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Abstract—The conventional radar theory relies on the classi-
cal electromagnetic wave theory to run. On the contrary, a
quantum radar will relie on the quantum mechanic theory
to run. A quantum radar that uses the quantum illumination
based on photon entanglement enables to get a better detection
sensitivity. In this paper, we highlight the influence of the
propagation environment on the quantum illumination radar
scheme. Our approach consists in describing the quantum
information evolution inside the radar and the entanglement
rate with a mathematical parameter which represents the
interaction strength of the propagation medium on the quantum
system used by the radar.

Index Terms—quantum illumination, entanglement rate,
quantum radar, decoherence, discord

I. INTRODUCTION

Since the beginning of 2000’s, the rising of the quantum

information technologies leads to new great applications

in communication sciences like quantum cryptography and

superdense coding [1]. The objective of these new tech-

nologies is to surpass their classical counterparts in the

fields of communication at distance. Quantum information

technologies can also be exploited to do remote detection.

Then, the idea of quantum radar has made its way and it is

still being seriously studied [2].

A quantum radar relies on the quantum mechanic prin-

ciples to improve the detection sensitivity compared to a

conventional radar. Thus, the term “quantum radar” is still a

global description that includes several different visions. The

idea of a Quantum Illumination Radar has been introduced

by Seth Lloyd in 2008 [3]. Such a radar relies on the

Quantum Illumination (QI) which consists in using the en-

tanglement between two photons to provide an enhancement

of the detection sensitivity in a noisy environment. And

despite the entanglement is lost because of the photon-

medium interaction, called the decoherence, we observe a

detection sensitivity enhancement. Therefore, there might

be a quantum information that survived to the decoherence

phenomenon to explain the quantum advantage.

In his article [3], S. Lloyd worked in the optical regime

where the decoherence is far greater than in the microwave

regime, more suitable for a radar application. The microwave

regime is already used in the conventional radar theory

because of its good transmission in earth atmosphere [4].

Logically, the attention is directed towards microwave pho-

tons [5] to further study the Quantum Illumination process

in the perspective of a quantum radar.

Hence, our problematic aims to study a Quantum Illu-

mination radar scheme taking into account the propagation

medium influence on the quantum information inside our

radar scheme. To do that, we take a similar Quantum

Illumination Radar scheme as S. Lloyd to study the process

in function of a parameter Γ depicting the photon-medium

interaction strength. Our objective is to describe the quantum

system used inside the radar scheme in function of Γ and to

compute the quantum information evolution as the entangle-

ment rate evolution. Doing that could be interesting to see

a link between the quantum information and the detection

sensitivity. Thus, we use a system of two qubits entangled

in polarization. We express the quantum state of the pair as

a function of the parameter Γ.

For this study, the paper is organized as follow. The sec.II

presents the physical concepts involved and the methodology

used for the study. The sec.III shows the simulation results

with a critical analysis about the results. Then, the sec.IV is

devoted to the conclusion.

II. PHYSICAL PRINCIPLES AND METHODOLOGY

In this part, we describe the Quantum Illumination Radar

scheme used for calculations. Next, we focus on the prop-

agation model and how to compute the information theory

quantities to study the radar.

A. The Radar Equation for the Quantum Illumination Radar

The Quantum Illumination process inside the radar con-

sists in using two entangled photons in polarization to probe a

region of space. Fig.1 gives a scheme of this process in three

steps. The first step consists in creating the pair of entangled

photons. Here, we assume to use a entangled state of two

qubits/photons in a pure state |Ψ−〉AS = (|01〉 − |10〉)/
√
2

in the eigenstate basis {|00〉 , |01〉 , |10〉 , |11〉}. In quantum

mechanics, a quantum system in a pure state can be written

as a state vector i.e. |Ψ−〉AS while it is not possible for a

mixed state. An entangled state is a purely quantum phe-

nomenon where a quantum system exhibits strong quantum

correlations. We call one photon ”A” for ancilla and the other

is called ”S” for signal. In the second step, the photon A

is kept inside a perfect cavity while the photon S is sent



Fig. 1. Illustration of the Quantum Illumination Radar. The QI process is
divided in three main parts. In (1), we create the pair of maximally entangled
photons. The blue photon refers to the system A and the red photon refers
to the system S. The second step is composed of two parts. In (2.a), the blue
photon is trapped in a cavity with perfect mirrors. With this approximation,
we assume that the blue photon cannot be absorbed inside the cavity. We
do not any measure on the blue photon. In (2.b), the red photon is sent
towards the target and it interacts with the atomes and molecules of the
propagation medium. Next, the red photon is reflected by the object and it
comes back to the receiver. In (3), the system AS is gathered to perform a
state measurement. This measure represents the basis of a decision strategy
which consists to determine the presence or the absence of the object.

towards a region of space where there is probably an object.

