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Abstract: A reliable quantification of the worst-case influence of model uncertainty and external
disturbances is crucial for the localization of vessels in marine applications. This is especially true if
uncertain GPS-based position measurements are used to update predicted vessel locations that are
obtained from the evaluation of a ship’s state equation. To reflect real-life working conditions, these
state equations need to account for uncertainty in the system model, such as imperfect actuation
and external disturbances due to effects such as wind and currents. As an application scenario, the
GPS-based localization of autonomous DDboat robots is considered in this paper. Using experimental
data, the efficiency of an ellipsoidal approach, which exploits a bounded-error representation of
disturbances and uncertainties, is demonstrated.

Keywords: state and disturbance estimation; uncertainty modeling; bounded uncertainty; ellipsoidal
enclosures

1. Introduction

Model uncertainty and external disturbances are omnipresent when tasks such as
trajectory tracking control or the localization of vessels in marine applications are con-
sidered [1,2]. This equally holds for surface vessels operated on rivers or the open sea in
the areas of passenger and goods transportation, as well as for autonomous (underwater)
robots performing tasks such as the inspection and maintenance of pipelines or other
offshore infrastructure, such as wind turbines.

In this paper, we restrict ourselves to the case of surface vessels. For those, uncertain
GPS-based position measurements are used to update predicted vessel locations that can
be obtained from the evaluation of a ship’s state equation. To reflect real-life working con-
ditions, these state equations need to include uncertainty in the system model; for example,
imperfectly known actuator characteristics on the one hand and external disturbances due
to wind and water currents on the other hand.

In combination, the measurement-based localization, an observer-based disturbance
reconstruction, and the model-based state prediction allow for forecasting those domains
that are reachable by a vessel in a certain time span. In such a way, it becomes possible
to verify whether specific maneuvers are guaranteed to be safe, i.e., whether collisions
with other vessels or obstacles can be ruled out with certainty. Such guaranteed statements
can be made with the help of a set-valued calculus [3–9]. A suitable representation of
uncertainty for a set-valued evaluation of a dynamic system model is the use of ellipsoidal
state enclosures. In comparison with axis-aligned interval boxes, ellipsoidal domains have
the advantage of being mapped exactly onto ellipsoids during the state prediction if the
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system dynamics are fully linear. For nonlinear models, as well as for the intersection of
predicted state domains with measurements of selected state vector components, which are
subject to bounded uncertainty, the ellipsoidal estimation framework provides guaranteed
outer bounds of those domains that are compatible with the system model and all available
data. In addition to providing guaranteed outer bounds, inner state enclosures (describing
guaranteed reachable domains) can also be computed by a so-called thick ellipsoid approach
to quantify the effects of uncertainties and nonlinearities, which unavoidably lead to
overestimation when computing guaranteed outer state enclosures [4,5].

Moreover, ellipsoidal state enclosures have the advantage over classical interval-based
representations that correlations between different components of the state vector are
representable by using a single set without the necessity for subdivision approaches or
advanced changes in coordinates, leading to affine arithmetic-like set representations.
Note, furthermore, that other set-valued representations, such as Taylor models [10,11],
polytopes [12], or zonotopes [13], are commonly more demanding from a computational
point of view due to the necessity for strategies that limit the involved polynomial degrees
and the number of zonotope vertices. For that reason, such approaches are not further
considered in this paper. However, the interested reader is referred to [12], where it was
shown that the ellipsoidal technique has a similar performance as the use of polygons
(which are optimal for linear systems represented by differential inclusions) with respect
to the tightness of the state enclosures if uncertainties in the system dynamics and the
available measurements are sufficiently small and measured data are available with a
sufficiently high frequency.

As a counterpart to set-valued estimation approaches, stochastic filtering techniques [14,15]
are widely used in the frame of localization and disturbance estimation [16]. These ap-
proaches rely on the specification of probability density functions for the state vectors,
as well as for all uncertain quantities and external disturbances. In previous work [4,5],
it was shown that the (thick) ellipsoidal calculus mentioned above can be used to quan-
tify worst-case bounds of certain confidence levels for the state variables during state
prediction and innovation stages if uncertainty can be described by means of normally
distributed probability density functions. Then, a comparison of the inner and outer
ellipsoidal boundaries—resulting from a mapping of covariance ellipsoids—provides a
computationally efficient option for robustifying extended Kalman filter techniques by
accounting for the influence of linearization errors during the computation of the involved
covariance matrices. For the application of nonlinear stochastic filtering approaches in the
frame of underwater navigation, the reader is referred to [17] and the references therein.

In this paper, we restrict ourselves to the pure set-based uncertainty representa-
tion by means of ellipsoidal state enclosures. A comparison with stochastic estimation
schemes—based on the unscented Kalman filter (UKF)—is studied separately in an ongo-
ing research activity. To validate the ellipsoidal state estimation algorithm in this paper,
we consider the temporally synchronized motion of two autonomous DDboat robots for
which GPS-based position measurements and compass-based heading information are
available, in addition to an uncertainty model for the impact of external disturbances and
the imperfectly known actuator behavior of both boats. The major contribution of this
paper is an experimentally driven uncertainty modeling procedure for autonomous surface
vessels that comprises an observer-based a posteriori quantification of disturbances and
modeling errors and the description of an interface of this uncertainty representation with
a set-based ellipsoidal state estimation scheme. Using this approach, uncertainties in the
resulting system trajectories can be enclosed in a reliable manner so that tasks such as
guaranteed collision avoidance can be solved systematically.

This paper is structured as follows. Section 2 describes the operating conditions in
which the DDboats were used to perform the trajectory tracking experiment that serves
as a basis for the validation of the localization algorithm in this paper. Moreover, suit-
able dynamic system models are derived in this section. The ellipsoidal state estimation
algorithm is derived in Section 3, before uncertainty representations for the DDboats are
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derived in further detail in Section 4. The obtained ellipsoidal estimation results are pre-
sented in Section 5. Finally, conclusions and an outlook on possible future work are given
in Section 6.

2. Autonomous DDboats

As an experimental platform for the validation of localization algorithms, we used
two identical DDboats—see Figure 1—that were originally constructed as a students’
educational platform at ENSTA Bretagne, Brest, France.

Figure 1. An autonomous DDboat robot used for the experimental validation.

These DDboats are equipped with a GPS receiver, as well as with a compass module,
that allow for the implementation of a trajectory tracking control procedure. Moreover,
these sensor data are used for modeling uncertainties in the motion of both robots in an a
posteriori analysis of an experimental trajectory tracking controller and for the derivation
of a bounded-error uncertainty model for the sensors in Section 4.

