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Abstract—The aim of this paper is to apply the Gaussian
beam formalism for computing high frequency wave propagation
problems. Unlike standard ray theory, Gaussian beams method
overcome the difficulties of singular regions. The performance of
the method is illustrated with several numerical examples.

Index Terms—Gaussian beams, radar cross section, scattering,
asymptotic approximations, high frequency

I. INTRODUCTION

The optimization of radar performance has led to the devel-

opment of signal processing methods that take into account

the characteristics of the targets and the parasitic medium.

In parallel, a complementary approach to detection has been

developed for recognition of radar signatures, allowing the

identification of an object among a group of objects according

to particular characteristics known a priori. These lines of work

have allowed the development of new radar applications such

as remote sensing, obstacle avoidance and meteorology. In the

military domain, these axes are also exploited to fight against

the effects of target signature reduction.

The radar equation links the characteristics of the trans-

mitting system, the observed medium (target) and the re-

ceiving device within a single formulation. In this equation,

the radar cross section (RCS) is the quantity that contains

all the information on the interaction between waves and

target. The estimation of the RCS requires the evaluation of

the electromagnetic field scattered by any surface and thus

the resolution of the propagation equation whatever is the

medium. This can be done either by an exact method or by

an approximate method. As their name indicates, the exact

methods allow to determine exactly the general solution of the

propagation equation. However, they require to compute the

general solution of second degree equations, differential or in-

tegral [1]. Moreover, their numerical versions generally require

significant computer resources (memory and calculation time).

Approximate methods are generally used in electromagnetism

for frequencies above 1 GHz. For these frequencies, the

numerical versions of asymptotic methods allow to obtain a

solution close to reality in a relatively short time compared to

the exact methods. However, this implies the consideration of

some simplifying assumptions, limiting their range of validity.

These methods are widely used to evaluate the propagation of

a field in an inhomogeneous medium as well as to estimate

the RCS of non-canonical targets.

Early approaches for prediction of RCS in high-frequency

electromagnetic-analysis environment involved the use of the

ray method due to the relative simplicity of the formulas and

algorithms that arise. However, the classical ray theory has a

fundamental drawback: it is not applicable for calculations in

regions where the ray field becomes non regular, i.e. where

caustics arise. In realistic problems we virtually always have

to deal with singularities, i.e., disruptions of regularity. To

circumvent this problem, a number of methods have been

proposed in which the wave field is constructed as a superpo-

sition of regular waves: the method of edge waves developed

by Klem-Musatov [2], the Gaussian beam summation method

[3] and its special case called Maslov seismograms [4]. These

methods are universal, as the calculation procedure is the same

for regular points and for caustic vicinities.

The Gaussian beam method as a method for the compu-

tation of wave fields in the high-frequency domain was first

proposed in 1981 by Popov [5]. In this paper, we apply the

GBM in scattering problem for radar target and compare the

method with another asymptotic method, The Physical Optic

approximation.

The rest of the paper is organized as follows. In section II,

we first review the Gaussian beam model for the computation

of high frequency waves. We then derive the general formu-

lation of the GBM at a point situated in the effective vicinity

of the receiver. In section III, we present and discuss different

choices of initial parameters necessary for the computation.

Next, in Section IV, we apply the GBM in scattering problem.

Numerical examples of RCS computations are performed.

Finally, we summarize our cnclusions in section V.

II. GAUSSIAN BEAM METHOD, BASIC FORMULATION

The Gaussian beam approach to solve the problem of wave

propagation is to obtain a local paraxial solution to the exact

wave equation. We choose a local reference frame linked to

the ray with unit tangent vector
−→
t and unit normal vector −→n

(cf. “Fig. 1”). −→n must point everywhere to the same side of

the ray. The coordinate s measures the arclength along the ray

from an arbitrary reference point, and n represents a length

coordinate in the direction perpendicular to the ray at s.

A. Overvieuw on Gaussian beam theory

Consider the Helmholtz equation for a two-dimensional

homogeneous medium:

∇2u(x, z, w) +
w2

c2(x, z)
u(x, z, w) = 0 (1)

where u is the electric or magnetic field, w is the angular

frequancy and c(x, z) is the wave velocity at the point (x, z).
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Fig. 1. Definition of the local reference frame.