If the photon S is reflected by an object, it comes back to the

receiver of the radar where we make a joint measurement of

the quantum state of the photon pair AS. Among these three

steps, we highlight the four main parts of the quantum radar

chain : emission, reception, propagation, and target.

These four parts permit to get a quantum radar equation-

like as for a conventional radar [6]. However in our device,

we emit only one photon S to make a detection, not a

classical electromagnetic wave. Consequently, if we lose

the photon S because of absorption or scattering in the

propagation medium, we lose all information. From now, we

write the radar equation of the QI radar in (1) as a probability

law for the photon S to come back to the receiver after its

previous emission.

PQI = Pemission · Ppropagation ·
σQ

4πR2
· Preception (1)

Where Pemission is the emission probability of the photon

S. Ppropagation is the probability of the photon to propagate

before be absorbed or scattered. This probability depends on

the medium crossed and it takes the form of a exponential

law:Ppropagation = exp(−C · (x/R)2). x is the distance

covered, R is the radar-target distance and C is a constant

depending of the propagation medium supposed homogenous

and isotrope. The term σQ/(4πR
2) represents the reflection

probability for the object to reflect the photon S towards

the receiver. The photon-target interaction is described with

the Quantum Radar Cross Section (QRCS), noted σQ, which

depends strongly on geometrical parameters (see [2] [7] [8]).

And Preception = AsensorPsensor is the reception probability

where we assume to use a quantum sensor with an effective

cross section Asensor with a probability Psensor to detect the

photon close to one.

Thus, the quantum radar equation in (1) is a probability

law equivalent to the conventional radar equation that rep-

resents an energy balance between emission and reception

[6]. In the QI radar, we use two photons but we emit only

single-photons. Therefore, the radar equation is the same

for a single-photon radar. Finally, the main interest of (1)

is to know if the photon can survive along the propagation

path. But the detection process does not include only the

presence or the absence of the photon S. The keypoint is

the particular information conveyed by the two entangled

photons. The propagation medium has an impact on the

photon S. Then, we focus on the information evolution linked

to the propagation path.

B. The propagation model

In this part, we introduce a propagation model related to

the QI radar scheme similar to in the Lloyd’s article [3].

We refer to a binary decision strategy with two hypothesis

H0 and H1 linked to the detection of particular quantum

states:entangled or not. The hypothesis H0 corresponds to

the absence of a target. As the target is absent, we detect

only thermal photons from the environment. The quantum

system AS has lost all its entanglement. The hypothesis H1

corresponds to the presence of the target. We receive the

photon S after its interaction with the target. The system AS

is still entangled. However, the propagation medium has an

influence on the quantum state S. And as the quantum state

AS exhibits strong quantum correlations, the propagation

medium has also an impact on the whole quantum state AS.

We focus our attention on the hypothesis H1 where we

receive the photon S after its propagation. We can get two

possible quantum states due to the propagation medium.

First, we can have a maximally entangled state. This state

can be defined with a state vector |Ψ−〉AS and it has the

maximum entanglement possible. In second, we can get a

mixed state. This state is mixed, it can not be written as

a state vector but it can be defined with a density matrix

ρ̂
(sep)
AS containing the quantum state information. By the

way, we do the same for the entangled state that gives

ρ̂
(e)
AS = |Ψ−〉 〈Ψ−|AS . Introducing a parameter γ ∈ [0, 1]

that enables to pass from the entangled state to the mixed

one, we write the (2).

ρ̂AS → γ ρ̂
(e)
AS + (1− γ) ρ̂

(sep)
AS (2)

Where we define the maximally mixed separable state

ρ̂
(sep)
AS = ÎAS/4 with ÎAS the identity matrix of the sys-

tem AS. The longer the quantum state AS interacts with

the propagation medium, the closer to one is γ. Then,

at final, we will get a maximally mixed state. To model

this behavior, we define γ = e−Γx with the parameter Γ
representing the interaction strength between the photon S

and the propagation medium over the distance x ∈ [0,+∞[.
We put also the condition Γ ∈ [0, 1]. But the propagation

medium does not only destroy the entanglement on AS, it

changes also the quantum state AS acting locally on S. The

quantum correlations make evolve the quantum state AS by

this local action on S while A remains untouched. In quantum

mechanics, this propagation medium action is represented by

a local measurement performed on the subsystem S without

acting on A.

