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Verifying Provable Stability Domains for

Discrete-Time Systems Using

Ellipsoidal State Enclosures

Andreas Rauha, Auguste Bourgoisbcd, and Luc Jaulinde

Abstract

Stability contractors, based on interval analysis, were introduced in re-
cent work as a tool to verify stability domains for nonlinear dynamic systems.
These contractors rely on the property that — in case of provable asymp-
totic stability — a finitely large domain in a multi-dimensional state space is
mapped into its interior after a certain integration time for continuous-time
processes or after a certain number of discretization steps in a discrete-time
setting. However, a disadvantage of the use of axis-aligned interval boxes in
such computations is the omnipresent wrapping effect. As shown in this con-
tribution, the replacement of classical interval representations by ellipsoidal
domain enclosures reduces this undesirable effect. It also helps to find suit-
able ratios for the edge lengths if interval-based domain representations are
investigated. Moreover, ellipsoidal domains naturally represent the possible
regions of attraction of asymptotically stable equilibrium points that can be
analyzed with the help of quadratic Lyapunov functions, for which stability
criteria can be cast into linear matrix inequality (LMI) constraints. For that
reason, this paper further presents possible interfaces of ellipsoidal enclosure
techniques with LMI approaches. This combination aims at the maximization
of those domains that can be proven to be stable for a discrete-time range-
only localization algorithm in robotics. There, an Extended Kalman Filter
(EKF) is applied to a system for which the dynamics are characterized by a
discrete-time integrator disturbance model with additive Gaussian noise. In
this scenario, the measurement equations correspond to the distances between
the object to be localized and beacons with known positions.
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1 Introduction

The analysis of stability properties of nonlinear dynamic systems is a crucial aspect
for the verification of control and state estimation procedures (i.e., state observers)
in many different areas. From a methodological point of view, Lyapunov func-
tion techniques can be applied to deal with this task for both discrete-time and
continuous-time processes [18, 19]. They are not only applicable to the analysis
of predefined control and observer structures but are also widely used during their
synthesis. Especially when system models with a linear or quasi-linear structure are
considered, there exist a large number of interrelations between Lyapunov function
techniques and LMIs. This is basically caused by the fact that stability criteria for
linear dynamic systems, which are investigated with the help of quadratic candi-
dates for Lyapunov functions, are equivalent to criteria that can be stated with the
help of LMIs.

Based on these fundamental observations, numerous research activities have
been performed in recent years which (as an obviously non-exhaustive list) deal
with the following aspects:

• transforming stability requirements for linear uncertain system models with
polytopic time-invariant and time-varying uncertainty into sets of LMIs [2,5,
8, 9, 40];

• development of iterative LMI techniques for synthesizing robust output and
state feedback controllers for systems which are simultaneously subject to
polytopic parameter uncertainty and/or stochastic noise [11,28,32,41];

• verifying invariant sets of nonlinear closed-loop control systems [37];

• implementing gain scheduling controllers for quasi-linear systems with bound-
ed parameter uncertainty [17];

• implementing online gain adaptation schemes for variable-structure, sliding
mode controllers as well as backstepping techniques with the aim of chattering
reduction [33–35];

• investigation of the dual task of variable-structure state estimation [31];

• finding optimal candidates for Lyapunov functions for nonlinear dynamic sys-
tems [22,43];

• determining the region of attraction of stable operating points and maximiz-
ing the provable stability domains for nonlinear processes [7,12,15,25,44–46].

In parallel to the development of the above-mentioned Lyapunov and LMI tech-
niques, interval methods have been investigated during the last decades [16,20]. Due
to their fundamental property to enclose the solution to some mathematically for-
mulated problem in a guaranteed way, they have many applications in engineering.
These cover aspects such as state and parameter estimation [1], uncertainty quan-
tification in robotics applications [21, 24], or simulation of dynamic systems [23].
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Moreover, a new technique for enclosing provable stability domains was presented
recently in [3,4]. This so-called stability contractor is re-investigated in this paper
for analyzing stability properties of a discrete-time EKF [42] that is applied to the
task of localizing a robot with the help of range-only measurements. For that pur-
pose, the interval-based implementation of this contractor is compared with a novel
ellipsoidal enclosure approach. This approach was recently presented in [29, 30] as
a tool for nonlinear function evaluation, simulation of dynamic system models, as
well as performance analysis of linearization-based stochastic filters (such as the
EKF). In [26], it has been extended towards a state estimation procedure which
exploits a quasi-linear system structure when determining inner and outer bounds
for state enclosures.

This paper is structured as follows: Sec. 2 summarizes the already existing
interval-based stability contractor and reviews ellipsoidal enclosure techniques for
discrete-time dynamic systems. Both provide the basis for the novel ellipsoidal sta-
bility contractor in Sec. 3 which enhances the original interval-based technique due
to its capability for often proving larger regions of attraction for stable operating
points. A (near to optimal) parameterization of this novel contractor is described in
Secs. 3.1 and 3.2 with an illustrating example in Sec. 3.3 and its use for a localiza-
tion task in robotics in Sec. 3.4. Moreover, a new extension for proving instability
of equilibrium points is presented in Sec. 3.5. Finally, Sec. 4 describes an outlook
on using ellipsoidal techniques for finding positive invariant domains in the frame
of continuous-time processes before conclusions are given in Sec. 5.

2 Preliminaries

In this section, fundamental preliminaries published in previous works of the au-
thors are given. These are the interval-based stability contractor [3, 4] as well as
(thick) ellipsoidal state enclosure techniques for discrete-time systems. For the lat-
ter, we make a distinction between a general formulation [29,30] and a specialized
version for quasi-linear system models [26].

