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Multi-objective hull form optimization of a SWATH configuration using
surrogate models

Paul Renauda,∗, Matthieu Sachera, Yves-Marie Scolana

aENSTA Bretagne, CNRS UMR 6027, IRDL, 2 rue Francois Verny, 29806 Brest Cedex 9, France

Abstract

The present study introduces a surrogate-based multi-objective hull form optimization of a SWATH configuration,
enabling optimal hull design compromises between seakeeping performance and ship resistance. A parametric model
of a SWATH ship is built, which has variable horizontal torpedoes semi-axis and strut angle of inclination. The
displacement is assumed to be constant and is balanced with the vertical semi-axis of torpedoes. The objective
seakeeping function is the amplitude of vertical movement on the ship’s gangway, calculated in irregular waves. As
the energy dissipation of SWATH ships are mainly generated by viscous effects, these are estimated using empirical
formulas and are added to the equations of motion. The ship resistance is computed with a finite volume solver
using a RANS model. Three levels of fidelity, having increasing computation costs, are considered to model ship
resistance. The first low fidelity level concerns the wetted surface of the hull. Due to their geometry, SWATH ships
can be destabilized by the Munk moment and be dynamically unstable, which can lead to instabilities in resistance
calculations. The medium-fidelity level then considers a free sinkage and a fixed pitch to ensure the stability of the
calculations. The third higher-fidelity level considers stabilizing fins to counterbalance the destabilizing moment. Trim
angles of fins are solved to reach moment equilibrium and the fins drag is included in the total ship resistance, which
is to be minimized. The multi-objective optimization problem is solved for these three degrees of fidelity. Results
differences between fidelity level approaches are also compared, in order to highlight the impact on the optimal hull
designs of using a low-fidelity method, with regard to the computational costs.
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1. Introduction

Hull form optimizations have become popular since advances in computer technology have enabled complex
physical problems to be assessed with great precision. To design more efficient vessels in term of power and energy
saving, ship resistance optimization for conventional hull form has become essential in ship design (Cordier et al.,
2011; Serani et al., 2016; Tahara et al., 2011). The movement of ships in waves is also critical, for reasons of
safety, comfort, and operability. Multi-objective optimization studies (Diez et al., 2015) have demonstrated that it is
possible to simultaneously increase several hydrodynamic performances. Unconventional hulls, such as Small Water
Plane Area Twin-Hull configuration, were created specifically to reduce motions in waves and be operable in a harsh
environment. Depending on the intended purpose of the ship, there are numerous geometrical otpions. The struts can
be single or twin, inclined or not, and there are various torpedoes sections of existing ships. SWATH ships appear more
efficient in terms of seakeeping than ”standard” ships with the same displacement (Yun et al., 2019). The heave, roll
and pitch resonance periods are long and the hull is deeply immersed which reduces the waves’ radiation/diffraction
forces. However, the wetted surface is generally more significant than that of a ship of the same size, which increases
the skin friction resistance. This type of ship is outfitted with stabilizing fins that increase longitudinal stability
impaired by the so-called ”Munk moment” (Lee and Martin, 1976). The fins also provide damping during motion in
waves.
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Optimization on SWATH configuration studies mainly focus on ship resistance. Reynolds-averaged Navier-Stokes
(RANS) simulations can be used to estimate ship resistance. A Response Surface Model using a cubic polynomial
interpolation is also integrated in (Lin et al., 2019) to predict ship resistance over the variability domain. The op-
timum design is finally found with the Multi-Island Genetic Algorithm. Multi-objective optimizations have been
implemented with two cruising speeds in (Ni et al., 2020; Papandreou and Papanikolaou, 2015) where the ship resis-
tance is evaluated using RANS simulations (Ni et al., 2020), or with analytical calculations using Michell’s integral
for the wave resistance, and the ITTC 57 formula for the viscous resistance (Papandreou and Papanikolaou, 2015).
The optimal designs, which minimize resistance for both speeds, are identified by the Multi-Objective Particle Swarm
Optimization algorithms in (Ni et al., 2020) and by the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) in
(Papandreou and Papanikolaou, 2015). Both algorithms build the Pareto Front (PF), representing the optimum balance
of the two objective functions. The ship resistance is minimized while the displacement is simultaneously maximized
in (Pellegrini et al., 2017). A multi-fidelity surrogate model has been implemented in (Pellegrini et al., 2017), reduc-
ing computational effort compared to a conventional optimization algorithm. The wave resistance is calculated by a
potential code, the degree of fidelity depending on the mesh density, and viscous drag is estimated using the flat-plate
approximation. In previous studies, neither longitudinal stability nor fins are mentioned despite these being essential
elements of the physics of SWATH vessels. During steady motion, ships acquire dynamic trim and sinkage due to the
pressure distribution along the hull. RANS simulations on conventional ships are usually performed with free heave
and pitch. However, resistance optimization studies on SWATH ship hulls do not assess longitudinal stability. The
choice of free heave and/or pitch is less evident (Begovic et al., 2015; Guan et al., 2020; Ni et al., 2020; Pellegrini
et al., 2017). Simulations performed on an unstable geometry would result in a large trim and an overestimated resis-
tance, while SWATH ships usually sails with a zero trim angle thanks to their fins generating lift. When the SWATH
ship sails at a high speed, the Munk moment (Lee and Martin, 1976) generates a loss of stability. It is then necessary
to add stabilizing fins in order to guarantee pitch and heave stability. RANS calculations on SWATH geometry with
different Froude numbers can provide the speed limit for stability (Begovic et al., 2015). The instability is remarkable
for speeds where the trim and the resistance increase strongly. It then appears necessary to add corrective appendages
to compensate for the loss of stability in SWATH ships.

The seakeeping of the SWATH hull is also an optimization topic. A multi-fidelity optimization method based
on surrogate model has been previously by (Bonfiglio et al., 2018) in which Response Amplitude Operators (RAOs)
are estimated using 3D Boundary Element Method (high-fidelity) and 2D strip theory (low-fidelity) methods. Some
constraints related to displacement and hydrostatics are included in the model. Motions are then estimated in regular
and irregular waves, (using the Bretschneider spectrum). Finally, optimal design mitigates motion amplitude and
acceleration by more than 25% compared to the initial design. However, potential theory overestimates RAO peaks
mainly due to the underestimation of energy dissipation generated by viscous effects (Bonfiglio et al., 2013).

