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Abstract: The Unscented Kalman Filter (UKF) is widely used for the state, disturbance, and parameter
estimation of nonlinear dynamic systems, for which both process and measurement uncertainties are
represented in a probabilistic form. Although the UKF can often be shown to be more reliable for
nonlinear processes than the linearization-based Extended Kalman Filter (EKF) due to the enhanced
approximation capabilities of its underlying probability distribution, it is not a priori obvious whether
its strategy for selecting sigma points is sufficiently accurate to handle nonlinearities in the system
dynamics and output equations. Such inaccuracies may arise for sufficiently strong nonlinearities in
combination with large state, disturbance, and parameter covariances. Then, computationally more
demanding approaches such as particle filters or the representation of (multi-modal) probability
densities with the help of (Gaussian) mixture representations are possible ways to resolve this issue.
To detect cases in a systematic manner that are not reliably handled by a standard EKF or UKF, this
paper proposes the computation of outer bounds for state domains that are compatible with a certain
percentage of confidence under the assumption of normally distributed states with the help of a
set-based ellipsoidal calculus. The practical applicability of this approach is demonstrated for the
estimation of state variables and parameters for the nonlinear dynamics of an unmanned surface
vessel (USV).

Keywords: Unscented Kalman Filters; ellipsoidal state estimation; stochastic uncertainty; bounded
uncertainty; state and parameter estimation

MSC: 65G40; 93E10; 93E11

1. Introduction

Stochastic filtering approaches are widely used in the context of state estimation for
dynamic systems for which not all state variables are measured directly [1–7]. Under the
assumption of observability [8,9] (which can partially be relaxed to detectibility), they
can be applied effectively to reconstruct non-measurable state variables and to suppress
the effects of measurement noise in a model-based manner. Moreover, the model-based
nature of these approaches helps to reduce lag effects that are unavoidable if pure signal-
based filtering techniques (e.g., low-pass filtered numerical differentiations) are used
instead. However, appropriate stochastic filtering approaches need to be chosen with care
due to the fact that the exact computation of probability densities is only possible under
specific assumptions [5,6]. The practically most relevant scenario, in which the analytic
computation is possible, is the case of linear state equations with normally distributed
additive process noise and linear measurement models, again including additive Gaussian
disturbances. Then, the application of Bayes’ theorem during both the state prediction
(i.e., the temporal forecast of the probability density from one discretization point to the
next with the help of the dynamic system model) and the innovation stage (correction
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of the predicted information with the help of the newly available measurements) leads
again to normally distributed information. This scenario corresponds to the case of the
classical Kalman Filter (KF) with closed form expressions for the probability densities in
both aforementioned stages [10]. Due to the fact that normal distributions are uniquely
defined by their expected values and covariance matrices, the KF represents a kind of state
observer in which closed-form update rules for the covariance matrices lead to time-varying
observer gains that are used to correct the state estimates in the innovation stage.

However, most real-life system models involve nonlinearities, due to which the exact
computation of probability densities becomes either increasingly complex in each sub-
sequent discretization step, or even impossible [11]. Therefore, typical approximations
assume that—despite nonlinear effects—the state variables are still approximated with
the help of normal distributions. This approximation can be achieved either by first-order
Taylor linearizations of the state-space representation (leading to the EKF) or by select-
ing so-called sigma points with the help of a deterministic algorithm to approximate the
expected values and covariances (leading to the UKF) [12–14]. The latter does not only
find its use in the state estimation of dynamic systems in the frame of control design, but
can also be applied for analyzing the effects of nonlinearities and noise in more general
measurement and signal processing tasks.

The EKF and UKF fail, however, to provide reliable state estimates as soon as the
true probability densities deviate significantly from a Gaussian density function, due to,
for example, asymmetries, multi-modalities, or even a bounded support of the density
function. Then, approaches such as Gaussian mixture filtering (basically employing a bank
of individual EKFs or UKFs evaluated in parallel after splitting probability densities with
wide covariances) [15–18], particle filtering [19], and the application of linear filters after
embedding the nonlinear system dynamics into higher dimensional linear models by using
approaches of Carleman linearization or Koopman embedding, are possible ways how to
solve the filtering task alternatively [20,21].