Therefore, the local action of the propagation medium can

be represented by a measurement operator X̂ depending of

the parameter Γ. This operator does act only on the system

S, it takes the form of (3).

X̂ = ÎA ⊗
1

∑

i=0

X̂i (3)



Where ÎA is the identity matrix on the system A and
∑

i X̂i

are the local measure operator on the system S verifying the

unitarity relation with the normalization K = e−2Γx + e2Γx.

We get (4).

X̂0 = X̂†
0 =

(

eΓx/K 0
0 e−Γx/K

)

(4a)

X̂1 = X̂†
1 =

(

e−Γx/K 0
0 eΓx/K

)

(4b)

The propagation medium acts like a partial local measure-

ment so we apply only one operator (ÎA⊗X̂0) on the system

AS which projects progressively the qubit state ρ̂S on its

eigenstate |0〉S .

To perform our study, we apply the (4a) to (2) since it

describes the evolution of our system AS initially entangled

and pure to a system mixed and separable. Equation (2)

enables us to define a Werner state (see [9] [10]). Such a

quantum state is a mixture of a maximally entangled pure

state ρ̂
(e)
AS and a maximally mixed separable state ÎAS/4 like

in (2). It gives the density matrix in (5).












(1−γ)e2Γx

2K 0 0 0

0 (1+γ)e−2Γx

2K − γ
K

0

0 − γ
K

(1+γ)e2Γx

2K 0

0 0 0 (1−γ)e−2Γx

2K













(5)

We note this matrix ρ̂
(W )
AS . This Werner state depends on γ

by definition and it depends on Γ by the application of the

operator X̂0. Besides, we apply the measurement operator on

the pure state ρ̂
(e)
AS to make the comparison with the Werner

state. We write the density matrix in (6).

ρ̂AS =









0 0 0 0

0 e−2Γx

K
− 1

K
0

0 − 1
K

e2Γx

K
0

0 0 0 0









(6)

Note it is physically impossible for a quantum state to

remains pure when it interacts with a medium (like at-

mosphere). Equation (5) represents both actions of the

propagation medium while the (6) shows only the partial

measurement effect without affect the state configuration.

In sec.III, we use both states to understand the quantum

information evolution during propagation in the QI radar

scheme. To compare (5) and (6) evolutions, we use also the

state purity defined by P (ρ̂AS) = Tr{(ρ̂AS)
2}.

In quantum mechanics, a density matrice ρ̂i contains all

information about a quantum state i. Then, we use the density

matrice as a calculus basis to estimate the quantum state

information. This is the subject of sec.II-C.

C. The Information Theory Tools

In this section, we focus on the quantum information and

the classical information of the system AS. To quantify it,

we must compute the quantum correlations of the system as

its classical correlations. Hence, we have to use the informa-

tion theory [1]. We are also interested in the entanglement

rate calculation. Finally, in the case where several pairs of

entangled photons are used, we define the Batthacharyya and

the Chernoff bounds to discriminate the both quantum states

ρ̂
(e)
AS and ρ̂

(sep)
AS of (2).

The Quantum Information Theory (QIT) is the quantum

extension of the Classical Information Theory (CIT). In

CIT, we use probability laws pX where X is a random

variable to compute the information conveyed by a system.

This information is represented by the Shannon entropy

HX(x) = −
∑

x∈X px log px. In QIT, we use the density

matrices ρ̂ as the analog of the probability laws. And the

quantum entropy called the von Neumann entropy is defined

as S(ρ̂) = −Tr{ρ̂ log(ρ̂)} where Tr{.} is the trace operation

instead of a sum in CIT. From now, we define different

information quantities to describe our quantum state AS.

In CIT, for two random variable X, Y , we define the

classical mutual information in (7) in two forms in (7a) and

(7b) that are equivalent.

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (7a)

I(X,Y ) = H(X)−H(X|Y ) (7b)

Where H(X|Y ) = H(X,Y ) − H(X) is the classical

conditional entropy. The quantum extension of the mutual

information is naturally the quantum mutual information in

(8) for a bipartite state AS.