Gaussian beam wavefield computation uses high frequency

asymptotic approximation to transform the Helmholtz equation

into a parabolic wave equation in ray-centered coordinates

(s, n) [6] [7] [8], as follows:

2i

c
W,s +W,νν −

1

c3
ν2c,nnW = 0 (2)

The relation between u and W is expressed by the equation

u =
√

c(s)W (s, ν) with ν = w1/2n.

We are looking for a solution of the form:

W (s, ν) = A(s)e
i
2 ν

2Γ (3)

where Γ = Γ(s) is complex-valued function. By replacing (3)

in (1) and separating real and imaginary parts, we obtain the

following two equations:
{

Γ,s + cΓ2 + 1
c2 c,nn = 0

A,s +
1
2cAΓ = 0

(4)

We introduce again a new variable q such that:

Γ(s) =
1

cq
q,s (5)

where q = q(s). We obtain:

cq,ss − c,sq,s + ν,nnq = 0 (6)

Equation (6) splits into a system of two first order equations:
{

dq
ds = cp
dp
ds = 0

(7)

This system is called a dynamic ray tracing system. p and q
can be evaluatued as the dynamic ray tracing results. Hill [9]

conveniently designated the initial values of p and q to be:
{

q(s0) =
ww2

0

c

p(s0) =
i
c

(8)

w0 is the beam width at the frequency w. By going back to the

different variable changes, the wavefield u(s, n, ω) associated

with the raypath is computed by evaluating the function [10]

[11]:

u(s, n, w) =

(

c

q(s)

)1/2

eiw[τ(s)−
1
2

p(s)
q(s)

n2] (9)

where τ(s) =
∫ s

0
v−1(s) ds the integral evaluated along the

ray r(s). Equation (9) is an asymptotic local paraxial solution

of the Helmholtz wave equation concentrated close to the ray

path. The second term in the exponential determines that the

wavefront is a parabola and that the amplitude profile is a

Gaussian function. The higher the frequency is, the sharper the

parabolic wavefront and the narrower the Gaussian amplitude

profile. Solutions of the form (9) are called Gaussian beams

if the following two assumptions are satisfied along the ray:

• Im(p/q) > 0
• |q| 6= 0

The first assumption guarantees the concentration of the so-

lution close to the central ray. Second, quantity q describing

the geometrical spreading must be nonzero and finite along

the ray; thus Gaussian beams, unlike the conventional ray

solutions, are nonsingular even at caustics of the wavefield.

B. Calculation of the amplitude at the receiver

Gaussian beams represent high frequency asymptotic solu-

tions of the wave equation. Since the wave equation is linear,

the point source wavefields can be expanded into a series of

solutions concentrated close to the rays, the Gaussian beams,

as:

u(P ) =

∫

δ

Φ(φ)uφ(s, n)dδ (10)

where u(P ) is the solution at the receiver and uφ(s, n) is the

solution of the beam with take-off angle φ, evaluated at P . δ
is a cone with a vertex angle φ:

dδ = sinφ dφ dθ (11)

with θ ∈ [0, 2π]. The common procedure for estimating

the complex-valued weighting function Φ(φ) is to compare

integral (10) with the exact solution of the wave equation in

homogeneous media for frequency w → ∞ [6]. By geometric

considerations, we can then express s and n as a function of

φ and r, the distance from the source to the receiver. “Fig. 2”

shows the geometry of the problem.

Fig. 2. Sketch to illustrate the geometry of the problem.

Let us consider s = r cos(φ− φ0) and n = r sin(φ− φ0).
Replacing p, q and τ by their expressions in (9) leads to:

uGBM (P ) =

∫

δ

Φ(φ)
c3/2

√

(ww2
0 + ic r cos(φ− φ0)

e
iw

[

r cos(φ−φ0)
c

+ 1
2

r2 sin2(φ−φ0)

ww2
0+icr cos(φ−φ0)

]

dδ

(12)



Equation (12) is evaluated by a numerical quadrature with

regular increment ∆φ:

uGBM (P ) = 2π

N
∑

k=1

Φ(φk)uφk
sinφk∆φ (13)

III. ACCURACY OF GAUSSIAN BEAM METHOD

The evaluation of the wavefield by the GBM is influenced

by different types of errors due to the approximation and the

choice of parameters that specifies the properties of Gaussian

beams. Identifying these errors allows us to deal with some of

them in order to improve the accuracy of our method. Among

these errors, one can distinguish:

• Error in initial data: this error represents how well the

exact boundary data is approximated by a superposition

of Gaussian beams

• Taylor expansion error: the second error is due to the fact

that A and Γ are not computed globally (e.g., (3)), and

only their derivatives on the central beams are computed.