However, the a priori detection of a failure of the EKF or UKF is not at all trivial
and is commonly only done by firstly applying those simple filtering approaches and
subsequently noticing that estimates for expected values do not converge to the true states,
that variances become implausibly large or small, or that the predicted state information
and measured state vector components seem to deviate to an extreme extent. To avoid
such trial-and-error strategies, it is possible to use set-valued computations to determine
outer bounds for selected confidence levels when propagating normally distributed input
quantities through nonlinear system models [22]. In particular, the use of techniques for
an ellipsoidal calculus is promising because iso-lines of a normally distributed probability
density correspond to quadratic forms in the state vector that equally define ellipsoids.
In recent work, a computationally efficient approach for performing state estimation with
the help of ellipsoids has been developed for a purely set-valued uncertainty representation.
This approach has recently also been extended to the domain of mixed uncertainty models
in the frame of iterative learning state estimation [23].

In the current paper, we adopt the ellipsoidal state estimation approach so that it
can be used to quantify outer bounds of specific confidence domains within which the
results of the nonlinear filtering problem at hand needs to be included with certainty.
Cases in which stochastic estimates (determined, e.g., by the UKF) violate these bounds
more often than expected by the specified confidence level can be classified as unreliable.
Analogously, stochastic estimates may become overly optimistic if their corresponding
confidence bounds are much tighter than the respective ellipsoidal domains.

This paper is structured as follows. Section 2 gives an overview of the basic modeling
of USVs, which serve as the benchmark application in this paper for a reliability analysis of
UKF techniques with the help of an ellipsoidal state enclosure approach. Section 3 sum-
marizes the applied UKF implementation, before details about a stochastic interpretation
of ellipsoidal state enclosure techniques are given in Section 4. Section 5 summarizes the
simulation results before conclusions and an outlook on future work are given in Section 6.
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2. Modeling the Dynamics of USVs

The modeling of USVs is briefly discussed in this section as a representative application
scenario for which stochastic state estimation schemes are typically applied to reconstruct
velocity information and external disturbances by means of measurements of selected state
vector components. Typically, these components are the position variables in an earth-fixed
coordinate frame that can be determined by means of GPS (global positioning system).

2.1. Dynamic Equations

Throughout this paper, a model with three degrees of freedom (DOF) is used to
describe the USV dynamics. It is assumed that in the considered scenario, the motion in
terms of roll, pitch, and heave has no significant influence on the maneuvering dynamics
of the USV. Therefore, the equations of motion can be written in the form [24,25]

Mν̇ + CRB(ν)ν + N(ν)ν = τc. (1)

The translational velocities, expressed in the body-fixed frame in surge and sway,
and the rate of rotation in yaw, are expressed by the velocity vector ν =

[
u v r

]T , which
represents the velocities (surge and sway velocities and yaw rate) in the three DOF of the
system dynamics. The corresponding coordinate systems are shown in Figure 1. The forces
in xb and yb directions and the moment with respect to the yaw axis provided by the
actuators are combined in τc =

[
X Y N

]T .

𝑥  

𝑦  

𝑥𝑏  

𝑦𝑏  

𝜓 

Figure 1. Earth- and body-fixed coordinate systems for the definition of state variables of a USV.

The mass matrix

M =

m− Xu̇ 0 0
0 m−Yv̇ mxg −Yṙ
0 mxg − Nv̇ Jzz − Nṙ

 (2)
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takes into account the inertia of the rigid body and additional hydrodynamic masses.
Coriolis and centripetal terms are summarized in the matrix

CRB =

 0 −mr −mxgr
mr 0 0

mxgr 0 0

. (3)

The final term

N(ν)ν = −

−Xuu− X|u|u|u|u + Xvrvr + Xrrr2

−Yvv−Y|v|v|v|v + Yurur
−Nrr− N|r|r|r|r + Nuvuv + Nurur

 (4)

on the left-hand side of the dynamic system model (1) accounts for hydrodynamic damping,
including coupling effects. For a list of all parameters included in the equations above, and
those used in the following subsections, see Table 1.

Table 1. Description of all parameters used for USV modeling.