2.1. Specification of Reference Trajectories

The reference trajectories y〈i〉d (t) of both DDboats i ∈ {A, B} are specified in terms of
two Lissajous curves

y〈A〉d (t) =

[
A sin(2αt) + x〈A〉1,0

B sin(αt) + x〈A〉2,0

]
(1)

and

y〈B〉d (t) =

[
−A sin(2αt) + x〈B〉1,0

−B sin(αt) + x〈B〉2,0

]
. (2)

Both curves have the identical shape parameters A = 40 m and B = 20 m. The
midpoint positions of these two reference curves are specified by the coordinates

(x〈A〉1,0 , y〈A〉1,0 ) = (−35 , 0)m and (x〈B〉1,0 , y〈B〉1,0 ) = (−40 , 0)m . (3)

For both reference trajectories y〈i〉d (t), with the corresponding desired velocities ẏ〈i〉d (t)
of both DDboats i ∈ {A, B}, the period length for completing a full cycle is set to T = 100 s,
leading to the velocity parameter α = 2π

T . A graphical representation of these reference
trajectories is shown in Figure 2 together with a video snapshot of the experiments in which
both DDboats pass through the cycles according to (1) and (2) in opposite directions.
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Figure 2. Reference trajectories of both DDboats and video snapshot of the experimental
data acquisition.

2.2. Tracking Control by Means of an Artificial Potential Field Method

The aforementioned tracking control procedure for both DDboats makes use of an
artificial potential field method [18–20] to minimize the deviations between the desired tra-

jectories y〈i〉d (t) and the actual robot positions denoted by the vector
[

x〈i〉1 (t) x〈i〉2 (t)
]T

. For
that purpose, the squared distances between the desired and actual positions are employed
as energy-like functions. Computing the temporal derivatives under the assumption of
a quasi-stationary boat position and performing a superposition with the desired robot
velocities yields the vector-valued input signals

w〈i〉(t) = γ ·
∥∥∥ẏ〈i〉d (t)

∥∥∥ ·(y〈i〉d (t)−
[

x〈i〉1 (t)
x〈i〉2 (t)

])
+ ẏ〈i〉d (t) (4)

for both DDboats i ∈ {A, B}.
Here, the heuristically tuned parameter γ > 0 is employed to specify the speed of

convergence towards the desired trajectories. The computed vectors w〈i〉(t) according to (4)
determine the desired orientations

φ
〈i〉
w (t) = arg

(
w〈i〉(t)

)
(5)

of the robots’ force input vectors and the corresponding amplitudes, computed as the
Euclidean vector norms

ω〈i〉(t) =
∥∥∥w〈i〉(t)

∥∥∥ , (6)

to specify their required velocities.
Using this information, a proportional-differentiating control law can be established

for the propulsion systems of both robots, which consist of a pair of propellers with the
rotational speeds u〈i〉l (t) and u〈i〉r (t) at the stern of each boat, where the subscripts l and r
denote the left and right actuators, respectively.

In such a way, the thrusts of both actuators j ∈ {l, r} are given by the saturated
input signals

τ
〈i〉
j (t) =


0 if τ̃

〈i〉
j ≤ 0

τmax if τ̃
〈i〉
j ≥ τmax

τ̃
〈i〉
j (t) else

(7)
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with

τ̃
〈i〉
j (t) =

(
K0 − KP,j ·

(
φ
〈i〉
w (t)− φ〈i〉(t)

)
+ KD,j · φ̇〈i〉(t)

)
·
(

ω〈i〉(t)
)2

, j ∈ {l, r} , (8)

where φ〈i〉(t) and φ̇〈i〉(t) denote the current headings and angular velocities in a body-fixed
coordinate frame of each DDboat. The experimentally tuned gains in (8) satisfy the relations
K0 > 0, KP,l = −KP,r and KD,l = −KD,r, respectively.

Finally, the rotational speeds of the actuators are computed as

u〈i〉l (t) =
√

τ
〈i〉
l (t) and u〈i〉r (t) =

√
τ
〈i〉
r (t) . (9)

Despite the fact that this simple control approach does not account for specific mea-
sures aiming at a reduction of the influence of external disturbance forces (such as robus-
tifying the controller by means of sliding mode techniques with variable-structure gains
chosen so that the worst-case effect of all possible matched uncertainty can be compensated
for, or by enhancing the dynamics by means of an observer-based disturbance reduction),
Figure 3 shows a quite accurate tracking of the desired trajectories by each of the DDboats.
In addition to the position information, GPS- and compass-based heading measurements
are also compared with their corresponding desired trajectories in Figure 3. Note that
the aim of this control design is not the minimization of tracking errors but rather the
implementation of a simple technique to provide experimental data as the input for the
following estimation algorithm.

The influence of uncertainty and external disturbances on the actual system dynamics
is investigated in detail by the estimation schemes presented in Sections 3 and 4. In future
work, the corresponding estimates cannot only be employed for an a posteriori analysis
as shown in this paper, but also in a closed-loop control structure to enhance the accuracy
of tracking the reference trajectories y〈i〉d in terms of a real-time capable model predictive
control approach.

2.3. Modeling of the DDboats

The state and disturbance estimation procedures investigated in Section 3 make use of
the following Dubins car model [5] (also often referred to as a simple kinematic car model):



ẋ〈i〉1 (t)
ẋ〈i〉2 (t)
v̇〈i〉(t)
φ̇〈i〉(t)
ż〈i〉1 (t)
ż〈i〉2 (t)


=



cos
(

φ〈i〉(t)
)
· v〈i〉(t)

sin
(

φ〈i〉(t)
)
· v〈i〉(t)

u〈i〉v (t) + z〈i〉1 (t)
u〈i〉φ (t) + z〈i〉2 (t)

0
0


(10)

with the state vector

x〈i〉(t) =
[

x〈i〉1 (t) x〈i〉2 (t) v〈i〉(t) φ〈i〉(t) z〈i〉1 (t) z〈i〉2 (t)
]T

, (11)

and the effective system inputs u〈i〉φ (t) and u〈i〉v (t), as well as the external disturbances z〈i〉1 (t)

and z〈i〉2 (t), that are included in (10) by means of two independent integrator disturbance

models ż〈i〉1 (t) = 0 and ż〈i〉2 (t) = 0.
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(a) (b)

(c) (d)

Figure 3. Comparison of the desired trajectories y〈A〉d (t) =
[
y〈A〉1,d (t) y〈A〉2,d (t)

]T
and their GPS-based

measurements y〈A〉m (t) =
[

x〈A〉1,m(t) x〈A〉2,m(t)
]T

for the DDboat A as well as comparison between the

measured and desired heading φ〈A〉(t). (a) Time response of the position x1. (b) Time response
of the position x2. (c) Desired heading vs. GPS-based reconstruction. (d) Desired heading vs.
compass reconstruction.

