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Abstract: In this paper, we show that a basic fixed point method used to enclose the greatest fixed
point in a Kleene algebra will allow us to compute inner and outer approximations of invariant-based
sets for continuous-time nonlinear dynamical systems. Our contribution is to provide the definitions
and theorems that will allow us to make the link between the theory of invariant sets and the Kleene
algebra. This link has never be done before and will allow us to compute rigorously sets that can
be defined as a combination of positive invariant sets. Some illustrating examples show the nice
properties of the approach.

Keywords: invariant sets; Kleene algebra; nonlinear dynamical systems; path planning

1. Introduction

In this paper, we deal with a dynamical system S defined by the following state equation:

S : ẋ(t) = γ(x(t)) (1)

where x(t) ∈ Rn is the state vector and γ : Rn 7→ Rn is the evolution function of S [1,2].
Denote by ϕγ the flow map of (1); i.e., with the initial vector x0 = x(0), the system S
reaches the state ϕγ(t, x0) at time t. Our goal is to compute invariant sets [3] associated to
the system with an algebraic approach, which is new in this context. Moreover, we propose
to compute sets that can be expressed as a combination (union, intersection, image by a
function, etc.) of invariant sets. In the application section of this paper, we will show why
computing such combinations may be important in practice.

In particular, we will show the link between problems that can be expressed in terms
of invariant sets and the Kleene algebra, the elements of which are automorphisms of
a lattice [4]. We will take advantage of this algebraic structure to derive new efficient
algorithms that are able to solve problems involving invariant sets that were not possible
to compute with existing methods.

Our approach does not only provide a method to compute invariant sets. However,
it allows us to compute sets that can be defined as a combination of invariant sets, which
is the main contribution. We decided to explore an algebraic approach in order to get an
elegant formalization of the problem resolution, as shown in several examples at the end of
this paper.

A specific type of invariant set will be considered: the positive invariant set, which
is an important concept in control [5], fault detection [6], safety [7], verification [8,9], or
reachability [10].

A set A is positive invariant of (1) if we have

a ∈ A, t ≥ 0 =⇒ ϕγ(t, a) ∈ A. (2)
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The set of all positive invariant sets is a complete lattice; i.e., the union and the
intersection of two positive invariant sets is positive invariant. A consequence is that given
a set A, the notion of the greatest positive invariant set contained in X and smallest positive
invariant set enclosing A can be defined. For instance, the greatest positive invariant set
for (1) included in A is given by

Inv+(γ,A) =
{

a|∀t ≥ 0,ϕγ(t, a) ∈ A
}

. (3)

Methods exist to characterize positive invariant sets for specific cases such as for in-
stance when γ is linear [11–13] or discrete time [14]. Outer approximation can be computed
by providing a model for approximation [15] or support functions [16]. Moreover, most
approximations correspond to convex sets such as ellipsoids, zonotopes [17], or polytopes.
These linear-based approaches can be extended to hybrid linear systems [18–20].

For continuous-time nonlinear systems, computing invariant sets is much more diffi-
cult, and different types of approaches can be extracted from the literature.

• The first approach is based on sampling. It has been used for instance by Saint
Pierre [21] to rigorously compute viability kernel, which is a specific type of controlled
invariant set. Bobiti and Lazar [22] also used a sampling-based method for stability
verification of both continuous and discrete-time nonlinear systems. To get guaranteed
results, an interval integration is often needed (see e.g., [23–25]).

• The second approach is based on Lyapunov theory [3,26] and is convenient for proving
asymptotic stability of problems with an infinite time horizon. The principle is to find
a parameter vector p or a Lyapunov-like function V(p, x) such that the set

{x|V(p, x) = 0 and V̇(p, x) ≥ 0}

is empty. In such a case, the set S(p) = {x|V(p, x) ≤ 0} defines a positive invariant
set. The function that is generally chosen for V(p, x) is polynomial in the xi’s and
linear in the pj’s. When γ is polynomial, this choice for V(p, x) makes it possible
to use LMI/SOS/interval resolution techniques, which can be efficient when a low-
dimensional approximation exists. This approach relies on assumptions such as the
knowledge of an equilibrium point [27] or the polynomial property of the dynamics
of the system [28], which is not always realistic.