Parameter Description Unit

m Displacement kg

xg xb-coordinate of center of gravity m

Jcomb Moment of inertia w.r.t. the zb axis (incl. hydrodynamic effects) kgm2

Xu̇ Hydrodynamic mass in xb-direction kg

Yv̇ Hydrodynamic mass in yb-direction kg

Yṙ Coupling coefficient of hydrodynamic mass kg ·m

Nv̇ Coupling coefficient of hydrodynamic mass kg ·m

Xu Linear hydrodynamic damping in xb-direction N
m/s

Yv Linear hydrodynamic damping in yb-direction N
m/s

Nr Linear hydrodynamic damping around zb-axis Nm
rad/s

Xvr Coupling coefficient of hydrodynamic damping N
(m/s)(rad/s)

Xrr Coupling coefficient of hydrodynamic damping N
(m/s)2

Yur Coupling coefficient of hydrodynamic damping N
(m/s)(rad/s)

Nuv Coupling coefficient of hydrodynamic damping Nm
(m/s)2

Nur Coupling coefficient of hydrodynamic damping Nm
(m/s)(rad/s)

X|u|u Quadratic hydrodynamic damping in xb-direction N
(m/s)2

Y|v|v Quadratic hydrodynamic damping in yb-direction N
(m/s)2

N|r|r Quadratic hydrodynamic damping around zb-axis Nm
(rad/s)2

a1 Thrust parameter (forward thrust) −

b1 Thrust parameter (forward thrust and velocity) −

a2 Thrust parameter (backward thrust) −

b2 Thrust parameter (backward thrust and velocity) −

2.2. Propulsion

The propulsion system of the USV consists of two fixed jet thrusters arranged in a dif-
ferential setup (Figure 1). The thrust force of the jet thrusters is described by the expression
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Fi = c1,i ρ d4
p ni |ni| − c2,i ρ d3

p uai |ni|, i ∈ {port, star}, (5)

where ni is the rotational speed of the respective propeller and uai the longitudinal velocity
of the corresponding jet thruster through the water. Further, dp is the diameter of the
propeller and ρ the water density. The thrust parameters c1,i and c2,i are assumed to be
constant for each operation regime. Four operation regimes are assumed which are defined
in terms of the sign of both ni and uai . This so-called four-quadrant model is given by

[
c1,i
c2,i

]
=



[
a1,i b1,i

]T ni ≥ 0∧ uai ≥ 0[
a1,i 0

]T ni ≥ 0∧ uai < 0[
a2,i 0

]T ni < 0∧ uai ≥ 0[
a2,i b2,i

]T ni < 0∧ uai < 0

(6)

with the constant parameters a1,i, a2,i, b1,i, and b2,i. For a more detailed discussion on the
propulsion model, the reader is referred to [26].

Since the propulsion system is set up differentially, the velocities uai are usually
different if the USV changes its orientation. With the help of ly, describing the distance
between both thrusters, cf. Figure 1, the velocity of the portside thruster (uaport ) and the
velocity of the starboard thuster (uastar ) are expressed as

uaport = u + lyr and uastar = u− lyr (7)

in terms of the velocity u in surge and the yaw rate r.
Finally, the input vector containing the force in the direction of motion and the yaw

moment results in

τc = T
[

Fport
Fstar

]
= T f (u), (8)

with the configuration matrix

T =

1 1
0 0
ly −ly

. (9)

2.3. Parameter Values

As can be seen in Equations (2)–(4) and (6), a total of 22 parameters are included in
the model. The number of parameters can be reduced if a specific USV is considered. Here,
the overall mass m = 33 kg of the USV and the distance xg = 0 are assumed to be known
a priori. Further, due to the cylindrical shape of the hull of the USV, the commonly used
assumption Xu̇ = 0.05 ·m is made [25]. Due to the additional assumption that the velocity
in sway direction is fairly small, the quadratic damping parameter Y|v|v can be neglected.

The remaining parameters

θ1 = (Jcomb, Yṙ, Nv̇, Xu, Yv, Nr, X|u|u, N|r|r, Xvr, Xrr, Yur, Nuv, Nur),

θ2 = (a1, a2, b1),
(10)

can be determined by means of numerical optimization with the help of experimental data
that are gathered during dedicated driving maneuvers. A further parameter reduction
can be performed using sensitivity and correlation analysis. The process of the parameter
identification and reduction of the number of parameters to be identified are described in
detail for a specific USV in [27]. The parameters obtained during this identification process
are listed in Table 2. Note that all parameters not listed explicitly in the table or in the
preceding text are set to zero in the remainder of this article.
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Table 2. Estimated parameters (reduced parameter set).