I(ρ̂AS) = S(ρ̂A) + S(ρ̂S)− S(ρ̂AS) (8a)

I( ˆρAS) = S(ρ̂A)− S(ρ̂A|ρ̂S) (8b)

The calculation of quantum correlations inside a quantum

system uses (8a) to quantify the total amount of correlations

and (8b) to quantify the classical correlations using the

measurement theory [11]. Actually, we use von Neumann

measurements {M̂i} with projectors of rank one that verify
∑

i M̂i = Î . The classical correlations are defined by J in

(9).

J (ρ̂AS){M̂(i)
S

}
= S(ρ̂A)− S(ρ̂A|ρ̂S){M̂(i)

S
}

= S(ρ̂A)−
1

∑

i=0

piS(ρ̂(i)A )
(9)

{M̂ (i)
S }, i = 0, 1, are the projectors on the subsystem S.

Where pi = Tr{(ÎA ⊗ M̂i)ρ̂AS(ÎA ⊗ M̂i)} and ρ̂
(i)
A =

TrS{(ÎA ⊗ M̂i)ρ̂AS(ÎA ⊗ M̂i)}/pi. Using the total amount

of correlations of (8a) and the classical correlations of (9),

we define the quantum correlations of the system AS in (10)

called the quantum discord.

d(ρ̂AS) = I(ρ̂AS)− sup
{

J (ρ̂AS){M̂(i)
S

}

}

(10)

sup{.} is the supremum over all measurements performed

on S. The quantum discord represents global quantum cor-

relations that we must not confuse with the quantum en-

tanglement which is a quantum phenomenon showing strong

quantum correlations [11]. To compare the entanglement and

the discord, we have also to estimate the entanglement inside

the system.

Quantum entanglement is a purely quantum phenomenon

that does not have a classical counterpart [12]. Any quantum

system that can not be written in a product state of its

subsystems is entangled. A product state is a tensor product

of several quantum subsystems:
⊗

i ρ̂i. For example, ρ̂
(e)
AS 6=

ρ̂A ⊗ ρ̂S where both subsystems are qubits with ρ̂i = Î/2.

There exists several entanglement measures and their utiliza-

tion depends on the operational context [11]. Here, we take a



quite common entanglement measure called the entanglement

of formation with the concurrence of Wootters [13].

The entanglement of formation consists in calculating the

binary entropy h(x) = −x log(x) − (1 − x) log(1 − x)
with x = (1 +

√
1− C2)/2 where C is the concurrence of

Wootters. It is defined as C(ρ̂AS) = max(0, λ1−λ2−λ3−λ4)
where the λi are the eigenvalues in decreasing order of

the matrix R =
√√

ρ̂AS ρ̃AS

√
ρ̂AS with ρ̃AS = (σy ⊗

σy)(ρ̂AS)
∗(σy ⊗ σy). (ρ̂AS)

∗ is the conjugate of ρ̂AS . σy

is the second Pauli matrix among {σx, σy, σz}.

All the quantities defined are suited to follow the quantum

information for one photon pair. But in a QI radar scheme,

we should use several pairs to make a detection process.

And to know the reliability of the detection using these

multiple photon pairs, we can make an estimation of the error

probability of detection Perror provided by the Batthacharyya

bound and by the Chernoff bound. These two quantities

enable to discriminate the two quantum states ρ̂
(e)
AS and ρ̂

(sep)
AS

when we emit the quantum state AS several times. Both

quantities are defined in (11).

Perror 6
1

2
e−M ·ξC 6

1

2
e−M ·ξB (11)

Where the coefficients ξB for Batthacharyya and ξC for

Chernoff are defined in (12) and M is the number of copy

of the initial quantum state created.










ξB = − log
(

Tr{
√

ρ̂
(sep)
AS

√

ρ̂
(e)
AS}

)

ξC = − log

(

min
06α61

(

Tr{(ρ̂(sep)AS )α(ρ̂
(e)
AS)

1−α}
)

)

(12)

The Batthacharyya bound is bigger than the Chernoff bound

but easier to calculate because we do not have to do a

minimization over α. Equations (11) and (12) represent the

discrimination of both contributions of (2) when they are

equiprobable.