2.1 Notation

Throughout this paper, scalar interval variables with the lower and upper bounds x
and x, respectively, where x ≤ x, are denoted as [x] = [x ; x]. For the vector-valued
case, an interval vector (also called interval box ) is formed as the Cartesian product
of scalar intervals according to the stacked notation

[x] =
[
[x1] . . . [xn]

]T
, (1)

where the set of axis-aligned interval boxes in Rn is denoted as IRn. For funda-
mental enclosure properties of interval analysis as well as interval extensions of
(vector-valued) functions f : Rm 7→ Rn, the reader is referred to [16,20].
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Moreover, according to [29,30], define a thick ellipsoid
(
(E)
)

=
(
(E)
)(

µ,Γ,
[
ρ ; ρ

])
,

where 0 ≤ ρ ≤ ρ, as a subset of the power set P (Rn) so that

(
(E)
)

=
{
A ∈ P (Rn)

∣∣EI ⊆ A ⊆EO
}

(2)

encloses a set A of interest both from the inside and outside with the inner and
outer bounding ellipsoids

EI =

{
x ∈ Rn

∣∣ (x− µ)
T
(
ρΓ
)−T (

ρΓ
)−1

(x− µ) ≤ 1

}
,

EO =
{

x ∈ Rn
∣∣ (x− µ)

T
(ρΓ)

−T
(ρΓ)

−1
(x− µ) ≤ 1

} (3)

that have surfaces parallel to each other.
Finally, ‖·‖ represents (an interval extension of) the Euclidean norm of the

corresponding vector-valued argument as introduced in [29]; the relations M � 0
and M � 0 denote positive and positive semi-definiteness of a real-valued symmetric
matrix (M ≺ 0 and M � 0, negative (semi-) definiteness, respectively).

2.2 Interval-Based Stability Contractors

Consider an interval box [x0] of Rn. According to [4, Def. 1], a stability contractor
Ψ : IRn 7→ IRn of rate |α| < 1 is characterized by the following properties for all
boxes [a] , [b] ⊂ [x0]:

1. monotonicity: [a] ⊂ [b] =⇒ Ψ
(
[a]
)
⊂ Ψ

(
[b]
)
;

2. contractance: Ψ
(
[a]
)
⊂ [a];

3. equilibrium: Ψ (0) = 0;

4. convergence: Ψ
(
[a]
)
⊂ α · [a] =⇒ ∀k ≥ 1,Ψk

(
[a]
)
⊂ αk · [a], where Ψk

(
[a]
)

denotes the iterated evaluation Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
k

, where Ψ0 is the identity function.

As shown in [4], the existence of such a stability contractor with Ψ
(
[x0]

)
⊂ [x0]

can serve as a proof of Lyapunov stability of a discrete-time dynamic system

xk+1 = f (xk) , f : Rn 7→ Rn (4)

with the equilibrium state x = 0, i.e., 0 = f (0) in the complete box of initial
conditions [x0] 3 0.

Remark 1. Due to the fact that a centered form representation of the interval
extension of functions such as the system model (4) often leads to tighter bounds
of the resulting state enclosures than a naive interval extension if the domain on
which the function is evaluated is sufficiently small (cf. [10]), an evaluation of the
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stability contractor in centered form representation was proposed in [4]. Moreover,
it should be noted that a one-step evaluation of the state equations (especially for
systems with oscillatory but asymptotically stable dynamics), often does not satisfy
the contractance property mentioned above. Then, the stability contractor can be
applied to a multi-time step evaluation by using a k times iterated centered form
representation of (4) on the box of initial conditions.

2.3 Ellipsoidal Enclosures for Discrete-Time Dynamic Sys-
tems: General Case

Consider a finite-dimensional discrete-time system model (4), where (as also re-
quired for the centered form representation in the previous subsection) f is assumed
to be differentiable. Given a thick ellipsoid representation

(
(E)
)
k

=
(
(E)
)(

µk,Γk,
[
ρ
k

; ρk

])
(5)

at the time instant k, a thick ellipsoid

(
(E)
)
k+1

=
(
(E)
)(

µk+1,Γk+1,
[
ρ
k+1

; ρk+1

])
(6)

at the instant k + 1 is defined by the following Theorem 1 such that EI
k+1 is an

inner boundary containing certainly reachable states andEO
k+1 is a guaranteed outer

enclosure. A graphical representation of this enclosure property is given in Fig. 1.
For a proof of the following theorem, the reader is referred to [30].

μ1,k x1,k

x2,k

μ2,k μ2,k+1

μ1,k+1 x1,k+1

x2,k+1

EI
k

EO
k

Ak

xk+1 = f (xk)

EO
k+1

EI
k+1

Ak+1

Figure 1: Definition of a thick ellipsoid
(
(E)
)
k

enclosing the domain Ak and its

mapping
(
(E)
)
k+1

via the system model (4) that encloses the true solution set Ak+1

from the inside and outside.