Jcomb Xu Yv X|u|u N|r|r

7.20 kgm2 −4.62 N
m/s −255.26 N

m/s −6.53 N
(m/s)2 −9.45 N

(rad/s)2

Xvr Nur Nuv a1 a2

−129.12 Ns2

(m·rad) 6.67 Nms2

(m·rad) −48.84 Nm
(m/s)2 0.97 0.47

2.4. Temporal Discretization and Definition of an Augmented Set of State Equations

To use the dynamic equations of the USV in a discrete-time simulation and state
estimation environment with constant sampling period Ts, the forward Euler discretization
approach is used. The assumption of sufficiently small step sizes, and thus, negligible time
discretization errors, leads to the transition equation given by

xs,k+1 = xs,k + Ts f s(xs,k, nport,k, nstar,k) (11)

with the state xs =
[
x y ψ u v r

]T of the USV and

f s(xs, nport, nstar) =

[
Jν

M−1(τc(nport, nstar)− CRB(ν)ν− N(ν)ν
)] (12)

as the first-order set of state equations, including the kinematic transformation matrix

J =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

. (13)

In the further course of this work, a total of four parameters of the propulsion system
are assumed to be imprecisely known so that they have to be estimated in addition to the
USV state by using the available position measurements. Therefore, the state equation is
augmented by introducing a four-component integrator disturbance model according to

f (xs, nport, nstar) =

[
f s(xs, nport, nstar)

04×1

]
, (14)

after appending the parameters p1,i and p2,i, i ∈ {port, star}, to the state vector xs,k, which

allow for replacing the parameters
[
c1,i c2,i

]T of the four-quadrant model (6) with the

multiplicative uncertainty representation
[
c1,i · p1,i c2,i · p2,i

]T .

2.5. Measurement Model

For the state estimation, the absolute position coordinates x and y are measured in the
earth-fixed coordinate frame, for example, by using GPS. Since both values are assumed to
be affected by zero-mean white Gaussian noise, the measurement model is given by

zx = x + w1

zy = y + w2,
(15)

where wi ∼N(wi; 0, σ) with the coordinate-independent scalar standard deviation σ.

2.6. Tracking Control Using an Artificial Potential Field Approach

The tracking controller based on an artificial potential field approach [28–30] was
taken from [31]. The approach is described below for completeness. In general, the artificial
potential field method has its foundations in the area of robotics. There, it was originally
developed as a tool for path and motion planning. In the artificial potential field approach,
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attracting potentials are introduced for the target states to be reached, and repelling po-
tentials are employed to avoid collisions with obstacles. The references mentioned above
represent generalizations of this approach for control purposes, especially with respect to
the definition of an attracting potential for the desired trajectory that is to be tracked by
the controller.

The control law is given by

F̃d,i = (K0 − KP,i(arg(ω)− ψ) + KD,iψ̇)ω
2, i ∈ {port, star}, (16)

where the desired thrust levels F̃d,i of the portside and starboard propellers (i ∈ {port, star})
are saturated to only forward thrusts up to Fd,max, using the relation

Fd,i =


0 if F̃d,i ≤ 0

Fd,max if F̃d,i ≥ Fd,max

F̃d,i else.

(17)

The gains in (16) were experimentally tuned and satisfy the relations

K0 > 0, KP,port = −KP,star and KD,port = −KD,star. (18)

The amplitude ω in (16) is the Euclidian vector norm ω = ‖w‖ of the input vector

w = γ‖ẏd‖(yd − y) + ẏd (19)

depending on the earth-fixed position vector of the USV y =
(

x y
)T , the desired position

vector yd, the desired velocity vector ẏd, and the tuning parameter γ. Finally, to obtain the
desired speeds of the propellers, Equation (5) needs to be inverted using the desired thrusts
from the controller. Since b1 and b2 are zero and only positive thrusts are allowed (cf. (17)),
the rotational speed of the propellers can be calculated using the relation

ni =

√
Fi

c1ρd4
p

, i ∈ {port, star}. (20)

3. UKF State Estimation

The nonlinear ship model presented in Section 2 is used in combination with the linear
measurement model (15) to perform a model-based reconstruction of velocity information
and to reconstruct the multiplicative parameter uncertainty, mentioned in the previous
section. To deal with the corresponding nonlinearities, a UKF state prediction [12,14] is
used, and for the update step, a linear Kalman filter update is sufficient.