Using all these notions, we perform simulations using the

density matrices in (5) and (6) to compute the quantum

correlations and the entanglement rate.

III. SIMULATION RESULTS AND DISCUSSION

We performed two simulations for the information evolu-

tion from ρ̂
(W )
AS in (5) and ρ̂

(e)
AS in (6).

The Fig.2 shows the entanglement rate E and the quantum

discord d as functions of the distance x for several Γ ∈ [0, 1].
As said in sec.II-B, the state AS remains pure despite the

local action on ρ̂S . So calculating the state purity, we obtain

: P = Tr{(ρ̂AS)
2} = 1 ∀x > 0. We observe that the

entanglement and the discord have exactly the same behavior

while their definitions are definitively different. In fact, as

we start as a maximally entangled quantum state, we got

the maximum of correlations possible so the entanglement

is of course maximal but it also the case for the quantum

correlations:d(x = 0) = 1 bit. Although, they are two kinds

of quantum correlations, they have the same behavior over

x. We can explain it by the state purity that is still maximal

to one. We see it looking at the density matrix in (6), the

state configuration is not affected by the medium action. And

naturally, we see also that the closer to one is the parameter

Γ, the faster the entanglement decreases as the quantum

Fig. 2. Graphic of the entanglement rate E and the quantum discord d
for the maximally entangled state ρ̂AS . The parameters Γ tested are Γ =
0.2, 0.4, 0.8. The graphic (a) is the entanglement of formation as a function
of the distance x, calculated with the concurrence of Wooters. The graphic
(b) is the quantum discord as a function of the distance x with the projection
measurements performed on the system S.

discord. If the medium has a strong action on ρ̂S , we lose

all quantum correlations faster.

The ρ̂AS state evolution is physically impossible but it still

be interesting. An open quantum system is a quantum system

that interacts with another system which we do not have any

control. Such an open system evolves into a mixed state due

to the interaction. As it is not the case in Fig.2, we see the

same evolution for quantum correlations and entanglement.

Now, we do the same calculations for the state ρ̂
(W )
AS .

In Fig.3a, we plotted with a logarithmic scale the entangle-

ment rate E and the quantum discord d of the state ρ̂
(W )
AS as

functions of the distance x for three values of Γ ∈ [0, 1]. In

parallel, in Fig.3b, we plotted the purity of ρ̂
(W )
AS as a function

of x. Contrary to Fig.2, we observe that the entanglement and

the discord have a different behavior. First, the entanglement

rate decreases monotonously and it tends to zero during the

propagation. The entanglement decay is also faster than for

the pure state in Fig.2. Second, the quantum discord has two

steps. At the beginning, for small values of x, the discord

decreases as the entanglement rate until an inflection point.

From this inflection point, the discord increases smoothly

until stabilize to the value d = 0.5 bit while the entanglement

rate decreases exponentially. The parameter Γ that represents

the photon-medium interaction strength controls how fast are

the steps of increasing-decreasing. The closer to one is the

parameter Γ, the faster the entanglement decreases as the

discord. We note also that the closer to one is Γ, the lower

the stabilization of the discord to 0.5 bit. We recall that ρ̂
(W )
AS

evolves due to two actions of the propagation medium. The

first action is symbolized by the parameter γ = e−Γx. The

longer is the propagation over x for a certain Γ, the greater

the possibility to get a maximally mixed separable state. γ
translates the evolution of our Werner state from a maximally



Fig. 3. Graphic of the entanglement rate E and the quantum discord d

for the Werner state ρ̂
(W )
AS

. Graphic (a):graphic of the entanglement rate

C(ρ̂
(W )
AS

) and the quantum discord d(ρ̂
(W )
AS

) as functions of Γx. Graphic

(b):Purity P = Tr{(ρ̂
(W )
AS

)2} of the Werner state over the distance x. The
values Γ tested are Γ = 0.2, 0.4, 0.9.

entangled state to a maximally mixed separable one. So there

is a moment where we have both contributions that means

our system AS is partially entangled and partially mixed.

The entanglement rate shows that we are partially entangled

and the purity P < 1 for x > 0 in Fig.3b. The second

action consists in the partial local measurement action on the

state ρ̂S . It projects the qubit state ρ̂S on the its eigenstate

|0〉S . The quantum correlations existing inside the system AS

make evolve the state ρ̂
(W )
AS . That produces as for the first

propagation medium action the entanglement decay. It is the

same situation than in Fig.2. The quantum discord undergoes

also these two actions. But contrary to entanglement it does

not tend to zero because of the transition of our state ρ̂
(W )
AS

from a maximally entangled pure state ρ̂
(e)
AS to a maximally

mixed separable state ÎAS/4. The non zero discord comes

from the mixed nature of our final quantum state and we get

d = 0.5 bit.