Stabilizing fins and viscous effects play an important role in the prediction of SWATH’s motion but are, to the
authors’ knowledge to date, not considered in the literature. To consider their effects in an optimization loop would
make it possible to obtain representative results for the real vessel. This study aims to implement a multi-objective
optimization process applied to SWATH ships in order to determine optimal hull design compromises between sea-
keeping performance and ship resistance, through the consideration of viscous and fin effects. The SWATH ship
studied in this paper can operate in waves at zero speed therefore its motion must be low for safety reasons. The ship
sails on a wind turbine field, and in the context of fuel economy, resistance should not be overlooked.

As previously mentioned, previous studies focus on only one of these performances (ship resistance or seakeeping)
whereas it seems essential to find a compromise between these two objectives, as done in the present work, for the
ship use case described here. Previous optimization studies mainly use conventional algorithms to find the optimum.
Surrogate models seem to be promising methods for shape optimization (Wackers et al., 2018; Pellegrini et al., 2017;
Bonfiglio et al., 2018). In particular, Gaussian process-based regression have shown its effectiveness in the industry
(Matheron, 1963) as well as for the mono-objective optimization problem of a hull (Guerrero et al., 2018; Bonfiglio
et al., 2018). It therefore seems to be interesting and innovative to apply this type of surrogate-based approach to the
multi-objective optimization of an original ship such as a SWATH.

A 50 m SWATH parametric model is hereby considered and the hull is warped according to two parameters: the
horizontal semi-axis of torpedoes and the strut inclination angle. The ship displacement remains constant, balanced
with the vertical semi-axis of torpedoes. The seakeeping-related objective function is the vertical amplitude of the
motion, evaluated using linear potential code. Viscous and fin effects are modeled by adding empirical corrections
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into the motion equations. The ship resistance is computed with a finite volume solver using a RANS model. As
ship resistance is costly to evaluate, a Gaussian process (GP) surrogate model is used to predict the response of
the model over the variability domain, and an iterative multi-objective optimization method using GPs (Passos and
Luersen, 2018) is applied to determine the Pareto front. Three levels of fidelity, with increasing computation costs, are
considered to model the ship’s resistance. In the first low-fidelity level, an indicator of the ship resistance, the wetted
surface of the hull, is studied. As a SWATH ship could be vertically unstable at high speeds, the second medium-
fidelity level considers with bare-hull ship resistance with free sinkage and fixed trim. The trim is fixed to avoid
instability. Finally, the third high-fidelity level, considers stabilizing fins which balance the hydrodynamic pitching
moment. Trim angles of the fins are solved to reach moment equilibrium and the fin drag is included in the total ship
resistance, which is to be minimized. The multi-objective hull form optimization for a SWATH configuration is solved
by considering each fidelity model of the ship resistance. Optimization results provide optimal SWATH hull designs
located on the Pareto front, leading to the analysis of optimal hull designs in terms of seakeeping and ship resistance.
The geometries obtained using the three fidelity level approaches are compared in order to assess the effectiveness of
the low fidelity levels in regard to their computational costs.

The paper structure is as follows. The optimization problem, including the SWATH hull parametric model, is
introduced in Section 2. In Section 3, the seakeeping model is presented, while Section 4 provides details on the
CFD-based ship resistance model. Section 5 is then dedicated to the multi-objective surrogate-based optimization
methods. Results and discussions are presented in Section 6. Finally, the main conclusions of this work are put
forward in Section 7.

2. Optimization problem

2.1. Context

The aim of the presented study is to perform a multi-objective optimization of the hull shape of a SWATH ship
by taking into account additional considerations that are not considered in previous studies. In particular, longitudinal
stability and viscous effects in the prediction of seakeeping performance are modeled in the present paper.

The weight is assumed to be known hence ship displacement ∇, and the position of the center of gravity has
been established. In order to maintain compliance with SWATH design rules, a hydrostatic constraint on minimum
metacentric height GMt is implemented.

The ship is an offshore wind farm vessel used for maintenance and staff transfer operations. The optimized quantity
related to seakeeping is the amplitude of the vertical motion on a point located on the gangway from the deck to the
wind turbine. The significant amplitude of this specific motion, which is evaluated at zero speed in irregular waves, is
the first objective to be minimized, while the ship resistance at fixed design speed is the second objective to also be
minimized.

2.2. Parametric model

The SWATH hull form configuration is composed of two torpedoes with one single strut (1) on each hull. Torpe-
does have two elliptical sections and are composed of a stern (2), a main section (3) which is uniform over its entire
length, and a straight bulbous bow (4) (see Figure 1). The waterplane area is fixed and the section of the strut is
parabolic as described in (Brizzolara, 2004).

It has been shown in (Latorre and Vasconsellos, 2008) that the strut inclination angle α plays an important role in
motion damping as well as on the value of resonance periods. In the present study, the strut inclination angle (see α,
Figure 2) is therefore considered and set to vary from αmin = 0◦ to αmax = 45◦. In addition, among existing SWATH
ships, several torpedo geometries can be found such as “elephant foot” configuration, “golf club”, circular or elliptical
sections. The present geometry is provided with elliptical section torpedoes, where the horizontal semi-axis varies
from Roymin = 1.4 m to Roymax = 3.0 m (see Roy, Figure 2). For the remainder of the study, these two parameters are
presented in dimensionless form varying from 0 to 1 as follow:

R′oy =
Roy − Roymin

Roymax − Roymin
, α′ =

α − αmin

αmax − αmin
(1)
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Figure 1: Definition of the port hull. Strut (1), stern (2), main section (3), bulbous bow (4)

Also, the strut inclination angle may decrease the inertia of the waterplane in rotation around the roll axis, and thus
the roll metacentric height GMt. A minimum of GMt = 1.5 m is imposed to keep the ship stable in roll. Finally, the
vertical semi-axis (see Roz, Figure 2) balances the volume to respect the iso-displacement constraint. The parametric
model is configured using Rhino’s plug in Grasshopper®, and its main characteristics are summarized in Table 1.

Figure 2: Schematic of the port section with key design pa-
rameters: strut inclination angle α, horizontal semi-axis Roy and
vertical semi-axis Roz

Parameter Value Unit
Length overall Loa 50 m
Hull spacing b 17 m
Draft d 5.5 m
Strut width Bs 2 m
Strut length Ls 40 m
Displacement ∇ 1100 m3

VCG 6.0 m
LCG 24.5 m
Waterplane area Awp 111 m2

Table 1: Main geometry particulars

3. Seakeeping model

The seakeeping problem is solved using the 3D BEM potential solver HydroStar (Chen, 2011) developed at Bureau
Veritas. Energy dissipation in the SWATH hull form is mainly caused by the viscous effects such as vortex shedding.
Given that disregarding these effects leads to an overestimation of the RAO peaks (Bonfiglio et al., 2018, 2013), an
iterative procedure (Sun et al., 2016) introducing empirical corrections (Lee, 1976) is presently implemented. This
procedure is presented in the next following Section 3.1. The Section 3.2 is dedicated to the computation of the vertical
motion amplitude in an irregular wave spectrum. The seakeeping model is validated through experiment comparisons
in the final Section 3.3.