2.3.1. Identified Model-Based Representation of the Effective System Inputs

To account for the knowledge of the control strategy (4)–(9) described in the previous
subsection, the effective system inputs in (10) can be specified as

u〈i〉v (t) = p〈i〉1 ·
(

v〈i〉(t)
)2

+ p〈i〉2 ·
(

u〈i〉l (t) + u〈i〉r (t)
)
+ p〈i〉3 ·

((
u〈i〉l (t)

)2
+
(

u〈i〉r (t)
)2
)

(12)

and

u〈i〉φ (t) = p〈i〉4 ·
(

u〈i〉l (t)− u〈i〉r (t)
)
+ p〈i〉5 ·

((
u〈i〉l (t)

)2
−
(

u〈i〉r (t)
)2
)

, (13)

where the parameters p〈i〉m , m ∈ {1, . . . , 5}, are computed from an offline least-squares iden-
tification based on the GPS-based position measurements (x〈i〉1,m(t) , x〈i〉2,m(t)), the compass
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information for the ships’ headings φ
〈i〉
m (t), and the experimental control signals u〈i〉l (t) and

u〈i〉r (t). Required derivatives are determined numerically by using an explicit Euler scheme
with a fixed sampling time Ts = 1 s.

2.3.2. Signal-Based Representation of the Effective System Inputs

Alternatively, the property of differential flatness [21] of the model (10) can be exploited
to approximate the input signals

u〈i〉v (t) =
d

√(
ẋ〈i〉1,m(t)

)2
+
(

ẋ〈i〉2,m(t)
)2

dt

≈ 1
T2

s
·
√(

x〈i〉1,m(tk+1)− x〈i〉1,m(tk)
)2

+
(

x〈i〉2,m(tk+1)− x〈i〉2,m(tk)
)2

(14)

− 1
T2

s
·
√(

x〈i〉1,m(tk)− x〈i〉1,m(tk−1)
)2

+
(

x〈i〉2,m(tk)− x〈i〉2,m(tk−1)
)2

and

u〈i〉φ (t) =
dφ
〈i〉
m (t)
dt

≈ 1
Ts
·
(

φ
〈i〉
m (tk+1)− φ

〈i〉
m (tk)

)
(15)

after setting the disturbance inputs z〈i〉1 (t) and z〈i〉2 (t) to zero with Ts = tk+1 − tk.
To avoid the amplification of measurement noise in the following reconstruction of

input disturbances, the signals u〈i〉v (t) and u〈i〉φ (t) are filtered offline (i.e., after the completion
of the complete trajectory tracking experiment) by a 12-th order infinite impulse response
low pass filter with a cut-off frequency of 0.2 Hz.

2.3.3. A Posteriori Reconstruction of Input Disturbances

To reconstruct the disturbance signals ẑ〈i〉1 (t) and ẑ〈i〉2 (t) for both alternative input
representations described in the preceding two subsections, the state observer

˙̂x〈i〉(t) =



cos
(

φ̂〈i〉(t)
)
· v̂〈i〉(t)

sin
(

φ̂〈i〉(t)
)
· v̂〈i〉(t)

u〈i〉v (t) + ẑ〈i〉1 (t)
u〈i〉φ (t) + ẑ〈i〉2 (t)

0
0


+ H(t) ·

(
y〈i〉m (t)−Cx̂〈i〉(t)

)

=



0 0 cos
(

φ̂〈i〉(t)
)

0 0 0

0 0 sin
(

φ̂〈i〉(t)
)

0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

A(x̂〈i〉(t))

·x̂(t) +



0
0

u〈i〉v (t)
u〈i〉φ (t)

0
0


+ H(t) ·

(
y〈i〉m (t)−Cx̂〈i〉(t)

)

(16)

with the output matrix
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C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 (17)

and the measurement vector y〈i〉m (t) containing the boats’ positions, their velocities, and
their headings are employed. The corresponding output estimates are, hence, denoted
by Cx̂〈i〉(t). The computation of the gain matrix H exploits the duality principle between
control and observer design (which is motivated by the quasi-static extended Kalman filter
design according to [5]) in terms of solving the algebraic Riccati equation

P
(

x̂〈i〉
)
·CT ·R−1 ·C · P

(
x̂〈i〉
)
−A

(
x̂〈i〉
)
· P
(

x̂〈i〉
)
− P

(
x̂〈i〉
)
·AT

(
x̂〈i〉
)
−Q = 0 (18)

in each sampling instant tk at which measured data ym(t) are available. As a scheduling
parameter, the most recent state estimate x̂ is used in (18) as the argument of the state-
dependent system matrix A

(
x̂〈i〉
)

.
Note that this continuous-time observer design is applicable due to the short temporal

distance (Ts = 1 s) between two subsequent measurement instants and the comparably
small variation in the state variables over a single discretization interval. The temporally
varying observer gain

H(t) = P
(

x̂〈i〉
)
·CT ·R−1 (19)

is recomputed in each sampling instant (due to the a posteriori application for the purpose
of identifying process uncertainty, this recomputation does not impose any constraints
concerning real-time applicability) for the heuristically chosen weighting matrices

Q = diag
{[

200 200 100 100 10 10
]}

and R = diag
{[

0.1 0.1 0.1 0.25
]}

. (20)

For a stochastic interpretation of these matrices in terms of the covariances of process
and measurement noise, see [14,15].

With the help of this observer and the effective input estimates according to the
preceding two subsections, the results depicted in Figure 4 are obtained. Table 1 summarizes
the standard deviations for each of the components of the vector H(t) ·

(
y〈i〉m (t)−Cx̂〈i〉(t)

)
over the complete horizon of the trajectory tracking experiment. These standard deviations
are used in Section 4.1 to define interval bounds for an additive process noise acting
independently on each component of the state equations.

Table 1. Comparison of the standard deviations of the disturbance estimate H(t) ·
(

y〈i〉m (t)−Cx̂〈i〉(t)
)

for both types of input parameterization (input representation according to the identified model
according to Section 2.3.1; flatness-based representation according to Section 2.3.2).