Theorem 1 ( [29,30] Thick ellipsoid enclosures). Define the state enclosure at the
time instant k by the thick ellipsoid

(
(E)
)
k
. For a differentiable state equation (4),

with

Ak =
∂f

∂xk
(µk) invertible , (7)
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(
(E)
)
k+1

according to (6) is a thick ellipsoid enclosure of the solution set f
((
(E)
)
k

)

with
µk+1 = f (µk) and Γk+1 = Ak · Γk (8)

as well as
ρ
k+1

= (1− ρI,k) · ρ
k

and ρk+1 = (1 + ρO,k) · ρk . (9)

Here,

ρI,k = max
‖x̃k‖≤1

∥∥∥b̃I,k (x̃k)
∥∥∥ , (10)

b̃I,k (x̃k) = ρ−1
k

Γ−1k A−1k ·
(
f
(
ρ
k
Γkx̃k + µk

)
− f (µk)

)
− x̃k (11)

and
ρO,k = max

‖x̃k‖≤1

∥∥∥b̃O,k (x̃k)
∥∥∥ , (12)

b̃O,k (x̃k) = ρ−1k Γ−1k A−1k ·
(
f (ρkΓkx̃k + µk)− f (µk)

)
− x̃k . (13)

2.4 Ellipsoidal Enclosures for Discrete-Time Dynamic Sys-
tems: Quasi-Linear Case

As a special case of the general system model (4), consider the quasi-linear system
representation

xk+1 = A (xk,pk) · xk , (14)

where A (xk,pk) ∈ Rn×n is a state- and parameter-dependent system matrix. This
matrix can be extracted from the general system formulation (4) either by means
of factoring out the state vector in such a way that all matrix entries are finite and
non-singular in the operating domain of interest. Alternatively, it can be bounded
by means of slope calculus [6] or in analogy to the centered form representation
mentioned before by means of an interval extension of the system’s Jacobian, see
also [26].

Remark 2. To prove asymptotic stability by means of the contractor technique in
Sec. 2.2, it is necessary that the matrix A (xk,pk) in (14) does not introduce any
further equilibrium point (except for the origin of the state space) in the evalua-
tion domain of interest. This is a direct consequence of the contractance property
in Sec. 2.2 which must equally hold for the state equations if the interval-based
stability contractor of Sec. 2.2 and the general ellipsoidal evaluation technique of
Sec. 2.3 were applied.

The following five-step evaluation procedure for quasi-linear discrete-time sys-
tems (14) was published as a state prediction algorithm in the frame of a predictor–
corrector state estimator in [26]. As visualized in Fig. 2, this procedure is based

on propagating a thick ellipsoid ˇ((E)
)
k

centered at the origin of the state space in
parallel to an offset term (arising from non-zero ellipsoid midpoints µk) in the form

xk+1 = A (xk,pk) · x̌k + Ãk · µk +
(
A (xk,pk)− Ãk

)
· µk , (15)
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where

(
(E)
)
k

=
(
(E)
)
k

(
µk,Γk,

[
ρ
k

; ρk

])
(16)

denotes the uncertainty on the non-origin centered states xk,

ˇ((E)
)
k

= ˇ((E)
)
k

(
0,Γk,

[
ρ
k

; ρk

])
(17)

the uncertainty of x̌k after shifting the ellipsoid to the origin, and

Ãk = A
(
µk,mid

(
[pk]

))
(18)

the midpoint approximation of the quasi-linear system matrix with

pk ∈ [pk] =
[
p
k

; pk

]
, where mid

(
[pk]

)
=

1

2
·
(
p
k

+ pk

)
. (19)

((E))k

x1,k

x2,k

((
Ě
))
k

x̌1,k

x̌2,k

µk

x1,k

x2,k

A (xk,pk)

Ãk +
(
A (xk,pk)− Ãk

)

((
Ě
))′
k+1

x̌1,k+1

x̌2,k+1

+

µk+1

x1,k+1

x2,k+1

((E))k+1

x1,k+1

x2,k+1

((
Ě
))′
k+1

µk+1

((E))k

x1,k

x2,k

((
Ě
))
k

x̌1,k

x̌2,k

µk

x1,k

x2,k

A (xk,pk)

Ãk +
(
A (xk,pk)− Ãk

)

((
Ě
))′
k+1

x̌1,k+1

x̌2,k+1

+

µk+1

x1,k+1

x2,k+1

((E))k+1

x1,k+1

x2,k+1

Figure 2: Separation of the state equations according to (15)–(19) into the mapping
of an origin-centered ellipsoid and the verified treatment of non-zero offset terms.
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1. Apply the mapping

x̌k+1 = A (xk,pk) · x̌k , (20)

with A (xk,pk) evaluated for all xk ∈EO
k and pk ∈ [pk], to the inner bound

of ˇ((E)
)
k

in (17). The shape matrix of the inner hull of the image set is given
by

Q̌I
k+1 = α2

I,k+1 · ρ2k · Γk+1 · ΓT
k+1 , (21)

where αI,k+1 ≥ 0 is the maximum value for which

Nk+1 := Λ




α−2I,k+1 ·R−1k

(
Ã−1k ·A (xk,pk)

)−T
(
Ã−1k ·A (xk,pk)

)−1
Qk


Λ � 0 ,

Qk = ρ2
k
· Γk · ΓT

k

(22)

is satisfied in terms of positive semi-definiteness with the typical choice

Rk := ρ2
k
· Γk · ΓT

k , (23)

cf. [26]. An alternative choice for this matrix would be

Rk := ρ2
k
· Ã−Tk · Γk · ΓT

k · Ã−1k , (24)

leading to a predicted ellipsoid that has an outer surface parallel to the one
describing the state enclosure at the previous time step. As shown in [26],
the option (24) is beneficial if the ratios of the lengths of the principal axes
of the predicted ellipsoid differ significantly from the principal axes ratio of
the original one. Note that the shape matrix definition (24) also simplifies
the test for contractance in the following section.

As a generalization of the procedure derived in [26], the symmetric precon-
ditioning matrix Λ = ΛT � 0 is introduced in (22). It helps to optimize the
ellipsoidal enclosures, especially for the propagation of small state domains,

i.e., if the norms of
(
Ã−1k ·A (xk,pk)

)−T
and Qk are significantly different.

Then, the non-rescaled equation with Λ = I may be too conservative and
yield unnecessarily empty inner bounds1. For rescaling purposes, a block di-
agonal matrix Λ = blkdiag

(
βI, β−1I

)
with I ∈ Rn×n and the square root

β =
√

min{λi (Qk)} of the smallest eigenvalue of Qk is used in this paper.