• The third approach is based is based on occupation measures, which are adapted to a
finite time horizon [27]. Now, it can also consider problems with infinite time horizon
at the price of technical difficulties [29].

• The fourth approach is based a polygonal decomposition of the state space [30,31]
and corresponds to the approach we will consider in the paper. For instance, in [30], a
triangulated region yields an index filtration for a Morse decomposition of the flow
on the system [32], which approximates the flow arbitrarily closely.

Different solvers such as SpaceEx [33,34] are available to compute numerically such
invariant sets.

The paper proposes to compute inner and outer approximations of invariant sets in
the general case where the system is continuous-time and nonlinear. More than that, it
introduces for the first time an approach based on the Kleene algebra to compute sets that
can be defined as operations on invariant sets. A possible application is the path planning
and avoid problem [35], where we search for the set of all initial conditions for trajectories
starting from of set A reaching the set B while avoiding the set C. It is not possible to solve
this type of problem rigorously using existing approaches.

This paper is organized as follows. Section 2 recalls some notions on lattices that will
be needed to understand the Kleene algebra in Section 3. Then, the specific case where the
elements of the Kleene algebra are made with automorphism is considered in Section 4. The
link with invariant sets in dynamical systems is introduced in Section 5. Some illustrative
test cases are given in Section 6. Section 7 concludes the paper.
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2. Lattices

Invariant sets have a lattice structure [36], and this will allow us to formalize our
problem in an algebraic form. This section recalls some classical definitions on lattices
and provides some illustrations to understand the basic principles that are needed to
understand our methodology.

2.1. Definitions

A lattice (L,≤,∧,∨) is a partially ordered set, closed under least upper and greatest
lower bounds [37]. The least upper bound of x and y is called the join and is denoted by
x ∨ y. The greatest lower bound is called the meet and is written as x ∧ y.

A lattice E is complete if for all (finite or infinite) subsets A of E , the least upper bound
∨A and the greatest lower bound ∧A belong to E . We define the top and the bottom of E
as > = ∨E and ⊥ = ∧E . A sublattice of a lattice (L,≤) is a nonempty subset of L that is a
lattice with the same meet and join operations ∨ and ∧ as L.

2.2. Machine Lattice

Consider a complete lattice (L,≤,∧,∨). A machine lattice (LM,≤,∧,∨) of L is a
complete sublattice of (L,≤,∧,∨) which is finite (thus, we can store it in the memory of
a computer [38]). Moreover, both L and LM have the same top > and bottom ⊥. This is
illustrated by Figure 1, which can be interpreted as follows.

• The gray square represents L.
• The element k is greater than f , since it is at its top right.
• The grid made with blue dots corresponds to LM.
• The variables a, b, c, d all belong to L, and we have c = a ∨ b and d = a ∧ b.
• The red polygon P is a sub-lattice of L. Its bottom is ⊥P = ⊥ and its top is >P = e.
• The element i ∈ L is inside [⊥P ,>P ]. Thus, there exists an element n in P which

corresponds to the smallest element in P , which is larger than i. There exists also an
element m in P that corresponds to the greatest element in P , which is smaller than i.

• The smallest machine interval containing e is [g, f ].

⊥

>

j

m

i n h
g

f k

e

a

d b

c

Figure 1. The grid corresponds to the machine lattice LM associated to the lattice L.
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Remark 1. In our context, the lattice L will correspond to the set of all subsets of Rn and LM to
the set of all machine sets (or mazes [39,40]). In Figure 1, the red polygon could represent the set of
all positive invariant sets included in the set represented by e. The figure could also illustrate that
given a set A, there exists a smallest invariant set that contains A, and there exists a largest element
in P , which is included in A.

