeakyRelu_Dro  orig_Dropout80 LeakyRelLu_Dro
pout30 pout50 pout80
median 92.4% 94.8% 86.6% 94.4% 20.7% 95.8%

mean_below | -2.3% -0.2% -22.1% -0.4% -3.1% -0.5%
mean_above | 0.4% 0.5% 4.0% 0.6% 3.8% 0.6%

We observe a slight improvement in the results coupled with
a decrease in the variability of the results. The fc_2 chan-
nels with Leaky-ReLU are indeed non-zero but still appear
underutilized given the small performance gain obtained. So,
to take this further, we couple this change in activation
function with the use of Dropout right after fc_2. Dropout
allows to randomly remove a configured proportion of its
input activations during learning. The idea is thus to “force”
the learning to take advantage of the activations of fc_2, in
addition to having “forced” them to be non-zero with the
Leaky-ReLU activation function.

We tried several proportions of Dropout for our simulations:
30%, 50% and 80%. This proportion corresponds to the share

of activations that are dropped (and not those kept). The cor-
responding results are presented in the Table V. We observe in
the Dropout 80% case a clearer improvement in performance
obtained. To make sure that this improvement results from the
coupling of the Leaky-ReLU function in the fc_2 layer with
the Dropout 80% and not from the Dropout 80% alone, we
have also performed the corresponding simulations with the
Dropout 80% alone. The corresponding results are presented
in the Table VI. So we observe that it is the coupling of the
Leaky-ReLU activation function in the fc_2 layer with the
80% Dropout that leads to the performance improvement and
not the addition of the 80% Dropout alone.

E. Comparison of classification Architectures

We have compared different architectures frequently used
in the optical image domain for the case of our problem:
VGGI16 [11], ResNet50 [12], Xception [13], DenseNet121
[14], EfficientNetBO [15] and MobileNetV2 [16]. These archi-
tectures are often much more complex and therefore require
a substantial learning curve in order to exploit their potential.
We therefore use these architectures with pre-trained networks
on ImageNet whose pre-trained parameters are available from
the Keras library. We compare these architectures in two
different learning configurations: Fixed CNN and non-fixed
CNN. The frozen CNN configuration corresponds to the case
where the convolutional part of the architecture is frozen (its
parameters are not modified by the learning) and the ”softmax”
classifier part is adapted to the target task. The non-fixed CNN
configuration corresponds to the case where all the parameters
of the network are adapted to the target task. In order to
measure the performance in these different scenarios, we use
the performance measurement method explained above. Learn-
ing is performed using the early stopping and learning rate
adjustment methods explained above. We used the following
hyperparameters:
« Batch size: 32.
o Optimizer: Adam.
o Learning rate ”1-cycle”:
— Maximum value : 0.001.
Cycle : 40 epochs.
Share of the upstream phase: 25%.
Initial ratio: 1/25.
Final ratio: 1/10.
Rise and fall function: cosine.
« Early stopping:
— Minimum number of epochs: 40.
— epochs Number without improvement to stop learn-
ing: 10 epochs.
We review the obtained results from these architectures for
the two data sets: MSTAR and OpenSARShip. The results
for the MSTAR database are given by the Table VII (frozen
CNN) and the Table VIII (not frozen CNN). The results for the
OpenSARShip database are given by the Tableau IX (frozen
CNN) and the X (unfixed CNN).
It can be noted that the results strongly depend on how
the pre-trained parameters are processed. Thus, for MSTAR,



all architectures obtain better performances in the unfrozen
CNN case except MobileNetV2. On the other hand, we do
not observe this phenomenon for OpenSARShip. It can also
be noted that the ResNet50 and DenseNetl21 architectures
achieve the best performance for MSTAR (in the non-fixed
CNN case) while for OpenSARShip it is MobileNetV2 that
achieves the best performance (in the fixed CNN case). For
these two data sets, the performances obtained are higher
or equal to the performances obtained with the “Zhang”
architecture. This is due to the complexity of the architectures
evaluated here, which have a much higher potential to extract
complex features from images and thus a higher potential for
best classification performance.
TABLE VII

COMPARISON OF "CLASSICAL” ARCHITECTURES ON THE MSTAR
DATASET WITH TRANSFER LEARNING FROM IMAGENET (FROZEN CNN).

VGG16 ResNet50 Xception DenseNet121 EfficientNetBO MobileNetv2

median | 64.0% 40.8% 70.6% 79.3% 16.9% 87.0%
mean_below  -0.6% -1.9% -0.3% -0.4% -1.4% -0.2%
mean_above | 0.6% 1.2% 0.2% 0.5% 1.4% 0.2%

TABLE VIII
COMPARISON OF "CLASSICAL” ARCHITECTURES ON THE MSTAR
DATASET WITH TRANSFER LEARNING FROM IMAGENET (NOT FROZEN

CNN).
VGG16 ResNet50 Xception 121 2
median 93.2% 98.1% 97.6% 98.3% 96.6% 63.3%
mean_below -4.3% -0.4% -1.7% -0.8% -1.6% -13.7%
mean_above 2.5% 0.3% 0.4% 0.2% 1.1% 17.5%
TABLE IX

COMPARISON OF ”"CLASSICAL” ARCHITECTURES ON THE OPENSARSHIP
DATASET WITH TRANSFER LEARNING FROM IMAGENET (FROZEN CNN).

MobileNetv2
76.3%

EfficientNetB0
71.0%

VGG16
68.6%

ResNet50
74.6%

DenseNet121
72.8%

median

mean_below | -2.0% -1.1% 0.9% 3.0% -1.1% 0.7%
mean_above | 0.9% 0.6% 0.7% 0.7% 0.3% 1.1%

COMPARISON OF ”"CLASSICAL” ARCHITECTURES ON THE OPENSARSHIP
DATASET WITH TRANSFER LEARNING FROM IMAGENET (NOT FROZEN
CNN).

VGG16 ResNet50 Xception DenseNet121 EfficientNetBO MobileNetv2
75.7% 69.8% 73.4% 72.8% 68.0% 64.5%
mean_below -0.8% -1.0% -2.0% -3.0% -4.3% -2.2%
mean_above 0.9% 2.4% 1.8% 2.1% 1.9% 1.6%

median

V. CONCLUSIONS

The work presented in this paper shows the effectiveness of
these Deep learning methods for the target recognition. The
recent great success of Deep Convolutional Neural Network in
several application fields, improves their efficiencies to extract
a feature descriptors by constructing a hierarchical network
to automatically learn hierarchical features from MSTAR
and OpenSARShip datasets. This work highlights the use of
several learning strategies are proposed to perform the per-
formances in SAR image classification. This work highlights
the trade-off between complexity and learning capacity to
be achieved. This trade-off can be influenced by different
techniques to counteract the overlearning phenomenon, such
as unsupervised learning, self-supervised learning, data aug-
mentation, and transfer learning.

In the future work, the optimization and improvement of the
methodology developed in this study will be extended and
completed. The simulation results demonstrate the relevance
and robust nature of the approach. However, for our future
work, the performances and results of proposed approach on
other cluttered images will be experimented with a combined
CNN architectures.
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