2. Apply (20) to the outer bound of ˇ((E)
)
k

in (17). The shape matrix of the outer
hull of the image set is given by

Q̌O
k+1 = α2

O,k+1 · ρ2k · Γk+1 · ΓT
k+1 , (25)

1Omitting this rescaling in the following computation of outer bounds may also turn the results
unnecessarily wide and less useful when applied in the frame of proving stability.
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where αO,k+1 ≥ 0 is the smallest value for which

Mk+1 := Λ

[
−Q−1k AT (xk,pk) · Ã−Tk

Ã−1k ·A (xk,pk) −α2
O,k+1Rk

]
Λ � 0 ,

Qk = ρ2k · Γk · ΓT
k

(26)

is satisfied for all xk ∈EO
k and pk ∈ [pk] with Rk := ρ2k · Γk · ΓT

k .

3. Compute interval bounds for the term

bk =
(
A (xk,pk)− Ãk

)
· µk ∈ [bk] (27)

which accounts for a non-zero ellipsoid midpoint with xk, Ãk, and pk defined
according to (16), (18), and (19). Deflate the inner ellipsoid bound from (21)
according to

QI
k+1 =

(
1− ρI,k+1

)2 · Q̌I
k+1 , ρI,k+1 = sup

{∥∥∥α−1I,k+1 · ρ−1k
· Γ−1k · [bk]

∥∥∥
}

(28)

and inflate the outer bound in (25) with

QO
k+1 =

(
1 + ρO,k+1

)2 · Q̌O
k+1 , ρO,k+1 = sup

{∥∥∥α−1O,k+1 · ρ−1k · Γ−1k · [bk]
∥∥∥
}

.

(29)

For ρI,k+1 ≥ 1, or if A (xk,pk) contains points at which it is not invertible,
the inner bound becomes the empty set.

4. Compute the updated ellipsoid midpoint as

µk+1 = Ãk · µk . (30)

5. The thick ellipsoid at the time instant k + 1 then becomes

xk+1 ∈
(
(E)
)
k+1

(
µk+1,Γk+1,

[
ρ
k+1

; ρk+1

])
, (31)

where

ρ
k+1

= ρ
k
· αI,k+1 ·

(
1− ρI,k+1

)
,

ρk+1 = ρk · αO,k+1 ·
(
1 + ρO,k+1

)
, and

Γk+1 = Ãk · Γk .

(32)

Remark 3. For eigenvalue tests according to [36] as well as a Gershgorin circle cri-
terion [47] that both allow for checking the definiteness properties in (22) and (26),
the reader is referred to [26].
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3 Ellipsoidal Stability Contractor

3.1 Specification of the Initial State Domain

For what follows, we assume that a linearization of the system model (4) at the
equilibrium point x0 = 0 is given by the Jacobian J0 = J (0), where

J (x) =
∂f

∂x
(x) . (33)

For the quasi-linear model (14) with its equilibrium at the origin of the state space,
J0 is chosen as

J0 = A
(
0,mid

(
[p]
))

, (34)

where [p] denotes an interval box containing all (temporally constant) uncertain
system parameters.

3.1.1 Point-Valued Selection Approach

To find ellipsoidal domains as enclosures of the initial conditions, for which the
likelihood of convergence to the equilibrium state is as large as possible, we do
not purely assume axis-aligned initial state domains but rather exploit the local
dynamics properties of the (linearized) system model.

In the simplest approach, a reasonable shape matrix for the initial ellipsoidal
state domain can be determined by solving the discrete-time Lyapunov equation

JT
0 PJ0 −P = −I . (35)

Here, the actual choice of the matrix on the right-hand side represents a degree of
freedom with the prerequisite to be negative definite (in (35), the negative identity
matrix −I is used). To avoid specifying this matrix explicitly, the equality (35) can
be cast equivalently into the LMI

JT
0 PJ0 −P ≺ 0 (36)

for which a solution P = PT � 0 needs to be found. In analogy to a positive
definite solution P of the Lyapunov equation (35), the existence of a solution to
the LMI (36) corresponds to the local asymptotic stability of the linearized system
model at the origin of the state space. The ellipsoid shape matrix Q = Γ · ΓT is
then obtained according to the matrix inverse

Q = P−1 . (37)

3.1.2 Robust Domain Specification

The drawback of the ellipsoid parameterization according to (35) and (36) is the
fact that both approaches only take into account a point-valued system model in
terms of a linearization at the equilibrium state. This restriction can be removed if
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a polytopic uncertainty model is derived such that J (x) and A (x,p) with p ∈ [p],
respectively, are bounded by the convex polytopic domain

J (x) ∈
{

J
∣∣∣J(ξ) = J′0 +

nv∑

v=1

ξv ·∆Jv ;

nv∑

v=1

ξv = 1 ; ξv ≥ 0
}
. (38)

Here, x needs to be replaced with a set-valued representation that encloses an
application-motivated domain of interest for which stability shall be investigated.
The domain (38) is spanned by a collection of at most nv = 2n

2

vertices, where
the worst-case deviations of all possible realizations of the Jacobian J(x) from J′0
are described by the matrices ∆Jv. In (38), the matrix J′0 is a point-valued matrix
included in the set-based evaluation of J (x), which is enclosed by a convex polytope
that is spanned with the help of the individual increment matrices ∆Jv.

Using this formulation, (36) can be replaced in a conservative manner by the
collection of LMIs

(
J′0 + ∆Jv

)T ·P ·
(
J′0 + ∆Jv

)
−P ≺ 0 (39)

for which a joint solution P = PT � 0 in terms of a vertex-independent quadratic
Lyapunov function parameterization needs to be found. The existence of such a
matrix P proves that each vertex realization, and hence all convex combinations of
vertices according to (38), correspond to asymptotically stable realizations.