3. Kleene Algebra

The invariant sets of a dynamical system can be defined as fixed points of monotonic
operators, which can be formalized elegantly using a Kleene algebra. The basic notions
related to Kleene algebras are recalled in this section.

3.1. Definition

A Kleene algebra (K,+, ·, ∗) is a set K together with two binary operations + : K×
K → K and · : K×K → K and one function ∗ : K → K, so that the axioms listed in the
Table 1 are satisfied.

The literature contains several inequivalent definitions of Kleene algebras and related
algebraic structures [41]. Our definition differs when we introduce the Kleene operator: we
assume star-continuity, which is needed as soon as infinite cardinal sets are considered.

Probably the mainstream definition is that of Kozen in [42], where the Kleene operator
is defined formally by the following properties

1 + aa∗ ≤ a∗

1 + a∗a ≤ a∗

ax ≤ x ⇒ a∗x ≤ x
xa ≤ x ⇒ xa∗ ≤ x

and the star-continuity is defined by

xa∗y = ∑i≥0 xaiy.

Now, if we take x = y = 1, we get

a∗ = 1 · a∗ · 1 = ∑
i≥0

1 · ai · 1 = ∑
i≥0

ai.

which corresponds to our definition.
The following proposition illustrates the fact that applying a Kleene star operator to a

amounts to computing a fixed point. This will be used later in the algorithms.

Proposition 1. Given a star continuous Kleene algebra (K,+, ·, ∗), we have

(1 + a)∞ = lim
i→∞

(1 + a)i = a∗ (4)

where
a0 = 1

ai+1 = a · ai

a∞ = limi→∞ ai (if it exists)

Proof. We first show by induction that

(1 + a)n = ∑
i∈{0,n}

ai. (5)

Assume that the proposition is true for n. We have
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(1 + a)n+1 = (1 + a)(1 + a)n

(5)
= (1 + a) ·∑i∈{0,n} ai

=
(

∑i∈{0,n} ai + a ·∑i∈{0,n} ai
)

=
(

∑i∈{0,n} ai + ∑i∈{0,n} ai+1
)

=
(

∑i∈{0,n} ai + ∑i∈{1,n+1} ai
)

= ∑i∈{0,n+1} ai.

Since the two sequences involved in (5) are equal, they have the same limit. Therefore,

lim
n→∞

(1 + a)n = lim
n→∞

 ∑
i∈{0,n}

ai

 = ∑
i∈{0,...,∞}

ai = a∗.

Table 1. Axioms/definitions of a star-continuous Kleene algebra.

Kleene algebra (K,+, ·, ∗)
Addition a + b

Product a · b

Associativity a + (b + c) = (a + b) + c
a · (b · c) = (a · b) · c

Commutativity a + b = b + a

Distributivity a · (b + c) = (a · b) + (a · c)
(b + c) · a = (b · a) + (c · a)

Zero a + 0 = a

One a · 1 = 1 · a = a

Annihilation a · 0 = 0 · a = 0

Idempotence a + a = a

Partial order a ≤ b⇔ a + b = b

Kleene star a∗ = 1 + a + a · a + a · a · a + . . .

3.2. Intervals

Consider a star-continuous Kleene algebra (K,+, ·, ∗). It is equipped with the order
relation≤ defined by a ≤ b⇔ a+ b = b (see Table 1). We consider (KM,≤,∧,∨) a machine
lattice of K with respect to ≤, i.e.,

(i) a ∧ b = max{c ∈ KM|c ≤ a, c ≤ b}
= ∑{c ∈ KM|c ≤ a, c ≤ b}

(ii) a ∨ b = min{c ∈ KM|a ≤ c, b ≤ c}
= a + b.