3.1. Implementation of viscous and fin effects
Within the framework of this study, the amplitude of the vertical motion is evaluated for head seas on a point

located along the longitudinal axis (on the symmetry plane of the twin-hull). Roll contribution is neglected, and the
ship motion depends solely on heave and pitch motions. Vertical motion equations are as follows,{

(M + A33)ξ̈3 + B33ξ̇3 +C33ξ3 + A35ξ̈5 + B35ξ̇5 +C35ξ5 = ℜ(F3e− jωt)
(I5 + A55)ξ̈5 + B55ξ̇5 +C55ξ5 + A53ξ̈3 + B53ξ̇3 +C53ξ3 = ℜ(F5e− jωt) (2)
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with M, as the mass of the vessel, I5, as the pitch inertia, Cik, as the restoring force coefficients, ξi, as the amplitude of
motion in the ith mode (3 for heave, 5 for pitch), Fi as the waves excitation forces and moment, Aik as the added mass
coefficients, Bik as the damping coefficients, depending on the circular frequency, which is ω. Those terms include
potential, viscous and fin effects as described in (Lee, 1976). The procedure is as follows:

1. Added masses and potential damping are first estimated.
2. Equations of motions are solved to find the amplitude motion.
3. Empirical corrections based on a cross-flow drag approach are added.
4. The procedure is repeated until the amplitude of motion has converged.

The empirical corrections are valid only for horizontal elliptical and circular sections. Therefore, the vertical semi-axis
can not be greater than the horizontal semi-axis, i.e. Roz ≤ Roy.

The forced solution of the linear differential system is sought with its complex expression,

ξi = ℜ(ξi0e− jωt) (3)

with ξi0 as the complex amplitude of ξi. The system of equations (2) can be written in matrix form and the inversion of
the matrix provides the transfer functions in heave RAO3 and pitch RAO5. The vertical motion RAOv is finally built,

RAOv = RAO3 + xRAO5 (4)

with x as the longitudinal abscissa in the coordinate system centered to the Center of Gravity (CoG).

3.2. Irregular wave response
To reflect as accurately as possible the actual environment that the vessel would operate in, the amplitude of

vertical motion is calculated in an irregular wave spectrum. Assuming that the geographic area of operations is the
North Atlantic, a JONSWAP spectrum with peak enhancement factor γ = 3.3 has been chosen. The ship must be
operable in waves of significant height Hs = 3 m. According to NATO data (Huston, 2021), the most likely peak
period is Tp = 9.7 s for such sea state.

The JONSWAP spectrum S JS (IEC, 2009) is described as:

S JS = 0.3125 · H2
s · Tp ·

f
fp

−5

· exp[−1.25 · ( f
fp

−4
)] · (1 − 0.287 · log γ) · γexp[−(

f
fp
−1

4σ )2] (5)

with Hs, as the significant height, Tp = 1/ fp as the peak period, σ as the spectral width, σ = 0,07 for f ≤ fp and σ =
0,09 if f > fp. Response spectrum in irregular waves S v is then calculated, following

S v = |RAOv|
2 S JS (6)

Finally, the significant amplitude ηv is estimated using the moment of 0th order m0v, whereby

mov =

∫ +∞

0
S vdω (7)

ηv = 2
√

mov (8)

3.3. Comparison and validation with experimental data
Seakeeping tests were performed at the MARIN (Maritime Research Institute Netherlands, (Abeil, 2017)) on the

Windkeeper SWATH ship. Figure 3 shows a sample of the 3D panel distribution of the geometry used for the BEM
simulations. The ship was tested in regular waves (Amplitude Amp = 1 m) and irregular waves (JONSWAP spectrum
whereby Hs = 1.5 m Tp = 9.5 s). Within the scope of this study, only the amplitude of vertical motion in two points
located along the longitudinal axis are studied. In Figure 4a and Figure 4b, the first peak of amplitude is attributable
to heaving motion (resonant frequency of 0.6 rad.s−1), which is perhaps not sufficiently damped since the amplitude
of motion is a bit higher than expected in regular waves at x = 19 m (see Figure 4b). The second peak of amplitude
is attributable to pitch motion but there is no measure in regular waves at the interesting frequency (0.85 rad.s−1). A
difference of amplitude between numerical RAOs (Present) and experimental data in irregular waves (Exp Hs = 1.5 m
Tp = 9.5 s) should be found as the response of motion is not linear with the wave amplitude. However, the curves
match, and the trend is correctly captured as well as the periods of resonance. Therefore, the modeling is sufficient
given the expected results for a potential code and empirical corrections (Lee, 1976).
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Figure 3: 3D panel distribution of the reference SWATH

(a) (b)

Figure 4: Comparison of the RAOs of the vertical amplitude at various locations x = 3.3 m (a) and x = 19 m (b), between MARIN
experimental results (Abeil, 2017) in regular waves with an of amplitude 1 m (Exp Amp = 1 m), in irregular waves modeled by a
Jonswap spectrum (Exp Hs = 1.5 m, Tp = 9.5 s) and numerical simulations (Present)

4. Ship resistance

4.1. RANS simulation

Ship resistance is evaluated using the finite-volume solver ISIS-CFD (Queutey and Visonneau, 2007) developed
at ECN-CNRS. A RANS method with a k-ω SST (Shear Stress Transport) turbulence model is used. SWATHs ships
sail at high Froude number (0.4-0.9) (Yun et al., 2019). A sailing speed of 20 kt (Fr = 0.46) is chosen for the present
study. Initially, the sinkage is free while trim is fixed to 0◦, to avoid instability.

An intermediate geometry is created, with R′oy = 0.5 and α’ = 0.33, to study the influence of the mesh density and
the domain size on the resistance value. Using the symmetry of the problem, only half geometry is modeled. The
mesh is created with the semi-automated unstructured hexahedral mesh generator HEXPRESSTM within the Numeca
CFD package.