It should be pointed out that with the help of a quadratic Lyapunov function
candidate xT · P · x — that is parameterized according to (39) — only a proof of
asymptotic stability for states satisfying the inequality

fT (x0) ·P · f (x0)− xT
0 ·P · x0 < 0 (40)

in the interior of a contour line xT
0 · P · x0 = c, c > 0 that is fully included in

the box x0 ∈ [x0] is obtained. Note that this interval box needs to be employed
for generating the polytopic uncertainty representation (38). Hence, the direct
application of a stability contractor to the system models (4) and (14), making use
of an ellipsoid with a shape matrix Q computed by (37) simplifies the evaluation
of (40) and provides reasonably large provable stability domains as long as the
contractor itself can be evaluated with a small amount of overestimation.

The major drawback of the polytopic uncertainty representation (38) is the
typically large number of vertices that results from treating each matrix entry of
the Jacobian (or of the quasi-linear system matrix, respectively) as independent.

Remark 4. The number nv of the vertices to be considered in the polytopic uncer-
tainty representation (38) can often be reduced by identifying physically motivated
linear dependencies between individual entries of the matrix J (x) and by express-
ing them in terms of common interval parameters. For an example, where this has
been done successfully, the reader is referred to [11].
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When determining a candidate for the shape matrix of the initial state domain,
in which stability is investigated, a further reduction of the complexity can be
obtained by the introduction of a norm-bounded uncertainty model

J (x) ∈ J0 + ∆J , where ∆J = H · F ·E (41)

holds with F being an unknown, norm-bounded matrix according to ‖F‖ < 1.
The example in Sec. 3.4 demonstrates how the matrices E and H included in (41)
can be chosen to represent the variability of the matrix J (x) over the investigated
domain. There, the simplest choice is shown by setting one of the matrices to the
identity matrix, and to define the second as the worst-case interval radii of each
element of J (x) if J0 is set to the element-wise defined interval midpoint. Using
this norm-bounded model, a single LMI needs to be solved instead of finding a
common solution to the previous list of nv matrix inequalities.

Stability of the norm-bounded uncertainty model is verified according (39). Re-
writing this inequality by applying the Schur complement formula leads to

[
−P JT

0

J0 −P−1

]
+

[
ET

0

]
FT
[
0 HT

]
+

[
0
H

]
F
[
E 0

]
≺ 0 , P � 0 . (42)

Then, the application of the elimination lemma [40] allows for eliminating the
unknown matrix F. It turns the nonlinear matrix inequality2 (42) into

[
−P JT

0

J0 −P−1

]
+ ε−1

[
ET

0

]
[
E 0

]
+ ε

[
0
H

] [
0 HT

]
≺ 0 , P � 0 , (43)

where ε > 0 is a free parameter. After combining the second and third terms of
the inequality (43), it becomes equivalent to

[
−P JT

0

J0 −P−1

]
+

[
ET

εH

]
ε−1I

[
E εHT

]
≺ 0 , P � 0 , (44)

which can be transformed by applying the Schur complement into



−P JT

0 ET

J0 −P−1 εH
E εHT εI


 ≺ 0 , P � 0 . (45)

After multiplication of the matrix inequality (45) from the left and right with the
block diagonal matrix

blkdiag
(
P−1, I, I

)
=: blkdiag (Q, I, I) , (46)

2due to the inverse of the decision variable matrix P
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the LMI formulation


−Q QJT

0 QET

J0Q −Q εH
EQ εHT εI


 ≺ 0 , Q � 0 (47)

is obtained. It verifies asymptotic stability of the norm-bounded uncertainty
model (41) if Q = QT � 0 and, therefore, P = PT � 0 exists, where the ac-
tual value of ε > 0 can be determined automatically by the LMI solver.

3.2 Verification of the Property of Contractance

For the verification of the property of contractance in the case of a thick ellipsoid
stability check, we assume that the prior state domain (given as a crisp ellipsoid
E0 =

(
(E)
)
0

(
0,Γ0, [ρ0 ; ρ0]

)
with identical outer and inner bounds and a shape ma-

trix parameterized according to the options listed in the previous subsection) is
centered at the equilibrium state of the system (the origin, without loss of gener-

ality) and that it is mapped onto a thick ellipsoid
(
(E)
)
1

(
0,Γ1,

[
ρ
1

; ρ1

])
that is

again centered at the equilibrium.
Then, it is guaranteed by a one time step evaluation of the system model, that

E0 belongs to the region of attraction of the equilibrium if the predicted outer
bound EO

1 is a guaranteed subset of E0 according to

EO
1 ⊂E0 . (48)

The property (48) can be checked by verifying whether all eigenvalues λi of the
shape matrix difference satisfy the inequality3

λi = λi

((
ρ21 · Γ1 · ΓT

1

)−1
−
(
ρ20 · Γ0 · ΓT

0

)−1)
> 0 . (49)

This inequality is a direct consequence of the proof of Theorem 3 in [26].
In contrast, if

λi = λi

((
ρ2
1
· Γ1 · ΓT

1

)−1
−
(
ρ20 · Γ0 · ΓT

0

)−1)
< 0 (50)

holds for all of the eigenvalues according to the proof of Theorem 1 in [26], it
is guaranteed that the domain E0 is an unstable neighborhood of the equilibrium
x0 according to Chetaev’s theorem, see [19, Theorem 3.12]. Geometrically, this

3A rigorous proof of the inequalities (49) and (50) is possible with the help of the routine
verifyeig included in IntLab [39]. Alternatively, the matrices can be diagonalized as far as
possible using verified numerics with a subsequent eigenvalue test following Remark 3. In many
practical cases, however, it often suffices to check in classical floating point arithmetic whether
the eigenvalues with smallest magnitude have a sufficiently large distance to the value zero.
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corresponds to the fact that the predicted inner thick ellipsoid bound fully encloses
the sufficiently small original domain according to

EI
1 ⊃E0 . (51)

Note, this case only arises for an intuitive choice of E0 (cf. Sec. 3.5) because it
contradicts the robust LMI constraints listed above. Moreover, it should be noted
that the difference ρ1− ρ1 directly serves as a quantification of the possible overes-
timation of the predicted ellipsoid hulls according to [29].