The max and min are used since KM is finite. To prove (i) we consider c, d in KM. We have{
c ≤ a ∧ b
d ≤ a ∧ b

⇒
{

c ≤ a, c ≤ b
d ≤ a, d ≤ b

⇒
{

c + d ≤ a + a
c + d ≤ b + b

⇒
{

c + d ≤ a
c + d ≤ b

⇒ c + d ≤ a ∧ b
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such that c ≤ a, c ≤ b and d ≤ a, d ≤ b. To check that a ∨ b = a + b (in (ii)), it suffices to
observe that a ≤ a + b and that b ≤ a + b.

It can be shown that (KM,+, ·, ∗) is also a Kleene algebra. Note that since KM is finite,
it is obviously star-continuous.

Definition 1. An interval of (K,+, ·, ∗) is a subset [a] of K that can be written as

[a] =
[
a−, a+

]
=
{

a ∈ K|a− ≤ a ≤ a+
}

where a−, a+ belong to KM.

Note that both ∅ and K are intervals of K. Thus, an interval arithmetic similar to
that proposed by Moore [43] for real numbers can be derived. This will be used later to
compute with quantities defined as expressions of fixed point operators. As a consequence,
if a ∈ [a] = [a−, a+], b ∈ [b] = [b−, b+], we have

[a−, a+]∗ =
[
(a−)∗, (a+)∗

]
[a−, a+] + [b−, b+] = [a− + b−, a+ + b+]
[a−, a+] · [b−, b+] = [a− · b−, a+ · b+].

(6)

due to the monotonicity of the operators +, ·, ∗.

4. Kleene Algebra of Automorphisms

The notions presented in Sections 2 and 3 can be seen as direct extensions of existing
algebraic approaches related to lattices and Kleene algebra. In this section, we introduce
automorphism-based Kleene algebras [4], which will allow us to make a first bridge
between algebraic tools and invariant sets of nonlinear dynamical systems.

4.1. Automorphisms

Given a complete lattice (L,≤,∧,∨,⊥,>), an automorphism of L is a function
f :L → L such that

(i) f (>) = >
(ii) f (a ∧ b) = f (a) ∧ f (b)

. (7)

As we will see later (see, e.g., Table 2), no property is assumed concerning the operator ∨.
We denote by A(L) the set of automorphisms of L.

Proposition 2. If f , g are in A(L), then:

(i) a ≤ b⇒ f (a) ≤ f (b)
(ii) f ∧ g ∈ A(L)
(iii) f ◦ g ∈ A(L)
(iv) Id∧ f ∧ f 2 ∧ f 3 ∧ · · · ∈ A(L)

(8)

where the function f ∧ g is defined by ( f ∧ g)(a) = f (a) ∧ f (a).

Proof. (i) We have

a ≤ b ⇔ a = b ∧ a
⇒ f (a) = f (b ∧ a)
⇔ f (a) = f (b) ∧ f (a) (see Eq 7,ii)
⇒ f (a) ≤ f (b).

(9)

(ii) We have ( f ∧ g)(>) = >∧> = >. Moreover,
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( f ∧ g)(a ∧ b) = ( f (a ∧ b)) ∧ (g(a ∧ b))
= f (a) ∧ f (b) ∧ g(a) ∧ g(b)
= ( f ∧ g)(a) ∧ ( f ∧ g)(b)

(10)

(iii) We have f ◦ g(>) = f (>) = >. Moreover,

( f ◦ g)(a ∧ b) = f (g(a) ∧ g(b))
= ( f ◦ g)(a) ∧ ( f ◦ g)(b)

(11)

(iv) It corresponds to the Kleene operator and is a direct consequence of (ii), (iii).

Proposition 3. Assume that for f ∈ A(L), f ∗ = Id∧ f ∧ f 2 ∧ f 3 ∧ . . . exists (star-continuity
assumption), then the set (A(L),∧, ◦, ∗) is a Kleene algebra.