It is assumed that the posterior is given as a Gaussian with mean xk−1|k−1 and co-
variance matrix Pk−1|k−1. Since the number of elements of the augmented state is n = 10
(including the multiplicative disturbance parameters; cf. Equation (14)), a total number of
2n + 1 = 21 sigma points are used for the prediction. The sigma points are calculated as
follows [14] (p. 155):

X0 = xk−1|k−1,

Xi = xk−1|k−1 +
(√

(n + λ)Pk|k

)T

i
i = 1, ..., n,

Xi = xk−1|k−1 −
(√

(n + λ)Pk|k

)T

i−n
i = n + 1, ..., 2n,

(21)
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with the scaling parameters λ and
(√

(n + λ)Pk|k

)
i

as the ith row of the matrix square

root [14] (p. 155). In addition, each sigma point has a corresponding weight. The weights
are given by [14] (p. 155):

W(m)
0 =

λ

n + λ
,

W(c)
0 =

λ

n + λ
+ (1− α2 + β),

W(m)
i = W(c)

i =
1

2(n + λ)
i = 1, ..., 2n,

(22)

with λ = α2(n + κ)− n. For the tuning parameters, we chose α = 0.01, β = 3, and κ = 0. A
detailed explanation of the tuning parameters is given in [14] (p. 155).

Following the generation of these sigma points in each discretization step, they can be
predicted using the nonlinear transition equation

Yi = Xi + Ts f (Xi) (23)

corresponding to the augmented discrete-time system model that includes the expres-
sion (14). Afterwards, the set of sigma points is used to approximate the true probability
density by a Gaussian with mean

xk|k−1 ≈
2n

∑
i=0

W(m)
i Yi (24)

and covariance

Pk|k−1 ≈
2n

∑
i=0

W(c)
i

(
Yi − xk|k−1

)(
Yi − xk|k−1

)T
+ Qk. (25)

As the measurement model (15) is linear with additive Gaussian noise, the measure-
ment errors are Gaussian as well. Thus, the standard Kalman filter update

zk|k−1 = Hkxk|k−1, (26)

Sk|k−1 = HkPk|k−1HT
k + Rk, (27)

Kk = Pk|k−1HT
k S−1

k|k−1, (28)

xk|k = xk|k−1 + Kk

(
zk − zk|k−1

)
, (29)

Pk|k = Pk|k−1 − Kk HkPk|k−1 (30)

can be used to evaluate the innovation step as soon as measured data are available at the
time instant k.

4. Ellipsoidal Enclosure Approach for Bounding Confidence Regions

Set-valued simulation and estimation techniques provide the possibility to propagate
bounded domains of possible state variables over time through a dynamic system model
and to fuse those propagated domains with domains that are compatible with measured
information by using set-based intersection operations. A possible implementation of this kind
of estimation scheme is given by the tube arithmetic approach detailed in [32,33]. To obtain
bounds that contain all reachable domains in the state space with certainty, it is necessary that
uncertain system parameters, initial conditions, and external disturbances are bounded by
appropriate domains, such as intervals, zonotopes, polytopes, or ellipsoids [34–37].

To bridge the gap between stochastic and purely set-valued estimation schemes, it
was shown in [22] that ellipsoidal estimation approaches can also be used to analyze the
reliability of linearization-based stochastic estimators (such as the Extended Kalman Filter)
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and to compute outer bounds of confidence regions of a certain probability if uncertain state
information is described by means of normally distributed probability density functions.

This approach, discussed in [22] for the state prediction, is extended in the following to
obtain a complete filter approach that comprises also an innovation stage in which results
with a specific confidence level are computed.

4.1. Ellipsoidal Prediction of Confidence Bounds

To use the ellipsoidal calculus approach from [22,38] for the prediction of covariance
matrix bounds, assume a discrete-time state-space model

zk+1 = Φ(zk, p) · zk + wk. (31)

In this model, the dynamics matrix Φ(zk, p) may depend on the state vector zk and
on a bounded parameter vector p ∈

[
p ; p

]
with the elementwise defined relation p ≤ p.

The additive offset term wk is assumed to represent the influence of bounded external
disturbances and control signals that are not directly included (in terms of a closed-loop
system model) in the first summand of (31). Throughout this paper, it is assumed that the
term wk is bounded by an ellipsoid. Suitable strategies to obtain these bounds are based on
the so-called Löwner–John ellipsoids [39], which can be computed by means of either linear
matrix inequalities or enclosed conservatively by using interval arithmetic, as described
in Section 4.3 of [33].

We define further an ellipsoidal domain [23]

Ek
(
µk, Γ̃k, r

)
:=
{

zk ∈ Rn ∣∣ (zk − µk)
T Γ̃
−T
k Γ̃

−1
k (zk − µk) ≤ r2

}
(32)

with the positive definite shape matrix Q̃k = Γ̃kΓ̃
T
k � 0 and the ellipsoid midpoint µk ∈ Rn.