From the analysis of Fig.3 compared to Fig.2, we see

that under the influence of the propagation medium we

keep at least a little part of the quantum correlations. The

resilience of this part of quantum information enables us

to say a remote detection would be possible. It follows the

Lloyd’s analysis in [3] where only pure entangled states and

separable states were considered. Lloyd considered that even

if entanglement was immediatly destroyed by the medium, a

reliable detection was possible meaning that some quantum

information was kept somewhere. Using the operator of (4a)

to progressively change the quantum state AS shows that

some quantum correlations survived to the model applied in

this paper. Such a case where the quantum state changes

progressively under the medium influence is close to us-

ing microwave photons in atmosphere. Indeed, the photon-

atmosphere coupling is weaker for microwave frequencies

than for optical frequencies. Therefore, if the entanglement

is instantly destroyed at optical frequencies, it will be not for

microwave frequencies.

However, we are aware that the model used is really simple

compared to the interactions possible between a photon and

the molecules of the atmosphere. We have phenomena of

wave scattering and wave absorption that are really important

in conventional radar theory [4]. The same phenomena

are important for single photons. Futhermore, our model

assumed that the photon is not lost during the propagation.

Such an assertion is unrealistic as soon as we consider

scaterring and absorption. Finally, the parameter Γ is only a

mathematical parameter and it does not depict a well defined

physical quantity.

By the way, a QI radar should use more than one pair of

entangled photons to do a detection. That means we should

do multiple times the same QI process described in Fig.1.

As we use both quantum states ρ̂
(e)
AS and ρ̂

(sep)
AS in (2) that

correspond to the situation H1 described in sec.II-B, we

discriminate these two states where the first one has the

maximal amount of quantum correlations while the second

one has the minimal quantum correlations. To do it we use

the Batthacharyya bound and the Chernoff bound of (11) and

(12). Here there is not any dependence on Γ. Thus, for only

one single-photon emission i.e. M = 1, we have the two

error probabilities P
(C)
e = 0.125 ≤ P

(B)
e = 0.25. These

probabilities decreases monotonously as we do multiple

emissions as showed by Fig.4.

Fig. 4. Graphic of the Batthacharyya bound pBatthacharyya and of the Chernoff
bound pChernoff as functions of the number of copies of the initial quantum
state.

The error probabilities of detection of the Batthacharyya

bound remains bigger than the Chernoff bound as M grows

up. Thus, for M = 10 number of quantum system copies,

we reach P
(B)
e < 10−2 and P

(C)
e < 10−6 that represent quite

small errors to discriminate reliably both extremal states.

Hence, for big M , we are able to realiably discriminate the

state with the maximal quantum correlations with state with

minimal correlations.

Finally, the simulations of quantum information evolution

performed with the states (6) and (5) allows us to say that



quantum correlations beyond the entanglement itself can

survive to a pertubative environment which the action is

similar to a partial local measurement. According to that,

a QI radar application could be interesting to develop in a

frequency interval where the photon-medium interaction is

quite low.

IV. CONCLUSION

In this paper, we performed a study of the quantum in-

formation evolution in function of a mathematical parameter

Γ depicting the interaction strength between a photon i.e.

qubit and its near environment. We worked in a Quantum

Illumination Radar scheme similar to Lloyd’s approach [3].

We modeled the propagation medium using a partial local

measurement operator that changes the quantum state AS

taking in consideration that the interaction makes evolve

the system from a entangled state to a mixed state. With

this propagation model, we showed that one part of initial

quantum information can survive despite the entanglement

loss due to the decoherence produced by the propagation

environment. The remaining quantum information could be

exploited in a remote detection so in a Quantum Illumination

process. The use of multiple emissions of photon pairs is

needed to reduce the error probability to discriminate both

quantum states ρ̂
(e)
AS and ρ̂

(sep)
AS .

The work presented in this paper is a preliminary study

of the propagation medium influence in a QI radar scheme.

Until now, we did not consider the thermal noise in the

process. That can represent a relevant continuity for this

work.
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