Proof. We need to check all properties of Table 2. In the two tables, the symbols of the
operators changed: + corresponds to ∧, ∗ corresponds to ◦, and ≥ corresponds to ≤. To
prove the distributivity f ◦ (g ∧ h) = ( f ◦ g) ∧ ( f ◦ h), we proceed as follows:

f ◦ (g ∧ h)(a) = f ◦ (g(a) ∧ h(a))
(7,ii)
= ( f ◦ g)(a) ∧ ( f ◦ h)(a).

(12)

All other properties can be proved similarly.

Table 2. The set of automorphisms forms a star-continuous Kleene algebra.

Kleene Algebra (A(L),∧,◦,∗)
Addition f ∧ g

Product f ◦ g

Associativity f ∧ (g ∧ h) = ( f ∧ g) ∧ h
f ◦ (g ◦ h) = ( f ◦ g) ◦ h

Commutativity f ∧ g = g ∧ f

Distributivity f ◦ (g ∧ h) = ( f ◦ g) ∧ ( f ◦ h)
(g ∧ h) ◦ f = (g ◦ f ) ∧ (h ◦ f )

Zero f ∧> = f

One f ◦ Id = Id ◦ f = f

Annihilation f ◦ > = >

Idempotency f ∧ f = f

Partial order f ≥ g⇔ f ∧ g = g

Kleene star f ∗ = Id∧ f ∧ f 2 ∧ f 3 ∧ . . .

Remark 2. The relation order for automorphism has been chosen backward (i.e., ≥ instead of ≤).
This choice is motivated by the fact that the inclusion order will be used later, and we will have the
following correspondences: ≤↔⊂, ∧ ↔ ∩.

Proposition 4. The fixed points of Id∧ f correspond to that of f ∗, i.e.,

Fix( f ∗) = {a| f ∗(a) = a} = Fix(Id∧ f ) (13)

Proof. The proof is decomposed in two parts. In the first part, we prove that Fix(Id∧ f ) ⊂
Fix( f ∗) and in the second part, we prove the inverse.
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(1) We have
(Id∧ f )(x) = x ⇒ ∀i ≥ 1, (Id∧ f )i(x) = x

⇒ (Id∧ f )∞(x) = x
⇔ f ∗(x) = x

since, from (4), we have (Id∧ f )∞ = f ∗. Thus, Fix(Id∧ f ) ⊂ Fix( f ∗).
(2) We now want to prove the inverse inclusion: Fix( f ∗) ⊂ Fix(Id∧ f ).

We first prove by induction that

∀i ≥ 0, (Id∧ f )i ≥ (Id∧ f )i+1. (14)

From the partial order property of Table 2, we have

Id ≥ (Id∧ f )⇔ Id∧ (Id∧ f ) = Id∧ f (15)

since Id∧ (Id∧ f ) = (Id∧ Id) ∧ f = Id∧ f , we get that the right-hand side of (15) is true
and thus Id ≥ Id∧ f is true. This means that for i = 0, (14) is true.

Assume now that (14) is true for i, let us check that it is true for i+ 1. From Proposition 2
(i), we get that

f ≥ g⇒ h ◦ f ≥ h ◦ g.

With the substitution f → (Id∧f)i, g→ (Id∧ f )i+1, h→ Id∧ f , we get

(Id∧ f )i ≥ (Id∧ f )i+1 ⇒ (Id∧ f ) ◦ (Id∧ f )i ≥ (Id∧ f ) ◦ (Id∧ f )i+1.

Since (14) is true for i, we get

(Id∧ f )i+1 ≥ (Id∧ f )i+2,

thus, we have proved (14).
From (14), we get (Id∧ f )i is a decreasing sequence and thus

Id ≥ (Id∧ f ) ≥ (Id∧ f )i ≥ (Id∧ f )∞.