Identified Flatness-Based Identified Flatness-Based
Model 〈A〉 Rep. 〈A〉 Model 〈B〉 Rep. 〈B〉

σx1 0.3052 0.3049 0.3050 0.3057
σx2 0.3357 0.3363 0.4434 0.4430
σx3 0.3190 0.3882 0.4945 0.5608
σx4 0.1556 0.1497 0.1572 0.1488
σx5 0.0485 0.0466 0.0490 0.0463
σx6 0.0999 0.1215 0.1549 0.1756
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(a) (b)

(c) (d)

Figure 4. Visualization of the effective input signals u〈A〉v (t) and u〈A〉φ (t) for the DDboat A.

(a) Reconstruction of the effective input signal u〈A〉v (t) without disturbance estimate. (b) Recon-

struction of the effective input signal u〈A〉v (t) with additive disturbance estimate. (c) Reconstruction

of the effective input signal u〈A〉φ (t) without disturbance estimate. (d) Reconstruction of the effective

input signal u〈A〉φ (t) with additive disturbance estimate.

3. Ellipsoidal State Estimation Procedure

For the description of the ellipsoidal state estimation procedure, assume that a discrete-
time system model in the form

xk+1 = Φ(p) · xk + ψ(p) (21)

is given, where Φ(p) is the system matrix and ψ(p) is a bounded disturbance or control
input. Although discrete-time system models are considered in this paper, the term ψ(p)
can also be used to account for time discretization errors of continuous-time models. A
corresponding approach has recently been investigated in [22]. Due to the fact that time
discretization errors are much smaller for the application at hand in comparison with the
process noise discussed in the previous section, the further derivation of the ellipsoidal
state estimation approach is restricted solely to the discrete-time setting.

Both Φ(p) and ψ(p) may depend on uncertain parameters p ∈ Rnp . These parameters
may also reflect state dependencies in the system matrix and the input vector if a nonlinear
set of state equations is reformulated according to [4] into a quasi-linear form, cf. (16).

In both cases (either pure parameter dependencies and/or state dependencies), the
vector p =

[
p1 . . . pnp

]T
is assumed to be piecewise constant between two subsequent

sampling instants and bounded in terms of a set-valued uncertainty model by the axis-
aligned multi-dimensional interval box p ∈ [p] =

[
p ; p

]
, where the element-wise relation

p
i
≤ pi ≤ pi holds for each component i ∈ {1, . . . , np} of the parameter vector.
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The ellipsoidal state estimation procedure applied in this paper is obtained as a special
case of the thick ellipsoid state estimation presented in [4]. To implement this procedure, we
assume that the additive term ψ(p) is included in a suitable ellipsoid that—in the case of
an initial box-valued enclosure—is obtained by enclosing the additive bounded uncertainty
in its associated Löwner–John ellipsoid [23].

In general, ellipsoidal state bounds at the time instant k are denoted as

Ek(µk, Γk) :=
{

xk ∈ Rn ∣∣ (xk − µk)
TΓ−T

k Γ−1
k (xk − µk) ≤ 1

}
(22)

for which the shape matrix is given in the factorized form Qk = ΓkΓT
k � 0 with the positive

definite matrix Qk. This matrix specifies—depending on the following estimation steps—
state domains before the evaluation of a prediction step, or the corrected state estimates
after the evaluation of the associated measurement update step. Moreover, denote the
ellipsoid midpoint as µk ∈ Rn.

In addition to the dynamic system model (21), the measured system outputs ym,k =
ym(tk) are described by an ellipsoidal uncertainty representation in the form

(C · xk+1 − ym,k+1)
T ·Q−1

m · (C · xk+1 − ym,k+1) ≤ 1 , (23)

where Qm is the shape matrix defining outer bounds for the measurement uncertainty.
To make the ellipsoidal set intersection operator introduced in [4] applicable for the

state estimation task, the expression (23) is reformulated equivalently in terms of the
inequality constraint (

xk+1 − y′m,k+1

)T
· P′m ·

(
xk+1 − y′m,k+1

)
≤ 1 . (24)

In this inequality (24), the matrix P′m is a purely diagonal matrix if the system’s output
matrix C in (23) represents a direct measurement of selected components of the state vector
xk+1. If a smaller number of outputs than state variables are available in this case, the
matrix P′m is not invertible and represents a degenerate ellipsoid in the n-dimensional state
space; see also [4,12].

Using this notation, entries in the vector y′m,k+1 that correspond to non-measured
components of the state vector at the time instant k + 1 are set to the associated ellipsoid
midpoint µk+1 obtained from the state prediction, while all other components correspond
to the point-valued measured data ym,k+1.

3.1. Ellipsoidal State Prediction Step

The first three steps of the following state prediction procedure for discrete-time sys-
tems (21) were basically published and proven in [4]. The major difference is that the quoted
publication made use of a thick ellipsoid state enclosure approach in which inner and outer
ellipsoid bounds for the first term Φ(p) · xk in (21) were determined simultaneously.

However, for the sake of a pure state estimation in the form of computing guaranteed
outer enclosures, only the outer bounds of those so-called thick ellipsoids are of interest.
For that reason, the approach from [4] is simplified by leaving out the computation of the
associated inner state bounds.

For finding outer ellipsoidal enclosures of the subexpression Φ(p) · xk in (21), we
assume that this part of the system model is reformulated in the form

xΦ,k+1 = Φ(p) · xk = Φ(p) · x̌k + Φ̃ · µk +
(
Φ(p)− Φ̃

)
· µk . (25)

This allows for propagating an origin-centered ellipsoid with the help of the first
term in (25), while the remaining terms account for the influence of the generally non-zero
ellipsoid midpoint. For that purpose, introduce the following notation already applied
in (25) and further used during the state prediction consisting of the Steps P1–P5:
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Ek = Ek(µk, Γk) denotes the uncertainty on the non-origin centered states xk , (26)

Ěk = Ěk(0, Γk) the uncertainty of x̌k after shifting the ellipsoid to the origin, and (27)

Φ̃ = Φ(mid([p])) the midpoint approximation of the quasi-linear system matrix with (28)

p ∈ [p] =
[
p ; p

]
, and the interval midpoint mid([p]) =

1
2
·
(

p + p
)

. (29)

Step P1: Apply
x̌k+1 = Φ(p) · x̌k (30)

to the ellipsoid Ěk in (27). The shape matrix of the outer ellipsoid enclosure of the
image set is described by an ellipsoid with the shape matrix

Q̌k+1 = α2
k+1 · Γk+1 · ΓT

k+1 , (31)

where αk+1 ≥ 0 is the smallest value for which the linear matrix inequality

Mk+1 := Λ

[
−Q−1

k ΦT(p) · Φ̃−T

Φ̃−1 ·Φ(p) −α2
k+1Rk

]
Λ � 0 , Qk = Γk · ΓT

k (32)

is satisfied for all p ∈ [p] with

Rk := Γk · ΓT
k . (33)

In (32), the preconditioning matrix Λ = blkdiag
(

βI, β−1I
)

is defined with the help of
the identity matrix I ∈ Rn×n and the square root β =

√
min{λi(Qk)} of the smallest

eigenvalue of Qk as described in [22]. This choice helps to prevent unnecessarily
conservative state bounds in cases in which the norms of Φ̃−1 ·Φ(p) and Qk are
significantly different.