The check of the eigenvalue inequalities (49) and (50) is necessary when applying
either the general-purpose ellipsoidal enclosures according to Sec. 2.3 (Theorem 1)
or when using the quasi-linear formulation (Sec. 2.4) with (23) as the parameteri-
zation for the predicted shape matrix. If the simplification (24) is used in the case
of Sec. 2.4, the inequality (49) turns into ρ1 < ρ0 and (50) turns into ρ

1
> ρ0.

To maximize the domains for which stability can be proven by this contractor,
the examples in the following two subsections try to find the largest positive value
ρ by means of a bisection algorithm so that min (λi) > 0 holds in (49), where the
threshold ε∗ = 10−6 is used as the tolerance between two subsequent admissible
solutions for the parameter ρ.

3.3 Proof of Stability: An Illustrating Example

As a first illustrating example, consider an explicit Euler discretization of the
second-order system model ẋ1 = −x1, ẋ2 = −x2 + x21x2 that was used in [15, 44]
as a numerical benchmark scenario for the analysis of continuous-time ordinary
differential equations. The discrete-time state equations can be specified as

xk+1 = xk + T ·
[

−x1,k
−x2,k + x21,kx2,k

]
leading to J0 =

[
1− T 0

0 1− T

]
, (52)

which can be re-written (with the unique equilibrium x0 = 0) into the quasi-linear
form

xk+1 = A (xk) ·xk =

[
1− T 0

Tαx1,kx2,k (1− T ) + T (1− α) · x21,k

]
·xk with α ∈ R .

(53)
For this special example, J0 = A (0) holds. In general, the quasi-linear reformula-
tion (53) is not unique. Therefore, the parameter α can be used as an optimization
variable (in addition to the parameter ρ) of the initial ellipsoidal state domain in
order to maximize the provable domain of attraction of the equilibrium.

Fig. 3 gives an overview of the provable stability domains by means of a symbolic
evaluation of the discrete-time Lyapunov function increment (40) for a one time
step evaluation of the system model. In Fig. 3, the result A denotes the maximum
provable domain with the given Lyapunov function candidate; moreover, the gen-
eral nonlinear ellipsoidal enclosure technique (result B), the quasi-linear ellipsoid
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implementation (result C) as well as an interval-based contractor implementation
(result D) are compared. Due to the fact that the system model has a dominant
linear behavior in the close vicinity to the equilibrium, the quasi-linear evaluation
outperforms the general nonlinear technique. Moreover, it can be seen that the ac-
tual choice of the parameter α has a strong influence on the volume of the provable
stability domain, where the maximum-volume ellipsoid is close to the volume of
the largest provable box volume in the case of Figs. 3a and 3b and even larger for
the heuristic choice of Figs. 3c and 3d. Note that the visible spikes in the volume
dependency can be removed by slightly adapting the scaling matrix Λ in (26).

Due to the fact that all domains shown in the left column of Fig. 3 are guar-
anteed to contain asymptotically stable system realizations, their set-valued union
can be formed to describe the domain in the state space for which the system ex-
hibits asymptotically stable dynamics. The fact that the quasi-linear contractor
outperforms the general nonlinear ellipsoidal enclosures gives rise to the follow-
ing aspect of future work: Find a unified implementation for both approaches in
which the quasi-linear system matrix and/or a suitable interval extension in slope
arithmetic [6, 38] are employed to enhance the tightness of solutions. Note that
the interval contractor was evaluated in an overestimation-free manner for this ex-
ample after a symbolic reformulation of the state equations. This fact emphasizes
the advantageous property of the ellipsoidal approach in Figs. 3a and 3c to prove
stability of initial conditions that could not be detected by the interval counterpart
for the same choice of aspect ratio (resulting from the precomputed ellipsoid shape
matrix Q).

In Figs. 3e and 3f, however, it can be seen that the ellipsoid enclosures are much
smaller than the interval contractor’s volume. This is caused by the fact that the
included matrices J(x) need to be evaluated on a box that encloses the ellipsoid
domain from the outside which leads to a kind of wrapping effect. For this specific
setting of the shape matrix Q, parts of those domains are close to the stability
boundary so that the ellipsoid approach performs worse than the interval-based
counterpart. In such cases, the approaches included in [13,14] for the computation
of outer state enclosures could be helpful to enhance the procedures of [3]. In
general, however, the ellipsoidal approach will be more efficient if the domains
under investigation are chosen on the basis of Lyapunov function candidates.

3.4 Stability Proof of an EKF-Based Localization Algorithm

As a second application scenario, we re-consider the stability proof of an EKF-
based localization algorithm, for which an interval-based stability contractor was
investigated in [3].

For this scenario, the output equation is given by

yk = h(xk) =

[
(x1,k − a1)2 + (x2,k − a2)2

(x1,k − b1)2 + (x2,k − b2)2

]
, (54)

where (a1, a2) and (b1, b2) denote the known positions of two beacons; the vector yk

denotes the squared distances to the object xk to be localized. This measurement
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(a) Selection of P = Q−1 acc. to (35), (36). (b) Selection of P = Q−1 acc. to (35), (36).