The reference domain is 4 Loa long, 2 Loa wide, and 1,25 Loa high. A mesh with approximately 1.4 million cells
is shown in Figure 5. Refinement on the hull and the free surface enhances mesh density. The domain is enlarged
by increasing bounds in x and y directions. The flow within the boundary layer is solved using wall functions with a
mesh size close to the wall such as y+ = 100. Simulations are performed on 64 cpus.
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Figure 5: Computation domain and zoom on the mesh of the reference geometry

Figure 6 shows that mesh density and domain size have little effect on ship resistance. A maximum relative
difference of 1.5% is found for a domain 1.5 larger in x and y. Furthermore, sinkage convergence is studied (Figure
6). A maximum relative difference of 5.9% is found with the medium mesh (2.1M cells) while domain size has a
lesser effect on sinkage. However, variations in sinkage hardly impact resistance which converges more quickly. As
resistance is one of the objective functions, the reference mesh (1.4M cells) is chosen for the optimization loop and
convergence criteria based on resistance is settled.

(a) (b)

Figure 6: Time variations of Rt (a) and Sinkage (b) for different mesh densities (1.4M, 2.1M, 2.5M) and mesh sizes (x 1.5, x 2).
Relative differences with the reference mesh (1.4M) are specified

4.2. Influence of the symmetry plane

In order to reduce the computational cost, it was chosen to model only one hull using a symmetry plane boundary
condition on the ymin plane. This approximation is used in various SWATH optimization studies (see Guan et al.
(2020), Lin et al. (2019), Ni et al. (2020)). However, there may be interference between the waves of the two hulls.
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Thus, in order to justify the use of this simplification, we propose to compare the results of RANS simulations of the
reference mesh, determined in the previous section, when considering the symmetry plane boundary condition or the
complete model including the twin hulls.

The total ship resistance Rt and the wave resistance Rw are compared in Table 2, as well as the wave patterns
in Figure 7. There is about 1% difference in total resistance between the two configurations. Furthermore, the
comparison of wave patterns shows that there is no significant difference justifying the use of the twin hulls model. It
is thus clearly shown that the use of the symmetry plane boundary condition is well adapted for this configuration.

Figure 7: Comparison of the wave pattern using the symmetry plane (upper part) and the twin hulls (lower part)

Resistance Symmetry plane Twin hulls
Rw 344 kN 348 kN
Rt 488 kN 492 kN

Table 2: Ship resistance comparison with and without
symmetry plane

4.3. Longitudinal stability

The mesh and domain convergences have been conducted without assessing the longitudinal stability. However,
slender bodies such as torpedoes are subject to the destabilizing Munk moment. Among the panel of geometries that
could be calculated during the optimization loop, the speed limit for stability is estimated according to the longitudinal
stability condition (Lee and Martin, 1976).

The so-called Munk moment Mm (Faltinsen, 1990) can be expressed, as

Mm = −
1
2

(A33 − A11)sin(2θ)U2 (9)

with U as the forward speed of the vessel. For small trim angle θ, Eq. (9) can be linearized with,

Mm ≈ −(A33 − A11)θU2 (10)

Mm is then added into the equation of the pitch motion (Eq. (2)). According to Routh criteria (Lee and Martin,
1976), system (2) is stable if,

C33(C55 − (A33 − A11)U2) −C35C53 > 0 (11)
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Also, C55 ≫ C35 C53/C33 (Lee and Martin, 1976) and A33 ≫ A11 for SWATH ship(A33 / A11= 20 for the Wind-
keeper). The speed limit of stability is finally given by,

Ulim =

√
∆

gGMl

A33
(12)

with GMl as the longitudinal metacentric height, ∆ as the mass of the ship and g as the acceleration of gravity. Formula
(12) has been verified and compared to numerical simulations, calculating the speed limit for stability (Hooijmans,
2016), (Bigi, 2018) where a relative difference of less than 2% has been found.

4.4. Configuration of RANS simulations

To better assess the speed limit for stability of SWATH hull geometries candidates, a surrogate model of Ulim

as function of the two hull variables is constructed. This is achieved by using a Gaussian process surrogate model
(Krieg, 1951) that is built using 15 sampled geometries with a Latin Hypercube Sampling (LHS) (Mckay et al., 1979).
The prediction of Ulim over the variability domain is given in Figure 8. Further details on the surrogate models are
provided in Section 5.

Figure 8: Mean prediction of Ulim as a function of design parameters (α′,R′oy)

The predicted speed limit (see Figure 8) decreases as the angle and semi-axis increase. Figure 8 shows that,
given the present variability domain, almost all geometries are unstable. Indeed, the predicted speeds limit are lower
than 20kt, except those located in the bottom left corner. It is thus necessary to fix pitch motion during resistance
calculations or to consider fins. Sinking will not cause instability and can therefore be let free.

SWATH ships usually sail at zero trim angle, and so fins must generate lift enough to compensate Munk moment.
To balance the hydrodynamic moment along the pitch axis, forward and aft fins are added to the geometry (see Figures
9 and 10). Their main geometrical dimensions are listed in Table 4.4. In all computations of the ship resistance Rt,
the pitch motion is still fixed, and the trim is 0◦. In the medium-fidelity level, fins are not taken into consideration.

In the highest-fidelity model, a stationary solution of the hull equilibrium is sought. The hydrodynamic moments
of the hull and fins calculated at the center of gravity are therefore post-processed during the simulation to compute
the sum of these moments every 10 time steps. In order to solve the balance on the sum of the moments, the Angle of
Attack (see AoA, Figures 9 and 10) of the fins is adapted, every 10 time steps, using a dichotomy method. In short, if
the lift of the foils is not sufficient to balance the ship, the AoA is increased, otherwise it is decreased. This approach
has the benefit of allowing robust RANS calculations of the ship’s resistance using a fixed ship trim. No deformation
of the mesh is therefore necessary, which saves computational costs and preserves the good quality of the mesh.
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In order to allow fins rotations during RANS calculations, a sliding mesh method is considered. As shown in
Figures 11 and 12, the foils are located in their own meshed domain (see cylindrical domains in red) which is included
in the overall domain. A particular caution has been made regarding the size of the mesh at the interface between the
two domains (see Figure 12) to conserve a smooth transition and preserve the quality of the interpolations.

Figure 9: Schematic of the aft foil Figure 10: Schematic of the forward foil

Figure 11: Port hull with its two foils in their compartment al-
lowing the sliding mesh Figure 12: Sliding mesh of the forward foil

Characteristic Value
Chord 1.75 m
Span 2.2 m
Profile NACA 0012
Location from CoG ± 18.5 m

Table 3: Main fins dimensions
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Finally, the optimization problems considered in this study are provided below. The problem (13) concerns the
first (low) fidelity level, while problem (14) is for the second (medium) and third (high) fidelity levels.

min
x∈Ω
ηv(x),S(x)

s.t.


∇ = 1100 m3

GMt ≥ 1.5 m
Roz ≤ Roy

(13)

min
x∈Ω
ηv(x),Rt(x)

s.t.