Step P2: Compute interval bounds for the term

bk =
(
Φ(p)− Φ̃

)
· µk ∈ [bk] , (34)

which accounts for a non-zero ellipsoid midpoint with xk, Φ̃, and p defined according
to (26), (28), and (29). Inflate the outer ellipsoid bound described by the shape
matrix (31) with

Qk+1 = (1 + ρO,k+1)
2 · Q̌k+1 and ρO,k+1 = sup

{∥∥∥α−1
k+1 · Γ

−1
k · [bk]

∥∥∥} . (35)

For a definition of the interval-valued generalization of the Euclidean norm operator,
see [12].

Step P3: Compute the updated ellipsoid midpoint as

µΦ,k+1 = Φ̃ · µk . (36)

The outer ellipsoidal enclosureEΦ,k+1 of xΦ,k+1 at the time instant k + 1 then becomes

xΦ,k+1 ∈ EΦ,k+1(µΦ,k+1, ΓΦ,k+1) , (37)

where

ΓΦ,k+1 = αk+1 · (1 + ρO,k+1) · Φ̃ · Γk . (38)
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Step P4: Determine an ellipsoidal enclosure (the aforementioned Löwner–John ellipsoid)
for the summand

xΨ,k+1 = ψ(p) (39)

according to
xΨ,k+1 ∈ EΨ,k+1(µΨ,k+1, ΓΨ,k+1) . (40)

To determine this ellipsoid from an interval vector ψ(p) with the corresponding
vertices x〈j〉Ψ , j ∈ {1, . . . , L}, where

QΨ,k+1 = ΓΨ,k+1 · ΓT
Ψ,k+1 (41)

holds, the minimum-volume Löwner–John ellipsoid is determined by solving the
linear matrix inequality constrained optimization problem

min
QΨ,k+1,µΨ,k+1

(
trace

{
QΨ,k+1

})
 1

(
x〈j〉

Ψ,k+1 − µΨ,k+1

)T(
x〈j〉

Ψ,k+1 − µΨ,k+1

)
QΨ,k+1

 � 0 for all j ∈ {1, . . . , L} (42)

QΨ,k+1 � 0 .

Further details concerning these inequality constraints, the choice of the number of
vertices L, and a simplified version purely based on interval analysis are discussed
in [12]. Moreover, note that the exact volume minimization task would require the
solution of an optimization task in which a complex determinant minimization task
is involved. This task is replaced by the minimization of a matrix trace as described
in Appendix C of [24]. Due to the linearity of the trace operator (and its close-to-
optimal behavior), this version is used for the proposed ellipsoid prediction step
when determining the bounds EΨ,k+1.

Step P5: Compute an ellipsoidal enclosure of the Minkowski sum of the two intermediate
results EΦ,k+1 and EΨ,k+1 according to

EΦ,k+1 ⊕EΨ,k+1 ⊆ Ek+1(µk+1, Γk+1) (43)

with the new midpoint
µk+1 = µΦ,k+1 + µΨ,k+1 (44)

and the updated shape matrix

Γk+1 = Q
1
2
k+1 , (45)

resulting from the closed-form expression

Qk+1 =

(
1 +

1
β

)
·
(

ΓΦ,k+1 · ΓT
Φ,k+1

)
+ (1 + β) ·

(
ΓΨ,k+1 · ΓT

Ψ,k+1

)
(46)

with

β =

√√√√√ trace
{

ΓΦ,k+1 · ΓT
Φ,k+1

}
trace

{
ΓΨ,k+1 · ΓT

Ψ,k+1

} . (47)

For a derivation of this expression, the reader is referred to [7,25,26].
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3.2. Ellipsoidal Measurement Update Step

To perform the ellipsoidal measurement update step, we employ the intersection
technique for ellipsoids with different midpoints that was derived in [4]. This approach is
an extension of the computation of Dikin ellipsoids, which is discussed in detail in [27].

This extension consists of the following two steps:

Step C1: Determine the common center point for the bounds of the intersection, where
the center point must be included in all ellipsoids to be intersected;

Step C2: Determine the shape matrices for the outer ellipsoid bound according to the
computation of Dikin ellipsoids according to [27].

Preliminary work in [4] has shown that an efficient heuristic approach for the com-
putation of the common center point µ̃k+1 in Step C1 of the two ellipsoids E(µk+1, Γk+1),
Qk+1 = Γk+1ΓT

k+1 and E(µm,k+1, Γm,k+1), Qm,k+1 = Γm,k+1ΓT
m,k+1 is given by an approach

motivated by the innovation step of a Kalman filter [14,28].
Here, the ellipsoid E(µm,k+1, Γm,k+1) characterizes the measurement model (23) with

the output matrix C.
With the help of this information, the Kalman gain matrix

Lk+1 = Qk+1 ·CT ·
(

C ·Qk+1 ·CT + Qm,k+1

)−1
(48)

is computed. Then, the updated ellipsoid midpoint results in

µ̃k+1 = µk+1 + Lk+1 · (µm,k+1 − µk+1) . (49)

Both ellipsoids to be intersected are first enclosed during Step C2 by new ellipsoids
centered at the midpoint µ̃k+1. For that purpose, the scaling factors

ζk+1 = 1 +
∥∥∆µ1,k+1

∥∥ with ∆µ1,k+1 = Q−
1
2

k+1 · (µ̃k+1 − µk+1) (50)

and
ζm,k+1 = 1 +

∥∥∆µm,k+1
∥∥ with ∆µm,k+1 =

(
P′m
) 1

2 ·
(

µ̃k+1 − µ′m,k+1

)
(51)

are determined, which represent the maximum distances of the new midpoint computed in
Equation (49) from the original ellipsoid surfaces. Here,

∥∥∆µ·,k+1
∥∥ is the Euclidean norm of

the corresponding vector-valued argument.
Second, the outer bound of the intersection of these two rescaled ellipsoids is given by

Equation (53) in [4] by

Ek+1 = Ek+1
(
µ̃k+1, Γ′k+1

)
with Γ′k+1 =

(
Q′k+1

) 1
2 , (52)

where the shape matrix is determined with the closed-form expression

Q′k+1 = 4 ·
(

2 ·
((

ζ2
k+1 ·Qk+1

)−1
+ ζ−2

m,k+1 · P
′
m

))−1
(53)

with Qk+1 from (35). As shown in [4], this approach is applicable also in cases in which
not all components of the state vector are measured, i.e., if the matrix P′m introduced in (24)
represents a degenerate ellipsoid with bounds that may be infinitely wide in some compo-
nents of the state space. Although this procedure may be less accurate than the technique
presented in [8,29], it is preferred in this paper due to its simplified closed-form solution
representation and because it avoids the online solution of linear matrix inequalities.