When compared with a stochastic state prediction algorithm, the midpoint vector µk can be
interpreted as the mean of the corresponding probability density.

The parameter r describes a magnification factor according to [40] so that the ellip-
soid (32) specifies the confidence bound of a given percentage if the vector zk is normally
distributed with the covariance Q̃k. For a list of specific values of this magnification factor
for dimensions n ≤ 10, the reader is referred to [40].

For compact notation of the following ellipsoidal covariance prediction step, define
the matrices

Γk := r · Γ̃k and Qk := r2 · Q̃k. (33)

The following procedure is based on reference [38], from which only the computation
of outer ellipsoidal bounds is taken into consideration.

For the compactness of notation, reformulate the summand Φ(zk, p) · zk in the system
model (31) into the form

Φ(zk, p) · zk = Φ(zk, p) · žk + Φ̃ · µk +
(
Φ(zk, p)− Φ̃

)
· µk (34)

with zk = žk + µk, where
zk ∈ Ek = Ek

(
µk, Γ̃k, r

)
. (35)

Here, Ek denotes the uncertainty on the non-origin centered states zk,

žk ∈ Ěk = Ěk
(
0, Γ̃k, r

)
(36)

the uncertainty on žk after shifting the ellipsoid to the origin, and

Φ̃ = Φ(µk, mid([p])) (37)
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is the midpoint approximation of the quasi-linear system matrix with

mid([p]) =
1
2
·
(

p + p
)

. (38)

Let �Ek denote an axis-aligned enclosure of Ek in the form of an interval box in the
coordinate frame zk.

Considering the term Φ(zk, p) · zk, a guaranteed outer confidence bound of magnifica-
tion r is given for this summand by the ellipsoid EΦ,k+1

(
µk+1, Γ̃k+1, r

)
with the covariance

Q̃Φ,k+1 = Γ̃Φ,k+1
(
Γ̃Φ,k+1

)T (39)

according to the following steps. This procedure is given without further proof because it
is a direct consequence of the work published in [38].

P1: Apply
žk+1 = Φ(zk, p) · žk (40)

to the ellipsoid Ěk in (36). The outer ellipsoid enclosure of the image set is described
by an ellipsoid with the shape matrix

Q̌k+1 = α2
k+1 · Γk+1 · ΓT

k+1, (41)

where αk+1 ≥ 0 is the smallest value for which the LMI

Mk+1 := Λ

[
−Q−1

k ΦT(zk, p) · Φ̃−T

Φ̃
−1 ·Φ(zk, p) −α2

k+1Rk

]
Λ � 0 (42)

is satisfied for all zk ∈ �Ek, i.e., for all state realizations in the interior of an axis-
aligned tight enclosure of the ellipsoid, and for all possible parameters p ∈ [p] with
the shape matrix parameterization

Rk := Γk · ΓT
k . (43)

In (42), the symbol � denotes the negative semi-definiteness of the corresponding
matrix expression. For possible strategies to select the preconditioning matrix Λ,
aiming at a reduction of pessimism when computing this guaranteed outer ellipsoid
enclosure, see [33].

P2: Compute interval bounds for the term

bk =
(
Φ(p)− Φ̃

)
· µk ∈ [bk] (44)

which accounts for a non-zero ellipsoid midpoint with zk, Φ̃, and p defined according
to (35), (37), and (38). Inflate the ellipsoid bound described by the shape matrix (41)
according to

QΦ,k+1 = (1 + ρO,k+1)
2 · Q̌k+1 , (45)

ρO,k+1 = sup
{∥∥∥α−1

k+1 · Γ
−1
k · [bk]

∥∥∥}, (46)

where the interval-valued generalization of the Euclidean norm operator in (46) is
defined in [22].

P3: Compute the updated ellipsoid midpoint

µΦ,k+1 = Φ̃ · µk (47)
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and the updated square root of its shape matrix

Γ̃Φ,k+1 = αk+1 · (1 + ρO,k+1) · Φ̃ · Γ̃k . (48)

P4: Compute an ellipsoidal enclosure of the Minkowski sum of the ellipsoid EΦ,k+1 and

the ellipsoid Ew,k = Ek

(
µw,k, Γ̃w,k, rw

)
enclosing the term wk according to

EΦ,k+1 ⊕Ew,k ⊆ Ek+1
(
µk+1, Γk+1, r

)
(49)

with the new midpoint
µk+1 = µΦ,k+1 + µw,k (50)

and the updated square root of the shape matrix (resp., square root of the new
covariance matrix)