∇ = 1100 m3

GMt ≥ 1.5 m
Roz ≤ Roy

(14)

In both optimization problems (13) and (14), design parameters are x =
(
Roy, α

)
and the design domain is set to

Ω = [1.4 m, 3 m] × [0◦,45◦]. The dimensionless domain is then Ω′ = [0,1]2

5. Multi-objective surrogate-based optimization

We consider optimization problems, where several objectives have to be minimized simultaneously over a design
variable Ω ⊂ Rd:

min
x∈Ω

f1(x), . . . , fm(x) s.t. g(x) ≤ 0 (15)

where x = (xi)1≤i≤d is a vector of design variables, f =
(

f j

)
1≤ j≤m

is a vector of objective functions to be minimized
( fi : Ω 7→ R), and g = (gk)1≤k≤p is a vector of inequality constraints (gk : Ω 7→ R). The existence of an optimal
solution, minimizing all objectives at once is not typically granted. This leads to the search for an optimal set of
solutions, called the Pareto front. According to the Pareto domination rule (Fonseca and Fleming, 1998), x ∈ Ω is
said dominated by x′ ∈ Ω if for all 1 ≤ j ≤ m, f j(x′) ≤ f j(x), and g(x′) ≤ 0. The set of optimal (non-dominated)
design vectors, to be determined in Ω, is then referred to as the Pareto set. Evolutionary algorithms (Deb et al., 2002;
Coello et al., 2007) have been demonstrated to be well-adapted for solving multi-objective problems in real-word
applications with moderate objective computation cost (Huang et al., 2015; Lim and Kim, 2019).

In the present work, individual evaluations of the objective functions are assumed to be numerically very expen-
sive. A common approach is then to use surrogate models in place of f to reduce the computational burden associated
with the evaluations of f (Simpson et al., 2001). Gaussian processes (GP) (Rasmussen and Williams, 2006; Kleijnen,
2009) are presently considered, which, owing to their statistical nature, provide both a prediction value and a measure
of the uncertainty (variance) for each objective function in this prediction. These features are appealing within the
context of optimization, as they can be exploited to derive rigorous optimization strategies, by evaluating sequentially
the computer models at design vectors that maximize a so-called merit function (Picheny et al., 2013).

In mono-objective problems, GP-based approaches are globally referred to as Efficient Global Optimization
(EGO) (Jones et al., 1998), whereby the merit function is based on an Expected Improvement (EI) criterion, expressing
a trade-off between sampling in promising regions and exploring in unsampled regions. EGO has been successfully
applied to complex optimization problems, such as non-linear fluid-structure interaction problems (Sacher et al., 2017,
2018) or RANS computations (Meliani et al., 2019).

Over the last few years, surrogate-based approaches have also been proposed to address the multi-objective prob-
lem. Indeed, several GP-based multi-objective optimization strategies propose to extend the EI infilling criterion of
Jones et al. (1998). The definition of the improvement can then be considered over the Pareto front (Wagner et al.,
2010), using for instance, Maximin distance (Svenson and Santner, 2010), Euclidean distance (Keane, 2006), or the
well-known Hypervolume infilling criterion (Emmerich et al., 2006, 2011; Luo et al., 2014). Recently, merit func-
tions aimed at computing and reducing uncertainty of the predicted Pareto front have been developed (Picheny, 2015;
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Binois et al., 2015; Passos and Luersen, 2018). In particular, Passos and Luersen (2018) have proposed and validated,
on a real-world composite panel application, the efficiency of a new merit function: Minimization of the Variance
of the Predicted Front (MVPF). In the present work, the MVPF approach is applied to solve the SWATH hull form
optimization problem, using the “moko” open-source R package (Passos and Luersen, 2018).

In Section 5.1, we shall summarize the construction of the GP model for an objective function f j. The MVPF
infilling criterion is then given in Section 5.2. Section 5.3 presents a Median Compromise of the Pareto Front (MCPF)
criterion, which can be used to monitor the convergence of the optimization resolution, in addition to providing a
median trade-off selection of the optimal design vector located on the Pareto front. The last Section 5.4 provides the
Inverse Generational Distance (IGD) metric, which can be used to quantify the quality of Pareto sets.

5.1. GP surrogate construction
In the present Section 5.1, the GP surrogate construction of an objective function f j is provided. The method is

identical for the GP surrogate construction of an inequality constraint function gk.
We consider a set of n training points X = (x1, . . . ,xn), each in Ω. The training points are associated to the vector

Y( j) = (y( j)
1 , . . . ,y

( j)
n ) of noisy observations of the objective function f j. It is assumed that y( j)

i = f j(xi) + ϵ
( j)
i , where the

ϵ
( j)
i are independent and identically distributed Gaussian random variables having zero-mean and variance σ2

ϵ j
.

The GP construction considers that f j(x) is a realization of a zero-mean multivariate Gaussian process with co-
variance function C j. We consider here the Matérn 5/2 covariance function defined, in its univariate form, by

c
(
x,x′; l

) .
=

1 + √5
|x − x′|

l
+

5
3

(
|x − x′|

l

)2 exp
(
−
√

5
|x − x′|

l

)
(16)

leading to the definition of the multidimensional covariance function as,

C j

(
x,x′;Θ j

) .
=

d∏
i=1

c
(
xi,x′i ; li

)
(17)

where Θ j =
(
l( j)
1 , . . . ,l

( j)
d

)
is the vector of covariance hyper-parameters to be inferred from the Y( j) observations. From

the conditional rules of joint Gaussian distributions (Rasmussen and Williams, 2006), the best prediction f̂ j(x) of
f j(x), i.e., the mean of y( j), and the prediction variance σ̂ j

2(x) are given by,

f̂ j(x) = kT
j (x)

(
C j

(
Θ j

)
+ σ2

ϵ j
I
)−1
Y( j) (18)

σ̂ j
2(x) = κ j(x) + σ2

ϵ j
− kT

j (x)
(
C j

(
Θ j

)
+ σ2

ϵ j
I
)−1

k j(x) (19)

In (18) and (19) we have denoted C j ∈ Rn×n the symmetric covariance matrix of the training points, κ j(x) .=

C j

(
x,x;Θ j

)
, k j(x) .=

(
C j

(
x,x1;Θ j

)
· · ·C j

(
x,xn;Θ j

))T
the covariance vector between the observations in X and x,

and I the identity matrix of Rn. The hyper-parameters Θ j and noise variance σ2
ϵ j

can be determined by maximizing
the log-marginal likelihood (see Rasmussen and Williams (2006) for more details).