4. Modeling of Uncertainty

The ellipsoidal state estimation technique discussed in this paper relies on suitable
uncertainty models for both bounded process and measurement noise. This section gives
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an application-driven description on how suitable bounds can be derived for real-life
system models. To perform the parameterization of the uncertainty models, we rely on the
identification experiments and measured data summarized in Section 2.

4.1. Uncertainty in the Dynamic System Model: Bounded Process Noise

In Equation (10), the control inputs of the DDboats under consideration have been
described by u〈i〉v (t) + z〈i〉1 (t) and u〈i〉φ (t) + z〈i〉2 (t) as a superposition of an identified or
flatness-based input term and a corresponding point-valued disturbance estimate.

With this knowledge, the ellipsoidal state estimation can be applied to a discrete-time
system model (discretization step size Ts = 1 s, corresponding to the sampling time of the
available GPS sensor) with the state vector

x〈i〉k := x〈i〉(tk) =
[

x〈i〉1 (tk) x〈i〉2 (tk) v〈i〉(tk) φ〈i〉(tk)
]T

, i ∈ {A, B} . (54)

For the sake of a compact notation of the scheme for uncertainty modeling, the
superscript (·)〈i〉 is omitted in the following equations as long as this does not lead to
ambiguities.

Using an explicit Euler discretization for the continuous-time state equations, which is
sufficiently accurate due to the small sampling time Ts and volume-preserving according
to [5] for a Dubins car model, the system model

x(tk+1) =


1 0 Ts cos(φ(tk)) 0
0 1 Ts sin(φ(tk)) 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Φ(p)

·x(tk) + Ts ·


0
0

uv(tk) + ẑ1(tk)
uφ(tk) + ẑ2(tk)

+ w(tk)

︸ ︷︷ ︸
Ψ(p)

(55)

is obtained. This model has the same form as the system model (21) that was used for the
derivation of the ellipsoidal state estimation procedure in the previous section. To account
for uncertainty in the process dynamics, the term Ψ(p) needs to be bounded by an ellipsoid
EΨ,k+1(µΨ,k+1, ΓΨ,k+1) according to the definition (40).

For the application at hand, this term contains the influence of the control inputs
uv(tk) and uφ(tk) and the actuator uncertainties ẑ1(tk) and ẑ2(tk), as well as the disturbance
estimates

w(tk) = Ts ·C ·H(tk) · (ym(tk)−Cx̂(tk)) (56)

determined by the observer-based a posteriori uncertainty analysis according to Section 2.3.3.
In this section, these quantities have been determined in a point-valued form with the

estimated state vector x̂(t) of the observer (16), where the associated output matrix C is
defined in (17).

To make the ellipsoidal estimation scheme applicable, the point-valued estimates are
employed as the midpoint vector

µΨ,k+1 = Ts ·


0
0

uv(tk) + ẑ1(tk)
uφ(tk) + ẑ2(tk)

+ w(tk) (57)

of the ellipsoidal disturbance enclosure. The bounds for axis-aligned disturbance intervals
are derived from the standard deviations listed in Table 1. If the parameter r > 0 in

γl = r · σxl , l ∈ {1, . . . , 4} , (58)
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is employed as a user-defined degree of freedom to specify a desired confidence level of
the ellipsoidal disturbance representation, the factorized shape matrix of the process noise
term Ψ(p) results in the (in this example, time-invariant and purely diagonal) expression

ΓΨ,k+1 =
√

2 · Ts · diag
{[

γ1 . . . γ4
]}

, (59)

being equivalent to

QΨ,k+1 = 2 · r2 · T2
s · diag

{[
σ2

x1
. . . σ2

x4

]}
. (60)

Remark 1. In Section 5, the heading dependence of the system matrix Φ(p) in (55) is taken
into account in two alternative forms. Firstly, these dependencies are treated as a pure state
dependence, where corresponding outer bounds are determined by the proposed estimation algorithm.
Second, the set-based heading identification according to the following subsection is taken into
account additionally to intersect the estimated bounds with the measurement-based tolerances. This
intersection enhances the knowledge on the system dynamics and hence reduces the uncertainty
included in the set-valued bounds on the system matrix Φ(p).

Remark 2. If an a posteriori (observer-based) identification of the disturbance terms z1(t) and
z2(t) were not possible, their influence would have to be described by means of conservative worst-
case bounds. They have to be included in the terms (58) by inflating the corresponding standard
deviations σxl .

4.2. Quantification of Measurement Uncertainty: Bounded Measurement Noise

To identify a set-valued uncertainty model for the compass sensor, as well as for
the GPS-based position measurements, independently for each of the DDboats, assume
additive, time-varying interval uncertainties in the model for the compass sensor

φ(tk) ∈ φm(tk) + [∆φ(tk)] (61)

as well as time-invariant uncertainty bounds for the GPS-based position measurement
according to [

x1(tk)
x2(tk)

]
∈
[

x1,m(tk)
x2,m(tk)

]
+

[
[∆x1]
[∆x2]

]
. (62)

A corresponding uncertainty representation of the velocity vectors of the DDboats is
obtained by an explicit Euler method-based approximation in the form[

v1(tk)
v2(tk)

]
∈ 1

Ts
·
([

x1,m(tk+1)
x2,m(tk+1)

]
−
[

x1,m(tk)
x2,m(tk)

]
+

[
[∆x̃1]
[∆x̃2]

])
, (63)

where, under the assumption of symmetric intervals
[
[∆x1] [∆x2]

]T 3 0, the error bounds[
[∆x̃1]
[∆x̃2]

]
= 2 ·

[
[∆x1]
[∆x2]

]
(64)

of the velocity model (63) are obtained.
A contractor-based identification of the interval bounds [∆φ(tk)], [∆x1], and [∆x2] has

to make sure that, for a reasonable initial search space for the measurement uncertainties,
the compatibility constraint

tan(φm(tk) + [∆φ(tk)]) ∩
(

x2,m(tk+1)− x2,m(tk) + [∆x̃2]

x1,m(tk+1)− x1,m(tk) + [∆x̃1]

)
6= ∅ (65)

is satisfied at each measurement instant tk, where—in this equation—we assume for ease
of notation that the denominator term in brackets does not include the value zero.
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A comparison of the point-valued measurements according to Figure 3c,d motivates
the initialization of [∆φ(tk)] = 0.6 · [−1 ; 1] rad (lower and upper interval bounds are
separated by semi-colons to distinguish them from vectors, which are also typeset by using
square brackets). These graphs correspond equally to the measurement models (61) as well
as to atan2(v2, v1) with the velocity components defined in (63), in which, all uncertainty
intervals would be zero in the noise-free setting.