Take a fixed point x of (Id∧ f )∞, we get

x ≥ (Id∧ f )(x) ≥ (Id∧ f )∞(x) = x,

thus, (Id∧ f )(x) = x, which implies that x is also a fixed point of Id∧ f .

Since f is a monotonic, so is Id ∧ f and f ∗. From the Knaster–Tarski theorem, we
deduce that Fix( f ∗) is a complete sublattice of L.

4.2. Factorization

In this paper, we want to compute expressions involving the Kleene star operator. For
efficiency reasons, we want to avoid reaching the fixed point each time the star operator is
used. Ideally, we would like to have a unique fixed point to be reached. For this, we need
to transform an expression containing several stars into an expression with only one star.
Equivalently, we want to factorize the fixed point operator as much as possible. For this,
we can use the factorization rules such as [42]:

f ∗ ∧ f ∗ = f ∗

f ∗ ◦ f ∗ = f ∗

( f ∗)∗ = f ∗

( f ∗ ∧ g∗)∗ = ( f ∧ g)∗
(16)
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but we can do more. Assume for instance that we have to compute

f ∗(a) ∧ g∗(b), (17)

we understand that it is not necessary to compute f ∗(a) and g∗(b) independently to finally
observe that we get ⊥. For instance, we may have spent a lot of time to compute accurately
f ∗(a) and a few milliseconds to get that g∗(b) = ⊥ to finally reach the conclusion that
f ∗(a) ∧ g∗(b) = ⊥. As a result, we need to develop some specific algorithms taking into
account that calling closures has a cost. The factorization allows us to reduce several fixed
point iterations into a single one. This can be used to increase the speed of convergence of
fixed point algorithms.

4.3. Intervals

Given a lattice (L,≤,∧,∨) and an automorphism f ∈ A(L), we want to compute
f ∗(a) where a ∈ L. We consider also a machine lattice LM of L. An automorphism of LM
is called a machine automorphism. As seen in Subsection 3.2, since A(L) is a Kleene algebra,
we can define intervals in A(L).

Definition 2. An interval of A(L) is a subset [ f ] of A(L), which can be written as

[ f ] =
[

f−, f+
]
=
{

f ∈ A(L)| f− ≤ f ≤ f+
}

(18)

where f−, f+ belong to A(LM).

Proposition 5. We have

Fix
(
( f−)∗

)
⊂ LM ∩ Fix( f ∗) ⊂ Fix

(
( f+)∗

)
. (19)

Proof. Let us first prove the first inclusion. First, since ( f−)∗ ∈ A(LM) , all its fixed points
are inside LM. We have

a ∈ Fix
(
( f−)∗

)
⇒ ( f−)∗(a) = a,
⇔ a ∧ f−(a) = a (see (13))
⇒ a ∧ f (a) ≥ a (since f− ≤ f )
⇔ a ∧ f (a) = a (since a ∧ x ≤ a)
⇔ f ∗(a) = a (see (13)).

Let us now prove the second inclusion. We have

a ∈ LM ∩ Fix( f ∗)
⇒ f ∗(a) = a, a ∈ LM
⇔ a ∧ f (a) = a, a ∈ LM (see (13))
⇒ a ∧ f+(a) ≥ a (since f ≤ f+)
⇔ a ∧ f+(a) = a (since a ∧ x ≤ a)
⇔ ( f+)∗(a) = a (see (13))

Theorem 1. If a ∈ [a−, a+], where a−, a+ both belong to LM, then

(i) f ∗(a) ∈
[
( f−)∗(a−), ( f+)∗(a+)

]
(ii) f ∗ ◦ ( f−)∗(a−) = ( f−)∗(a−)
(iii) f ∗(a) ≤ (Id∧ f+)i

(a+), ∀i ≥ 0
(20)

Remark 3. The membership relation (i) means that we are able to compute in a finite time an
enclosure of the fixed point f ∗(a). Relation (ii) states that the fixed point obtained by ( f−)∗ is a
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fixed point of f ∗. However, this is not true for ( f+)∗. Relation (iii) tells us that at each iteration i,
we have an upper bound for the solution f ∗(a), but we need to reach the fixed point to get a lower
approximation ( f−)∗(a−) of f ∗(a).