Γ̃k+1 =
(
Q̃k+1

) 1
2 , (51)

which is given in closed-form by the nearly optimal shape matrix (i.e., close to the
minimum volume ellipsoid)

Q̃k+1 =
1
r2

(
r2 ·
(

1 +
1
β

)
·
(

ΓΦ,k+1 · ΓT
Φ,k+1

)
+ r2

w · (1 + β) ·
(

ΓΨ,k+1 · ΓT
Ψ,k+1

))
(52)

with

β =

√√√√√ trace
{

ΓΦ,k+1 · ΓT
Φ,k+1

}
trace

{
ΓΨ,k+1 · ΓT

Ψ,k+1

} . (53)

For a derivation of this expression, the reader is referred to [37,41,42].

4.2. Ellipsoidal Innovation Stage with Predefined Confidence Bounds

To perform the intersection of ellipsoids that represent the predicted state domains
derived in the previous section and (possibly degenerate) ellipsoids that enclose all states
compatible with the measured data, where each of them accounts for a user-defined confi-
dence level, the procedure published in Section 4.2 of [33] is used without any modification.
In contrast to widely known approaches from the literature, it is a generalization which al-
lows for not only intersecting ellipsoids with identical midpoints but also for enclosing the
intersections of ellipsoids with different midpoints. One of those ellipsoids may be infinitely
wide in some dimensions of the state space for which no measured information exists.

For that purpose, the following two steps introduced in Section 4.2 of [33] are employed:

C1: Determine the common midpoint for the desired outer bound of the intersection
that must be included in all ellipsoids to be intersected (after the ellipsoid widening
operations according to Equations (51) and (52) of [33]);

C2: Determine the shape matrices for the outer ellipsoid bound according to the computa-
tion of Dikin ellipsoids according to [43].

5. Simulation Results

To perform the reliability assessment of the UKF approach by means of the proposed
ellipsoidal enclosure approach, assume that the additive process noise is parameterized by
the purely diagonal covariance matrix

Q = diag
{[

0 0 0 0.25 0.25 0.0076 0.25 0.25 0.01 0.01
]}
· 10−6 (54)

and the position measurement covariance by

R = diag
{[

0.25 0.25
]}

. (55)



Mathematics 2022, 10, 3011 12 of 18

Moreover, the initial mean of the Gaussian probability density describing the uncertainty
in the state vector to be estimated is chosen as

x0 =
[
zx,0 zy,0 0 0 0 0 1 1 0 0

]T (56)

with zx,0 ≈ −29.14 m and zy,0 ≈ 4.99 m, resulting from randomly disturbing the true initial
vessel position (−29 m ; 5 m), which has an offset of 6 m in each coordinate in comparison
with the desired initial state, according to the initial state covariance (augmented by the
integrator disturbance states according to Equation (14))

P0 = diag
{[

0.25 0.25 1 1 1 1 0.0535 0.0535 0.0033 0.0033
]}

. (57)

The desired vessel trajectory, serving as a reference for the artificial potential field controller,
and the trajectory of the controlled ship motion, are illustrated in Figure 2.

Figure 2. Comparison of the desired and controlled vessel trajectories.

All continuous-time state equations have been discretized in this section by using an
explicit Euler scheme with a constant sampling period of 10 ms, corresponding also to the
sampling time of the available position measurements.

For the reliability assessment in Figures 3–5, it has been assumed that the ellipsoidal
enclosure technique is parameterized with scaling factors that represent 99% confidence
bounds for both the process and measurement noise in all cases under consideration. For a
list of the corresponding scaling factors, deduced by a computationally efficient recursion
formula that is based on a χ2 distribution with the state dimension as degrees of freedom,
the reader is referred to [40].

In addition, the scaling factor r representing the minimum coverage of the expected
state according to [23] was varied in all depicted simulations. The first simulation in
Figure 3 assumed constant bounds for the uncertain system parameters that are introduced
by means of the integrator disturbance models mentioned above and in Equation (14), and
the UKF simultaneously estimated these values at run-time. The interior of the non-rescaled
ellipsoids with r = 1 leads to a confidence level of 1.44% due to the state dimension n = 6;
cf. [40].