5.2. Minimization of the Variance of the Predicted Front (MVPF)
The MVPF infilling criterion, proposed by Passos and Luersen (2018), aims at improving the fidelity of the

predicted Pareto front. A Pareto front is generated thanks to a state-of-the-art multi-objective constrained optimization
algorithm (such as NSGA-II (Deb et al., 2002)) and using GP surrogate predictions (one for each objective and
constraint function, see Eq. (18)) as input functions. The MVPF criterion then consists of selecting a design vector
variable xMVPF from the Pareto set XPF , to be evaluated. This selection is based on the highest predicted variances in
objective functions (see Eq. (19)), and is written as,

xMVPF
.
= arg max

x∈XPF

 m∏
j=1

σ̂ j
2(x)

 (20)
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where σ̂ j
2(x) ∈ [0, 1] is the normalized predicted variance (from Pareto set). The design vector xMVPF is added to X,

and finally f and g are computed. A new iteration can then start by updating GP models with the new observations,
and the iterative process is repeated until a stopping criterion is reached. For more details on the MVPF algorithm,
we refer readers to (Passos and Luersen, 2018).

5.3. Median Compromise of the Pareto Front (MCPF)

Solving multi-objective optimization problems leads to the search for an optimal set of solutions (i.e., Pareto
front). In most real-word applications, a design vector from the Pareto set must be selected to provide an optimal
design choice. This selection is therefore a compromise choice, which is usually based on the knowledge of the
designer. With the aim of avoiding this compromise selection by the designer, the MCPF criterion is proposed in this
study, and is provided by,

xMCPF
.
= arg min

x∈XPF

 m∑
j=1

arg sort
(

f̂PF j , f̂ j(x)
)2
 (21)

where, arg sort( f , f ) .=
{
q ∈ {1, . . . ,t} | f < fq ∈ f

}
and f̂PF j is the vector of objective function j predictions on the

Pareto set XPF , which is composed of t non-dominated design vectors. As can be seen in Eq. (21), the median
trade-off is selected by considering the rank, from the Pareto set, of each objective function prediction. This definition
allows a design vector compromise to be determined without the need for weights or scaling of objective function
values. In the following, the MCPF criterion is used to compare results and monitor the convergence of optimization
resolutions.

5.4. Inverted Generational Distance (IGD)

The Inverted Generational Distance (IGD) metric (Shimoyama et al., 2013) can be used to monitor the quality
(Passos and Luersen, 2018) of Pareto sets along the optimization process. Indeed, the IGD provides the average
distance between all designs in the true set and the closest design of the current set. IGD is defined as,

IGD
(
XPFT ,XPF

) .
=

1
t

∑
x′∈XPFT

min d
(
f
(
x′

)
, f (x)

)
x∈XPF

(22)

where XPFT and XPF are the true and current Pareto sets and d(·) is the Manhattan distance metric. The quality of the
Pareto set therefore increases when the IGD decreases. In the present work, the IGD convergence is computed at the
end of optimization resolutions and the last obtained Pareto set is considered as the “true” Pareto set.

6. Results and discussions

The aim of this paper is to introduce a multi-objective optimization method of SWATH ships using three levels
of fidelity. The significant amplitude of the vertical motion is minimized as well as the resistance. In the first low
fidelity level, the wetted surface is the main parameter to assess the ship resistance. RANS simulations are then used
to compute the resistance in the second and third fidelity levels. The second level considers the resistance without fin
effects, while stabilizing fins are modeled in the third level. Optimization processes are performed with the same LHS
composed of 15 observations.

6.1. Low-fidelity level: Wetted surface

In this first optimization problem of low fidelity, for the ship resistance, the number of iterations is set to 100.
At each iteration, the Pareto front is built to find the median compromise (see Section 5.3). Its design parameters
and values of the objective functions are plotted in terms of the iteration number in Figure 13 to better appreciate the
convergence of the optimization. The median compromise is quite stable, and from iteration 30, we can see that the
objective functions and design parameters are almost converged. There are some oscillations (iterations 48, 55, 99,
and 100) that slightly alter S (see Figure 13c), but not at all ηv (see Figure 13b).
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(a) (b)

(c)

Figure 13: Iterative variation of design parameters α’and R′oy (a) and objective functions values of the median compromise ηv (b)
and S (c) - Low fidelity level

As mentioned in 5.4, the Inverted Generational Distance compares two Pareto fronts to assess its quality and
convergence. Here, the IGD is plotted in terms of the iteration number, where the last PF being the “true” Pareto front.
Figure 14 shows that IGD is decreasing towards zero, leading to the convergence of the Pareto front.

Results at the last iteration are given in Figures 15, 16, 17, 18. The mean surrogate prediction of both objective
functions is plotted on the variability domain, as well as the Pareto front in 3D. Feasible and unfeasible calculation
points are distinguished, allowing to observe the restriction domains of the constraints.

In Figure 15, ηv is a multi-modal function. Several minima are found on the top right of the graph, where the
constraints are not respected. A maximum is also found on the lower boundary of the horizontal semi-axis. However,
geometries with R′oy lower than 0.19 have an upward-facing elliptical section (i.e. Roy < Roz). The seakeeping model
is not valid in such a range so the prediction of ηv must be handled with care. Torpedoes are closed to the free surface
and amplitude of motion grows. The multi-modal character of ηv is illustrated in Figure 18, where we can see that the
PF is discontinuous. These discontinuities explain the oscillations in the convergence of the median compromise (see
Figures 13). The position of the median compromise alternates between two discontinuous branches of the Pareto
Front, at a value of approximately S = 1500 m2.

The front is bounded by the constraints. One branch is located on R′oy = 0.19, whereby condition (13) is no longer
respected under this value. The other branch is located on the diagonal of the variability domain, GMt being lower
than 1.5 m on the right side of the domain. (see Figures 15,16, 17 ). Increasing α′ and R′oy lead to a decrease of the
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Figure 14: Iterative variation of the Inverted Generational Distance - Low fidelity level

Figure 15: Mean prediction of ηv as a function of design
parameters (α′,R′oy) ∈ Ω

′

Figure 16: Mean prediction of S as a function of design
parameters (α′,R′oy) ∈ Ω

′

amplitude of motion (Figure 18) but raises S (Figures 16). Geometries with vertical struts and small R′oy have a lower
S but in return, their motions are more important. Therefore, S and ηv are indeed opposite functions, this justifies the
interest in using a multi-objective optimization algorithm to find the median compromise. Torpedoes with large R′oy
provide more damping and added mass. Also, resonant period is longer than period of circular section, and so are
further from the peak amplitude of the wave spectrum.