(c) Selection of P = Q−1 = diag
([

1 3
])

. (d) Selection of P = Q−1 = diag
([

1 3
])

.

(e) Selection of P = Q−1 = diag
([

3 1
])

. (f) Selection of P = Q−1 = diag
([

3 1
])

.

Figure 3: Provable stability domains for the example (52), (53) in the left column
(using the parameter α with the largest ellipsoid volume in the case C) and depen-
dence of the volume of the provable stability domain on the parameter α ∈ [−1 ; 1]
(right column).
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(subscript m) is assumed to be corrupted by additive, zero-mean Gaussian noise vk

with the covariance Cv, so that ym,k = yk + vk holds. Moreover, we assume that
the object to be localized is described by a discrete-time integrator disturbance
model with additive, zero-mean Gaussian process noise wk according to

[
x1,k+1

x2,k+1

]
=

[
x1,k
x2,k

]
+ wk , (55)

where the disturbance covariance matrix related to wk is denoted by Cw.
Then, an EKF algorithm can be specified with the help of the augmented state

vector
xk =

[
x1,k x2,k c11,k c12,k c22,k

]T
, (56)

which consists of the estimated position (x1,k, x2,k) and the entries of the covariance
matrix Ck after the innovation stage at the time instant k. The position and
covariance matrix can be extracted with the help of selection matrices

S1 =

[
1 0 0 0 0
0 1 0 0 0

]
and S2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , (57)

where [
x1,k
x2,k

]
= S1 · xk (58)

and


c11,k
c12,k
c22,k


 = vech (Ck) = S2·xk , Ck =

[
c11,k c12,k
c12,k c22,k

]
⇐⇒ Ck = vech−1 (S2 · xk) .

(59)
Here, extracting the upper triangular part of the covariance matrix Ck is performed
by the half-vectorization operator vech, where the corresponding inverse operation
is denoted by vech−1. With this notation, the state equations of the EKF can be
specified so that xk+1 contains the estimated position and covariance matrix entries
after performing the subsequent prediction and innovation step associated with the
time instant k + 1. Hence, these equations are given by

xk+1 = f (xk) =


 S1 · xk + K (xk) ·

(
ym,k − h (xk)

)

vech
((

I−K (xk) ·H (xk)
)
·Cp

k+1 (xk)
)

 (60)

with the predicted covariance matrix

Cp
k+1 (xk) = vech−1 (S2 · xk) + Cw , (61)

the Kalman gain

K (xk) = Cp
k+1 (xk) ·HT (xk) ·

(
H (xk) ·Cp

k+1 (xk) ·HT (xk) + Cv

)−1
, (62)
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and the Jacobian

H (xk) =
[

∂h
∂x1,k

(xk) ∂h
∂x2,k

(xk)
]

(63)

of the output equation with respect to the current position estimate. For the
following numerical results in Tabs. 1 and 2, we consider the beacon positions

a1 = −5, a2 = 5, b1 = 5, b2 = 5, the measurement ym,k =
[
0 0

]T
, and the noise

covariances Cw = diag
([

0.01 0.01
])

as well as Cv = diag
([

1 1
])

. This leads

to the equilibrium state x∗1 = x∗2 = 0, c∗12 = 0 and c∗11 = c∗22 = 0.003660254037844
around which the stability domains are centered.

Using a point-valued selection of the ellipsoid shape matrix according to
Sec. 3.1.1 leads to the result in Tab. 1 which can be widened by the robustified,
norm-bounded uncertainty representation according to Sec. 3.1.2, see Tab. 2. For
that purpose, the norm-bounded uncertainty model in (41) is parameterized by
choosing E = I. Then, the matrix H is specified so that the maximum interval
radii of an interval extension of the Jacobian J (x) on a representative domain are
captured in an element-wise sense by the additive term ∆J. It should be pointed
out that the provably stable interval box domains are significantly larger than those
reported in [3]. This is caused (i) by choosing the ratios of the interval edge lengths
identical to the ratios of the edge lengths of an axis-aligned box corresponding to
the Lyapunov function and LMI-based shape matrix definitions, and (ii) by not
only using a centered form evaluation but also intersecting it with a slope extension
of the range implemented in IntLab [38, 39]. This kind of evaluation can also be
integrated into the ellipsoidal approach in future work.

3.5 Proof of Instability: An Illustrating Example

To demonstrate the applicability of the ellipsoidal approach to find unstable neigh-
borhoods of equilibrium points by means of (51) and the inequality (50), consider
the explicit Euler discretization with T = 0.1 of the benchmark example (3.23)
in [19] for which β = 1 is chosen. In a quasi-linear form, this example has the state
equations

xk+1 =


I + T ·

[
β2 − x21,k − x22,k 1

−1 β2 − x21,k − x22,k

]
 · xk . (64)

Parameterizing the initial state domain E0 as a circle with radius 0.1 leads to circles
as the inner ellipsoidal enclosures EI

1 with the inward rounded radii 0.10953174 and
0.11002215 for the general-purpose and the quasi-linear evaluation approaches of
Secs. 2.3 and 2.4, respectively. Due to EI

1 ⊃ E0, the domain E0 is a provably
unstable neighborhood of the equilibrium x0 = 0, where the quasi-linear approach
provides the less conservative solution.
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Table 1: Comparison of different stability contractors for a shape matrix selection
according to Sec. 3.1.1; for the ellipsoid case, a tight outer, axis-aligned hull is
given.