A comparison of Figure 3 with Figures 4 and 5 indicates that the enhanced parameter
bounds—obtained in the ellipsoidal evaluation when using the augmented system model
there as well—provide much tighter estimates for the velocity and yaw rate information
(indicated in blue color) than in the case of uncertain but bounded parameters. The visible
chattering of the respective bounds in Figures 4c,d and 5c,d is caused by the fact that the
ellipsoidal estimator is a priori initialized with the worst-case outer bound on the possible
parameters and that intersections of the estimated domains resulting from the prediction
step may significantly be inflated if the corresponding parameter ellipsoid midpoints
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deviate strongly from the ellipsoid information obtained in the set-valued innovation step;
cf. [38].

(a) Position x(t). (b) Position y(t).

(c) Velocity u(t). (d) Yaw rate r(t).

Figure 3. Estimation results with constant bounds for the uncertain system parameters: scaling factor
r = 1 for the state prediction (1.44% confidence bound) with 99% confidence bounds of process and
measurement noise.

However, the advantage of this behavior is the fact that the computed bounds always
represent guaranteed outer enclosures of the reachable state domains with the confidence
levels r that have been specified. This statement holds true even despite nonlinearities
in the underlying dynamic system model. Future work can address an enhancement
of the associated model for parameter variations in such a way that the general idea of
a forgetting factor-like approach [44] will be transferred to set-valued online parameter
estimation techniques. Such approaches will then be used also to limit the temporal
parameter variation rates between two subsequent sampling instants of the ellipsoidal
estimator to a user-defined rate.
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(a) Position x(t). (b) Position y(t).

(c) Velocity u(t). (d) Yaw rate r(t).

(e) Parameter p1,l. (f) Parameter p2,l.

Figure 4. Estimation results with adaptation of the bounds for the uncertain system parameters:
Scaling factor r = 1 for the state prediction (0.02% confidence bound for n = 10) with 99% confidence
bounds of process and measurement noise.
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(a) Position x(t). (b) Position y(t).

(c) Velocity u(t). (d) Yaw rate r(t).

(e) Parameter p1,l. (f) Parameter p2,l.

Figure 5. Estimation results with adaptation of the bounds for the uncertain system parameters:
Scaling factor r = 4.2787 for the state prediction (95% confidence bound for n = 10) with 99%
confidence bounds of process and measurement noise.

However, for the application at hand, it can be seen that the computed ellipsoid
bounds, especially in Figure 5, practically always bound the 3-standard deviation ranges
determined by means of the UKF from the outside. This behavior helps to confirm that the
UKF produces state estimates that do not violate the ellipsoidal bounds with the identical
confidence level due to, for example, biased state estimates that would be caused by a
large influence of linearization errors or by a convergence to an ambiguous state in the
case of probability densities that may have a multi-modal shape (in fact, such scenarios
can even exist in the model at hand if the heading uncertainty becomes so large that
forward and backward motion could no longer be distinguished). In addition, it becomes
obvious that the most crucial factor reducing the sensitivity of velocity, and therefore, also
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position estimates is the accurate online identification of the disturbance parameters that
are associated with the uncertain model for the USV’s propulsion system. For that reason,
especially those parameters need to be identified accurately (possibly at run-time) in order
to achieve not only reliable state estimates but also to obtain accurate trajectory tracking
capabilities if either the proposed UKF-based estimator or the ellipsoidal counterpart is
included in a closed-loop or predictive control structure. However, it should be pointed
out that especially for the velocity estimates, the UKF-based uncertainty ranges are much
tighter than the set-valued counterparts. This gives rise to the assumption that the UKF
performs strong smoothing of the estimated values, but delivers uncertainty bounds that
may be more optimistic than they would actually be in reality.

6. Conclusions and Outlook on Future Work

In this paper, a stochastic interpretation of an ellipsoidal state estimation procedure has
been introduced and applied to the reliability assessment of a UKF-based state estimation
for USVs which is purely based on position measurements. It has been shown that this
approach allows for checking whether the Gaussian assumption made by a UKF leads to
estimates that are explainable also by performing set-valued prediction and innovation
stages that cover the identical confidence bounds.

Future work will address the experimental validation of the proposed ellipsoidal
enclosure techniques, for example, by using the DDboat robots presented in [31]. More-
over, methodological developments will focus on the case of mixed uncertainty models
(e.g., by describing measurement uncertainty by Gaussian probabilities and parameter
uncertainty with the help of set-valued counterparts). First attempts into this direction
have already been made in [23], where a stochastic approach for iterative learning observer
design was investigated recently. Moreover, interfaces between such mixed uncertainty
representations in state estimation algorithms and predictive control procedures will be a
further subject of future work.
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