To better appreciate the relationship between the geometry and the value of the objective functions, the sections
of the geometries which minimize ηv, S and the best compromise are compared in Figure 19. The characteristics of
the median compromise from the last iteration are listed in Table 4. Between the blue (low S) and the red geometry
(low ηv) presented in Figure 19, ηv and S can be respectively decreased by 46% and 26%. These numbers show
that performance could drastically evolve from one optimum to another. It is therefore necessary to define a design
compromise.
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Figure 17: Mean prediction of the objective functions, Pareto
Front and median compromise as a function of design parame-
ters (α′,R′oy) ∈ Ω

′ with S in vertical axis and ηv in color - Low
fidelity level

Figure 18: Objective functions values of the Pareto Front, me-
dian compromise and feasible designs - Low fidelity level

Figure 19: Cross-sectional diagram of the geometries with the
best ηv, the median compromise and the best S - Low fidelity
level

Characteristic Value
(α’, R′oy) (0.41, 0.57)
ηv 2.43 m
S 1563 m2

Table 4: Characteristic of the median compromise - Low fidelity
level

6.2. Medium fidelity level: Bare hull resistance - free sinkage, fixed trim & no fin
The speed limit study (see Figure 8) shows that all geometries are unstable. To avoid instability, sinkage is free

while trim is fixed. Let the pitch motion free could lead to unexpected large trim angle and resistance which is not
representative of actual sailing conditions of SWATH ships and may cause instabilities. This second level of fidelity
for the resistance deals with the bare hull resistance regardless the fin effects. Convergence of the median compromise
is studied in the same way as in the first case. Figures 20 show the convergence of the design parameters and objective
functions of the median compromise.

As the prediction of ηv remains of the same nature, the PF is still discontinuous and there are some oscillations on
the location of the median compromise (iterations 39, 40, see Figures 20). The median compromise is located in the
same range ( (α’, R′oy) ≈ (0.4, 0.6)). The IGD (see Figure 21) tends to zero, which also confirms the convergence.

Results at the last iteration are presented in Figures 22 and 23. The seakeeping calculation has not changed so
the mean prediction of ηv is similar. Slight differences are explained by the noise of the prediction as well as the
difference in calculation points. Figure 22 shows the mean prediction of Rt. Bare hull resistance is mainly impacted
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(a) (b)

(c)

Figure 20: Iterative variation of design parameters α’and R′oy (a) and objective functions values of the median compromise ηv (b)
and Rt (c) - Medium fidelity level

by the change of section of torpedoes while inclination angle is less critical. A minimum is found around the domain
where the constraint on the semi-axis is not respected (R′oy ≈ 0.1). The hull volume is closer to the free surface that
could increase the wave resistance, therefore Rt increases again for very low horizontal semi-axis (R′oy < 0.1).

Rt and S evolve in the same way as shown in Figure 16. The wetted surface is a good indicator of the resistance
for a SWATH, particularly when the hull is deeply immersed. The PF is still discontinuous (see Figure 23) and the
median compromise remains within the same range (see Figure 20).

The sections of the geometries which minimize ηv, Rt and the best compromise are compared in Figure 24. These
geometries are very close to those of the first case (see Figure 19). This means that the first level of fidelity is accurate
for this optimization problem. The median compromise is referenced in Table 5. Geometries can also be compared:
between the blue and the red geometry presented in Figure 19, ηv and Rt can be respectively decreased by 41% and
28%.
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Figure 21: Iterative variation of the Inverted Generational Distance - Medium fidelity level

Figure 22: Mean prediction of Rt as a function of design
parameters (α′,R′oy) ∈ Ω

′

Figure 23: Objective functions values of the Pareto Front, me-
dian compromise and feasible designs - Medium fidelity level
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Figure 24: Cross-sectional diagram of the geometries with the
best ηv, the median compromise and the best Rt - Median fidelity
level

Characteristic Value
(α’, R′oy) (0.39, 0.62)
ηv 2.30 m
Rt 261 kN

Table 5: Characteristic of the median compromise - Medium
fidelity level
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It can been noted from Figure 22 that the resistance of the ship is primarily affected by the torpedo’s radius. In
order to explain this effect, two geometries with opposite radius and having similar angle of strut inclination were
extracted from the optimization process: the geometries of iterations 25 and 45. Their characteristics are given in
Table 6.

Geometry (α’, R′oy)
25 (0.33, 0.98)
45 (0.34, 0.19)

Table 6: Dimensionless parame-
ters of the geometries 25 & 45

The comparison of the hydrodynamic pressure coefficient distribution along the hull for these two geometries
is also presented in Figure 25. It can be seen that there are major differences in the pressure distribution between
the two designs. These differences affect the hydrodynamic forces and moments applied to the hull. The resistance

Figure 25: Comparison of the hydrodynamic pressure distribution of the geometry 45 (left) & 25 (right)

components (wave resistance Rw and viscous resistance Rv) of the strut and the torpedo have been extracted from
RANS computations and are detailed in Table 7. The wave resistance of both torpedoes appears to be similar in the
present comparison. However, it can been noted from the Table 7 that the increase in the total ship resistance of the
geometry 25 is caused by the strut. This is explained by the fact that this one is deeper and has a much larger wetted
area, resulting in increased hydrodynamic resistance.

Strut Torpedo
Geometry Rw Rv Rw Rv

25 109 29 100 51
45 53 17 96 45

Table 7: Comparison of the different com-
ponents of the ship resistance (in kN)

6.3. High fidelity level: Total ship resistance - free sinkage, fixed trim & fins
On the third degree of fidelity, the drag of the stabilizing fins is added to the total ship resistance. Their angle

of attack varies in such a way to ensure that their lift balances the hydrodynamic pitching moment. Thus, the trim
remains at zero, avoiding increasing the mesh deformation and consequently computational costs.
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The convergence of the optimization loop is studied by assessing the location of the median compromise, its
objective functions values as well as the IGD (see Figures 26-27).

The design parameters of the median compromise converge in the same range (α’, R′oy) ≈ (0.4,0.6), as well as ηv

≈ 2.3 m (see Figure 26). As shown in Figure 27, the IGD tends to zero, confirming the convergence.

(a) (b)

(c)

Figure 26: Iterative variation of design parameters α’and R′oy (a) and objective functions values of the median compromise ηv (b)
and Rt (c) - High fidelity level

Results at the last iteration, of the high fidelity problem solving, are presented in Figures 28-31. The trend of Rt

with and without fins are similar. Rt is increasing by moving to the top right on the variability domain (see Figures 22
and 28), where values sharply increase with fins on the top right corner of the variability domain, and approximately
10% higher on the median compromise location.