interval contractor
x x

x1 −0.00427481791343 0.00427481791343
x2 −0.00427481599897 0.00427481599897
c11 −0.00076536378418 0.00808587185987
c12 −0.00442561782520 0.00442561782520
c22 −0.00076536379689 0.00808587187258

ellipsoidal encl. (quasi-lin.)
x x

x1 −0.00161026895377 0.00161026895377
x2 −0.00161026823262 0.00161026823262
c11 0.00199318069709 0.00532732737860
c12 −0.00166707334195 0.00166707334195
c22 0.00199318069230 0.00532732738339

ellipsoidal encl. (general.)
x x

x1 −0.00043890766400 0.00043890766400
x2 −0.00043890746744 0.00043890746744
c11 0.00320586332007 0.00411464475562
c12 −0.00045439071810 0.00045439071810
c22 0.00320586331877 0.00411464475692

Table 2: Comparison of different stability contractors for a robustified shape matrix
selection according to Sec. 3.1.2; for the ellipsoid case, a tight outer, axis-aligned
hull is given.

interval contractor
x x

x1 −0.00440136214825 0.00440136214825
x2 −0.00440079183131 0.00440079183131
c11 −0.00076807607385 0.00808858414954
c12 −0.00441865927874 0.00441865927874
c22 −0.00076814256179 0.00808865063748

ellipsoidal encl. (quasi-lin.)
x x

x1 −0.00168345510722 0.00168345510722
x2 −0.00168323696953 0.00168323696953
c11 0.00196648408848 0.00535402398721
c12 −0.00169007100059 0.00169007100059
c22 0.00199318069230 0.00535404941785

ellipsoidal encl. (general.)
x x

x1 −0.00044551035825 0.00044551035825
x2 −0.00044545263019 0.00044545263019
c11 0.00321201395487 0.00410849412082
c12 −0.00044726119141 0.00044726119141
c22 0.00321200722490 0.00410850085079
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4 Outlook: Ellipsoid Definition of Positive Invari-
ant Sets for Continuous-Time Processes

Due to the fact that the ellipsoidal contractor above is based on a forward in time
evaluation of dynamic system models, it is also readily applicable to the continuous-
time case if the solution approach published in [27] is employed. However, to reduce
pessimism, it can be combined in future work with the following novel test for
positive invariance.

Theorem 2 (Positive invariant, ellipsoidal domains for continuous-time systems).
Consider the continuous-time system ẋ(t) = f

(
x(t)

)
, x ∈ Rn with the (locally)

stable equilibrium x = 0. Define the Lyapunov function candidate

V
(
x(t)

)
=

1

2
xTPx , x := x(t) (65)

with P � 0 and the small interval box [x] 3 0. Define the ellipsoid

EP

(
[x]
)

=

{
x ∈ Rn

∣∣∣ −xT ·P · ∂f

∂x
(0) · x ≤ v+

}
(66)

with

v+ = sup
(

[x]
T ·P · [e]

)
and [ei] =

1

2
[x]

T · ∂
2fi
∂x2

(
[x]
)
· [x] . (67)

If EP

(
[x]
)
⊂ [x], EP

(
[x]
)

is positive invariant.

Proof. Take an interval box x with center at x = 0 and express the i-th component
of f as a second-order Taylor form near the equilibrium, i.e.,

x ∈ [x] =⇒ fi (x) ∈ Ji: · x +
1

2
[x]

T · [Hi] · [x] = Ji: · x + [ei] , (68)

where [Hi] is an interval extension of the Hessian of fi and Ji: is the i-th row of
the Jacobian J = ∂f

∂x (0). Consequently,

V̇ (x) = xT ·P · f (x)

=

n∑

i=1

xi ·P:i · fi (x)

∈
n∑

i=1

xi ·P:i ·
(
Ji: · x + [ei]

)

= xT ·P · J · x + xT ·P · [e] .

(69)

Setting [v] = [x]
T ·P · [e], we have V̇ (x) < xT ·P ·J ·x + sup

(
[v]
)
. Taking x such

that xT ·P · J · x + v+ = 0, where v+sup
(
[v]
)
, yields V̇ (x) < 0 for x ∈ EP

(
[x]
)

according to (66), (67) which completes the proof.
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5 Conclusions

In this paper, an ellipsoidal implementation of a stability contractor was presented
for discrete-time systems. Due to the possibility for finding initial parameteriza-
tions of the shape matrix by means of Lyapunov equations or LMIs, it has the
advantage in comparison to a straightforward interval-based implementation that
the considered domains are not necessarily axis-parallel and that the form of the
domains investigated is close to (locally valid) Lyapunov function candidates. In
such a way, it becomes possible to often find larger domains of attraction than for
the previously investigated interval-based counterpart. In addition, it was shown
that the use of a specialized implementation for quasi-linear system models may
outperform the application of a general ellipsoidal enclosure technique. This is es-
pecially true if free parameters in the quasi-linear system models are used as further
degrees of freedom to optimize the volume of the provable stability domain.

In future work, the approach will not only be used for a stability analysis of
dynamic systems but also to optimize controllers so that the domains of attraction
of stable operating points become as large as possible. Moreover, it is reason-
able to consider not only set-valued uncertainty representations, but also links to
techniques which simultaneously allow for robustifying control procedures in the
presence of stochastic noise [11, 28, 32]. Finally, applications to continuous-time
processes, in combination with the new invariance test sketched in Sec. 4, will be
investigated.
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[46] Valmórbida, G., Tarbouriech, S., and Garcia, G. Region of attraction esti-
mates for polynomial systems. In Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pages 5947–5952, 2009. DOI: 10.1109/CDC.2009.5399969.

[47] Weinmann, A. Uncertain Models and Robust Control. Springer–Verlag, Wien,
1991. DOI: 10.1007/978-3-7091-6711-3.

Received 26th August 2021