It is therefore necessary to approximate their values

around the central beams by Taylor expansions

• Discretization error: this error results from the fact that

the superposition integral is replaced by a discrete sum-

mation of beams (e.g., (13))

• Beam waist of the Gaussian beam : a gaussian beam can

be fully described by his beam waist w0. A good choice

of this computation parameter allows to obtain results

with the required accuracy.

Here, we will only concentrate on the discretization and the

beam waist of Gaussian beam.

To study the efficiency of the GBM, we have applied it to

a number of model problems. In this section we present the

results of some numerical experiments. At first, we consider

a point source and a receiver on the central ray. For homo-

geneous medium, denoting r the distance to an observation

point P, the ray theory approximation of the field is given by

the Green’s function:

u(P ) =
eiwr/c

4πr
(14)

“Fig. 3” compares the modulus of the wavefield calculated

with the ray theory approximation with those computed by

GBM for three beam widths w0: λ, 2λ, and 10λ, according

to the distance on either side of the receiver. This comparison

made at 10 GHz and for N = 61 Gaussian beams shows that

the initial beam waist must be chosen optimally to ensure a

good accuracy. Unlike the amplitude of the ray theory which

is unbounded at the caustic (r = 0), the amplitude of GBM is

bounded and increases as w0 increases.

The modulus of the wavefield computed by the ray theory

approximation and by GBM for different beams number are

shown in “Fig. 4”. As can be seen, the solution obtained by

the GBM converges to the solution obtained by the ray theory

approximation as the number of Gaussian beams increases.

As in “Fig. 3”, “Fig. 4” shows that GBM is insensitive to

singularities.

IV. GBM IN SCATTERING PROBLEM

In this section, we perform two numerical tests and employ

the GBM described in Section 2 to compute the RCS of

Fig. 3. Absolute value of the wavefield u computed by GBM with different
beam waists and by the ray theory.

Fig. 4. Absolute value of the wavefield u computed by GBM with different
number of beams and by the ray theory.

metallic targets. In both tests, the input data are chosen as

follows: f = 10 GHz, w0 = 10λ and N = 200.

We consider two metallic targets : a circular disk of radius

r = 0.15m and a flat plate of sides 2.5λ × 2.5λ. Each target

is illuminated by a horizontally polarized plane wave. The

GBM is tested in monostatic configuration. The transmitter

elevation angle varies from φ = 00 to φ = 850. We use

the standard Physical Optics (PO) solution computed using

FEKO, a computational electromagnetic solver, as a reference

solution.

“Fig. 5” shows the RCS of the rectangular plate. Note

that the GBM result match the PO solution very well in the

specular region. One can see that GBS technique is superposed

to the PO solution.

“Fig. 6” shows the RCS of a circular flat plate of radius

r = 0.15m. Due to the circular symmetry, the RCS is only

aspect angle dependent [12]. For normal incidence, the RCS



Fig. 5. RCS of a flat plate computed using GBM and PO approximation.

for a circular disk, σ is:

σ =
4π3r4

λ2
(15)

where λ is the wavelength. For non normal incidence, the RCS

for any linearly polarized incident wave is given by:

σ =
λr

8π sinφ(tan(φ))2
(16)

Fig. 6. RCS of a circular disk computed using GBM, PO and the approxi-
mation formulas.

As can be seen, the PO and GBM results are in good

agreement. However, a worse match with the approximation

solution (e.g., (15) and (16)) is observed.

V. CONCLUSION

This paper is devoted for computing RCS of targets using

the Gaussian beam method in a monostatic configuration. The

total field at the receiver is represented by an integral over

Gaussian beams propagating in the neighbour of the receiver.

We investigate the sensitivity of GBM to the initial compu-

tation parameters: beams waist and beams density around the

observation point. Simulation with canonical targets is shown

and will be extend to complex target.
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