Moreover, the worst-case GPS uncertainty is set to the independent intervals
[∆x1] = [−2 ; 2]m and [∆x2] = [−2 ; 2]m. Using this initialization, Algorithm 1 is used to
contract the error bounds so that the constraint (65) is satisfied.

Algorithm 1: Contractor-based sensor calibration.
initialize the interval bound [∆φ(tk)]
initialize the interval bounds [∆x̃1] and [∆x̃2]
exclude all samples k, where 0 ∈ tan(φm(tk) + [∆φ(tk)])
exclude all samples k, where tan(φm(tk) + [∆φ(tk)]) == NaN

include all remaining samples k in the set K
while TRUE do

Contractor for [∆x̃1]:[
∆x̃′1

]
=

⋂
k∈K

(
x2,m(tk+1)−x2,m(tk)+[∆x̃2]

tan(φm(tk)+[∆φ(tk)])
− (x1,m(tk+1)− x1,m(tk))

)
∩ [∆x̃1]

generate symmetric bounds [∆x̃1] := [−1 ; 1] ·max
(∣∣inf

([
∆x̃′1

])∣∣, ∣∣sup
([

∆x̃′1
])∣∣)

Contractor for [∆x̃2]:

[∆x̃′2] =
⋂

k∈K

(
(x1,m(tk+1)− x1,m(tk) + [∆x̃1]) · tan(φm(tk) + [∆φ(tk)])

−(x2,m(tk+1)− x2,m(tk))

)
∩ [∆x̃2]

generate symmetric bounds [∆x̃2] := [−1 ; 1] ·max(|inf([∆x̃′2])|, |sup([∆x̃′2])|)
Contractor for [∆φ(tk)] for all k ∈K:
[∆φ(tk)] := [∆φ(tk)]
∩(atan2((x2,m(tk+1)− x2,m(tk) + [∆x̃2]), (x1,m(tk+1)− x1,m(tk)))− φm(tk))

if any([∆φ(tk)] == NaN) then
reset [∆x̃1] and [∆x̃1] to initial bounds
inflate the bounds for [∆φ(tk)]

else if no further contractance of interval bounds possible then
break

end if
end while
set [∆x1] := 0.5 · [∆x̃1] and [∆x2] := 0.5 · [∆x̃2]
return [∆x1], [∆x2], and [∆φ(tk)]

Remark 3. This algorithm can be simplified by imposing identical bounds [∆φ(tk)] for all time
steps tk. In this case, we deactivate the contractor for the angle uncertainty [∆φ(tk)] and perform
an inflation of this value at all time steps if the condition any([∆φ(tk)] == NaN) becomes active.

Remark 4. An interval extension of the atan2 function is described in [30]. A straightforward
extension of a phase unwrap operation applied individually to all interval bounds of the generalized
atan2 function in the case of angles leaving the interval [−π ; π] allows for determining the
depicted enclosures in Figure 5.

Figure 5 gives a comparison of the reconstructed bounds for the compass-based
heading measurements, as well as for the reconstruction of the uncertainty in the heading
angle using the GPS-based velocity estimate for both DDboats, without and with the
assumption of time-varying uncertainty

[
∆φ〈i〉(tk)

]
.



Algorithms 2022, 15, 162 17 of 23

(a) (b)

(c) (d)

Figure 5. Interval-based measurement error identification for the heading of both DDboats.
(a) Constant error bounds for the heading measurement of DDboat A. (b) Time-varying error bounds
for the heading measurement of DDboat A. (c) Constant error bounds for the heading measurement
of DDboat B. (d) Time-varying error bounds for the heading measurement of DDboat B.

Table 2 gives an overview of characteristic values for the identified measurement
uncertainty in terms of the mean interval radii

0.5 ·
(

sup
(
[∆φ(tk)]

〈i〉
)
− inf

(
[∆φ(tk)]

〈i〉
))

(66)

of the angle estimates for the DDboats i ∈ {A, B}, both for the compass-based and the GPS-
based data, as well as the suprema of the symmetric intervals for the GPS position accuracy.

Since the time-varying model leads to significantly better bounds on the reconstruction
of the uncertainties, we restrict ourselves in the following investigation to the time-varying
model according to Figure 5b,d, where the intersection of the intervals for the compass
sensor and the GPS-based heading intervals according to Figure 6 is employed by the
ellipsoidal state observer. Velocity measurement intervals result from a direct use of
Definition (63), into which, the bounds for the position errors are directly substituted. In
view of the fact that the estimate for the GPS accuracy may be biased because of the specific
form of the employed Lissajous-shaped trajectory with different elongations in the x1 and
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x2 coordinates, the boldface values (as the largest entries in both coordinates) serve as the
values for parameterizing the uncertainty model of both x1 and x2.

(a) (b)

(c) (d)
Figure 6. Combination of the information obtained by the compass- and GPS-based heading intervals
for the DDboat A. (a) Intersection of compass- and GPS-based measurement intervals for DDboat A
(constant error bounds). (b) Intersection of compass- and GPS-based measurement intervals for
DDboat A (time-varying error bounds). (c) Interval diameters corresponding to Figure 6a. (d) Interval
diameters corresponding to Figure 6b.

Table 2. Measurement uncertainty (mean of the interval radius of the compass-based heading
measurement φm,c and the GPS-based heading reconstruction φm,GPS, as well as interval boxes
[∆x1]

〈i〉, [∆x2]
〈i〉).

Constant Bounds 〈A〉 Time-Varying 〈A〉 Constant Bounds 〈B〉 Time-Varying 〈B〉

µφ,c in rad 0.6077 0.2883 0.6054 0.3638
µφ,GPS in rad 0.2000 0.1872 0.1593 0.1564

sup
(
[∆x1]

〈i〉
)

in m 0.0474 0.0350 0.0500 0.0456

sup
(
[∆x2]

〈i〉
)

in m 0.1447 0.1445 0.0955 0.0977

5. Estimation Results

This section presents various estimation results when using the proposed ellipsoidal
enclosure technique based on an a posteriori evaluation of the measured data for both
DDboats A and B. Here, we distinguish the localization of the DDboats without and
with using information on the measured heading. In all presented results, the confidence
parameter r = 3 is used in Equations (58)–(60).