Proof. (i) is a consequence of the fact that f i(a) ∈
[
( f−)i

(a−), ( f+)i
(a+)

]
.

(ii) Since ( f−)∗ ◦ ( f−)∗(a−) = ( f−)∗(a−), the quantity ( f−)∗(a−) is a fixed point of
( f−)∗ . Now, from (19), we have Fix

(
( f−)∗

)
⊂ Fix( f ∗). Therefore, ( f−)∗(a−) is also a fixed

point of f ∗, i.e., f ∗ ◦ ( f−)∗(a−) = ( f−)∗(a−).
(iii) We have

f ∗(a) = (Id∧ f )∞(a) ≤ (Id∧ f )i(a)
≤ (Id∧ f+)i

(a) ≤ (Id∧ f+)i
(a+)

The inclusion (iii) is illustrated by Figure 2 where the grid corresponds to LM, the
magenta points correspond to Fix

(
( f−)∗

)
, the blue points correspond to Fix

(
( f+)∗

)
, and

the light red polygon corresponds to Fix( f ∗).

Figure 2. Fixed points Fix
((

f−
)∗) in magenta, Fix

((
f+
)∗) in blue, and Fix( f ∗) is the light red polygon.

4.4. Algorithm to Find the Greatest Fixed Point

We propose here an interval algorithm [44] to compute f ∗(a), where a ∈ [a] = [a−, a+].
We assume that we have an interval [ f ] = [ f−, f+] containing f , where f−, f+ belong to
A(LM). From Equation (20), we know that

f ∗(a) ∈
[(

f−
)∗(a−), (Id∧ f+

)i(a+)]. (21)

To compute f ∗(a), we apply the sequence of interval operations defined by

[x](i + 1) = (Id∧ [ f ])([x](i))
[x](0) = [a]

(22)

up to the fixed point. From Theorem 1, we get a guaranteed approximation of f ∗(a). Since
LM is finite, the algorithm always terminates. The principle of the algorithm is illustrated
by Figure 3. First, a is approximated by an interval [a−, a+] of A(LM). Then, we compute
(Id∧ [ f ])([a]), which corresponds to [b] = [b−, b+]. Then, we compute (Id∧ [ f ])([b]),
which corresponds to [c] = [c−, c+]. The last subfigure corresponds to the fixed point
interval [d] = ([ f ∗])([a]) which contains the solution f ∗(a).

The sequence (4) provides a guaranteed enclosure for the solution, and the accuracy
is related to the precision we used to define the machine lattice LM. Once the algorithm
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terminates, if we are not satisfied by the quality of the approximation, we should restart
from the beginning by redefining LM with a finer level of granularity.

Remark 4. In our implementation, a multi-scale approach is used for more efficiency and more
accuracy: once the fixed point interval [d−, d+] is reached, we build a new grid inside the interval
[d−, d+]. We also combine with an inflation process, which increases d− without overtaking the
solution d. More precisely, in Figure 3, we may increase d− top-right still staying inside the red
polygon in order to get a more accurate approximation for the solution d. We called this process
inflation, since in the context of this paper, the points of the figure correspond to subsets of Rn

equipped with the order relation is ⊂. When we increase d, we may understand that we inflate the
set corresponding to d− still being included in the solution set corresponding to d.

Figure 3. Algorithm that computes an approximation of f ∗(a), a ∈ [a].

5. Application to Dynamical Systems

In this section, we show that the previous algorithm can directly be used to compute
invariant sets of continuous-time dynamical systems. Furthermore, we will show that we
are able to compute sets that can be defined as a combination of invariant sets.