Disregarding fins on SWATH resistance can lead to inaccurate results and incorrect sizing of the propulsion. A
GP model of the fins angle response to reach ship trim equilibrium is built and given in Figure 29. The evolution of
the fins angle is directly linked to the speed limit for stability (see Figure 8). The lower the speed limit, the higher
the fins activity, and hence the drag. As the fins geometry is fixed, they are not suitable for all hulls. For instance, on
the top right corner, the fins are obviously undersized. Fin angles of more 50° are found (see Figure 29). Stall may
occur at great angles of attack and then drag is significantly increased. For geometries located on the Pareto Front,
fins angles are ranged between 0° and 25° which. Some geometries do not need fins activity as AoA remains at 0°,
meaning that the speed limit should be over 20 kt. Thus, there is a slight difference between the true speed limit and
its prediction (see Figure 8, given that simplifications and approximations are used (see Section 4.3), and the fins still
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Figure 27: Iterative variation of the Inverted Generational Distance - High fidelity level

generate some lift.

Figure 28: Mean prediction of Rt as a function of design
parameters (α′,R′oy) ∈ Ω

′

Figure 29: Mean Prediction of AoA as a function of
design parameters (α′,R′oy) ∈ Ω

′

The PF remains discontinuous (see Figures 30-31), but the median compromise remains in the same range (α’,
R′oy) ≈ (0.4,0.6) (see Figure 26). The geometries minimizing Rt, ηv and the median compromise are similar to the
previous cases (see Figures 19 and 24). Between two opposite optima, Rt and ηv can be respectively decreased by
nearly 50% and 40%. The median compromise is listed in Table 8.

22



Characteristic Value
(α’, R′oy) (0.40, 0.61)
ηv 2.27 m
Rt 278 kN

Table 8: Characteristic of the median
compromise - High fidelity level

Figure 30: Mean prediction of the objective functions, Pareto
Front and median compromise as a function of design parame-
ters (α′,R′oy) ∈ Ω

′ with Rt in vertical axis and ηv in color - High
fidelity level

Figure 31: Objective functions values of the Pareto Front, me-
dian compromise and feasible designs - High fidelity level

The locations of the median compromise are very similar regardless of the three degrees of fidelity. This is
confirmed by Figure 32, whereby the median compromise geometries sections of the three fidelity levels do not
present any significant differences.

Figure 32: Cross-sectional diagram of the median compromises for the three fidelity levels

The relative differences of the location of the median compromises compared to the third fidelity level are given
in Table 9. It is clearly demonstrated that both median compromises of low and medium-fidelity levels are very close
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to the highest level of fidelity. It means that the median compromise is captured well by the low-fidelity levels, and so
both models are usable.

Characteristic Low Medium High
(α’, R′oy) (0.41, 0.57) (0.39, 0.62) (0.40, 0.61)
Relative difference (2,0%, -1.2%) (-2.1%, 1.3%) -

Table 9: Location comparisons of the first two fidelity levels median compro-
mises computed at the high-fidelity level

CPU time of each optimization must be considered: approximately 10, 30, and 120 minutes are required per
iteration respectively for the first, second, and third fidelity levels. It is therefore important to quantify the expected
accuracy with respect to the resources that it is necessary to obtain the results.

7. Conclusion

In the present study, a multi-objective SWATH hull form optimization using Gaussian process surrogate models
is implemented to find the median compromise between seakeeping performance and ship resistance. The goal is to
propose an efficient method for the design of SWATH ships considering particularities of this type of ship (such as
viscous effects in seakeeping prediction and longitudinal stability for resistance calculation) and assessing the three
degrees of fidelity for the ship resistance.

The studied ship is a 50m SWATH ship sailing in a wind turbine farm to transport technicians to and from offshore
platforms. The significant amplitude of the vertical motion is evaluated in irregular waves. Viscous and fin effects are
added to the results of a linear potential code in the equations of motion. The method is validated with experimental
data. As the seakeeping model is not valid for certain geometries, a constraint on the semi-axis of the torpedoes is
implemented. Also, a minimum longitudinal metacentric height constraint is imposed to reflect what a naval architect
might face, including regulations. The ship displacement remains constant and is balanced by the vertical semi-axis
of the torpedoes. The first level of fidelity for the ship resistance deals with the wetted surface. Then, the resistance
is calculated using RANS simulations. SWATH ships being dynamically unstable at high speed, the longitudinal
stability is assessed, what to the authors’ knowledge has not been conducted in previous studies. In the present paper,
all geometries are dynamically unstable in pitch and heave. Consequently, simulations are performed with free sinkage
and fixed trim without fins. Finally, in a third level of fidelity, fins are added to the geometry to balance the Munk
moment. Fins drag is then considered.

Gaussian processes and the “Minimization of the Variance of the Predicted Front” algorithm are used to populate
the metamodel database. The final design is elected according to a new proposed criterion, the “Median Compromise
of the Pareto Front”.

The first case, considering the wetted surface, shows that seakeeping performance and wetted surface are indeed
opposite functions. Geometries which minimize vertical amplitude of motion have a large horizontal semi-axis and
large strut inclination angle, but those parameters increase the wetted surface. The use of a multi-objective algorithm
to find the best compromise is then justified. The second case aims to study the ship resistance without fins. As all
geometries are unstable, only sinkage is free. This study highlights that the resistance and the wetted surface evolve
similarly, particularly for deep immersed hulls. Consequently, wetted surface could be a good indicator in term of
bare hull resistance for a SWATH hull shape. Finally, the third case deals with stabilizing fins. Aft and forward fins
are incorporated to the geometry. Their angle of attack is solved to balance the hydrodynamic moment. Geometries
with a low speed limit for stability need more fin activity, leading to an increase of the total ship resistance.

The median compromises of the three cases are similar and located in the same range of the variability domain (α’,
R′oy) ≈ (0.4, 0.6). The difference in location between the three median compromises is of the order of 2%. However,
the calculation time for the third step is significantly greater than for the other two. From an industrial point of view,
it would therefore be judicious to use the first or the second fidelity level to determine the median compromise.

In future work, non-linearity in the seakeeping model could be implemented, increasing the accuracy of the cal-
culation of ship motion in irregular waves.
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Furthermore, several infilling criteria, such as SUR (Picheny, 2015), EHVI (Emmerich et al., 2011), EI (Passos
and Luersen, 2018), etc., can be compared in terms of convergence speed of the median compromise. Finally, a multi-
fidelity surrogate-based approach (Sacher et al., 2021) may also be promising for solving this multi-objective SWATH
hull form optimization problem.
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