5.1. Localization without Heading Measurement

Figure 7 gives a comparison of the localization results after the ellipsoidal state pre-
diction step, as well as after the subsequent set-based innovation step. It can be seen that
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the additional use of velocity information, represented by the interval data described in
Section 4.2, only slightly improves the estimation accuracy in comparison with a pure
position measurement.

It has to be pointed out that the heading angle included as the fourth state variable
in the model (55) is unobservable if only the coordinates x1 and x2 are measured by the
available GPS. For that reason, a countermeasure against an unbounded growth of the
uncertainty in the heading angle information needs to be included as a virtual measurement
in the ellipsoidal innovation stage. This restriction has been set to the interval [−π ; π] rad
in both subgraphs of Figure 7, while the velocity was further restricted in Figure 7a to an
interval [−2 ; 2] m

s , centered around the midpoint of the current state prediction.

(a) (b)

Figure 7. Localization of the DDboat A without heading measurement. (a) Pure position measure-
ment. (b) Position and velocity measurement.

Remark 5. In future work, further quasi-linear state-space representations (also ensuring observ-
ability of the heading for non-vanishing boat velocities based on position measurements) can be
included in the estimation procedure. These reformulated system models may also serve as virtual
measurement generators.

The corresponding analytical reformulations of the system model (55) split up the term
sin(φ(tk)) · v(tk) into the form

sin(φ(tk)) · v(tk) =
[
0 0 α · sin(φ(tk)) (1− α) · sin(φ(tk))

φ(tk)
· v(tk)

]
· x(tk) (67)

with α ∈ R as an optimization degree of freedom. The optimal choice of this parameter α is currently
being investigated in a parallel research activity aiming at the use of an ellipsoidal calculus for
analyzing the stability of discrete-time dynamic systems, as well as for extensions of the control
procedure presented in [31].

5.2. Localization with Heading Measurement

An enhancement of the estimation quality becomes possible as soon as the interval
data for the measured heading are additionally included in the estimation procedure. The
corresponding results are shown in Figure 8a, where no significant differences between
the direct use of the measured heading intervals in the system matrix of the state-space
representation in (55) and its replacement by the estimated heading bounds are visible.

Note that, in both Figures 7 and 8, the measurements are assumed to be available at
each sampling time instant of the discrete-time system model, where measurements of all
four state variables are used in Figure 8, in contrast to the specified subsets in Figure 7.
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(a) (b)
Figure 8. Localization of the DDboat A with heading and velocity measurement. (a) Evaluation of
the system matrix in (55) for estimated heading information. (b) Evaluation of the system matrix
in (55) for measured heading information.

A reduction in the measurement frequency is analyzed in Figure 9. There, it becomes
obvious that the use of measured heading information in the evaluation of the system ma-
trix in (55) leads to much tighter state enclosures than the use of purely predicted heading
bounds. Here, it has been assumed that the duration between two subsequent measure-
ments corresponds to 3Ts. The fact that the use of the measured heading information in the
evaluation of the system matrix during the state prediction step significantly reduces the
width of the predicted state bounds gives rise to the following practical recommendation
if low-cost sensors and computing hardware are used: to be able to reduce the sampling
frequency of the GPS, while still obtaining sufficiently tight position bounds for the vessel
after the prediction step under consideration of large external disturbances as in this pa-
per, it is reasonable to provide compass-based heading information with higher sampling
frequencies, even though their tolerance bounds may not be especially tight.

Moreover, event-triggered state estimation procedures can be implemented in future
work on the basis of the widths of the predicted vessel position, which request new state
measurements as soon as the volume of the predicted ellipsoids exceeds a user-defined
threshold value.

(a) (b)
Figure 9. Localization of the DDboat A with heading and velocity measurement, reduced number
of measurements. (a) Evaluation of the system matrix in (55) for estimated heading information.
(b) Evaluation of the system matrix in (55) for measured heading information.

5.3. Proof of Collision Avoidance

As a final evaluation step, the position estimates according to Figure 8a are used to
compute interval bounds for the distance of both boats that performed a synchronized
motion during the measurement experiment. For this purpose, an interval-based distance
computation is performed after enclosing the position ellipsoids into tight axis-aligned
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interval boxes. If this computation is performed purely on the basis of the predicted state
information—see Figure 10—there exist some time intervals during the experiment in
which a collision of the two boats cannot be ruled out with certainty (the value zero is
included as the lower interval bound of the computed distances).

Requesting the GPS position measurement during these phases and using the results
of the innovation stage as shown in the previous subsection shows that the experiment from
which the measurements were obtained is fully safe and that collisions of both boats can be
ruled out with certainty within the considered bounds on the measurement uncertainty
and the external disturbances identified in Section 4. As already mentioned in the previous
subsection, an event-triggered estimation scheme can be used here as well to tighten the
position bounds as soon as both boats approach each other and the predicted infima of the
interval-based distance forecast fall below a specific threshold value.

Figure 10. Interval bounds for the distance between the DDboats A and B.

6. Conclusions and Outlook on Future Work

In this paper, a novel ellipsoidal state estimation procedure was validated experimen-
tally for real-life measurements from the area of marine applications. It was shown that
a set-valued uncertainty modeling can be used to characterize the influence of external
disturbances acting on a vessel. Moreover, an interval approach was shown that allows
for characterizing the accuracy of GPS-based measurements, in combination with a fusion
with a compass-based counterpart. Using all of these information sources, an ellipsoidal
state estimation procedure was implemented that allows for estimating worst-case outer
bounds of the reachable position of a ship and proving the safety of specific maneuvers
with respect to collision avoidance.

In future work, further quasi-linear system models will be investigated to improve
observability and to combine numerous system formulations to tighten the result of the state
prediction step. Moreover, the presented work represents the basis for the development
of event-triggered state estimation procedures that only perform innovation stages as
soon as certain indicator functions become active, such as the volumes of the predicted
state ellipsoids exceeding certain thresholds or objects coming closer to an obstacle than a
certain minimum safety distance. In addition, combinations of set-valued and stochastic
uncertainty models will be investigated to establish mixed uncertainty representations.
There, ellipsoidal state enclosures can serve as a representation for certain stochastically
motivated confidence levels. Finally, it is desired to use the proposed estimation scheme
for the implementation of set-based model-predictive control procedures for uncertain
nonlinear dynamic systems.
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