5.1. Greatest Positive Invariant

Consider the system S defined by Equation (1). The power set P(Rn) of the state space
Rn and equipped with ∩,∪ is a lattice. We denote by (A(P(Rn)),∩, ◦, ∗) the associated
set of automorphisms. We want to find an automorphism

−→
f in A(P(Rn)) that can be

enclosed between two machine automorphisms and such that
−→
f ∗(A) corresponds to the

greatest positive invariant set included in A, i.e.,
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−→
f ∗(A) =

{
a ∈ A|∀t ≥ 0,ϕγ(t, a) ∈ A

}
(23)

We may find some tools for that such as CAPD [24] or a tube approach [45] devoted to
this type of problem. Now, these types of approaches only consider a finite time integration
and are unable to compute the fixed point (23) in a reasonable time as shown in [46,47].
Therefore, it is important to build an automorphism

−→
f , which is fast to evaluate and that

will converge quickly. This can be done by using an Eulerian positive predictor [10], which
analyzes the geometry of the vector field associated to the dynamic ẋ(t) = γ(x(t)) of the
system without performing any time integration. We propose to use a discretization of the
state space using mazes [31]. Mazes correspond to a polygonal decomposition of the state
space coupled with an interval enclosure for γ(x), which is valid inside the corresponding
polygon. This decomposition by mazes can be interpreted as an interval of dynamics with
a lower bound and an upper bound. The polygonal representation associated to the maze
is a discrete object that can be represented in the memory of the computer by floating point
numbers. It will be used to approximate from inside and from outside the sequence of
sets that should converge in a finite number of iterations to the invariant set we want to
compute. Equivalently, the polygonal representation corresponds to the machine lattice we
use in our implementation to represent subsets of Rn.

5.2. Paths

Definition 3. Given a point a and the system S : ẋ(t) = γ(x(t)). The path associated to a is
defined as

Ψγ(a) =
{

z|∀ε > 0, ∃t1 > 0, ‖ϕγ(t1, a)− z‖ ≤ ε
}

. (24)

Equivalently, we can write
Ψγ(a) = ϕγ([0, ∞], a). (25)

The path Ψγ(a) is a closed set and contains the equilibrium points or cycles to which
the system will converge from a.

Definition 4. (Path inside a region). Consider the system (1), a region Y, and a point a ∈ Y.
We define the path inside Y as Ψγ|Y(a) where the function γ|Y is defined as

(γ|Y)(x) =
{

γ(x) if x ∈ Y
0 otherwize

(26)

This notion is illustrated by Figure 4 where two trajectories starting from a and b
are represented. The path Ψγ|Y(a) contains a limit cycle, whereas Ψγ|Y(b) stops at the
boundary of Y.

Figure 4. Illustration of the definition of a path inside a region.
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5.3. Cover and Automorphism

In this section, we define the automorphism
−→
f that we will use to solve our problems

involving invariant sets. It will be based on the notion of cover that we now define. A cover
P is a collection of open boxes of Rn whose union is Rn. Denote by P(x) the union of all
boxes of P containing x.

Proposition 6. If A is closed, we have

a ∈ Inv+(A)⇒ Ψγ|P(a)(a) ⊂ A.

where Inv+(A) is the largest positive invariant set included in A.

Proof. We have
a ∈ Inv+(A) ⇒ ∀t ≥ 0,ϕγ(t, a) ∈ A

⇒ ∀t ≥ 0,ϕγ|P(a)(t, a) ∈ A
⇒ Ψγ|P(a)(a) ⊂ A

Theorem 2. Consider the system S : ẋ(t) = γ(x(t)), a closed set A, and a cover P of the state
space. The set-valued function defined by

−→
f (A) =

{
x|Ψγ|P(x)(x) ⊂ A

}
(27)

is an automorphism. We call
−→
f (A) the forward Eulerian predictor, since it predicts where the state

will go for one step. Now, the step is not temporal (as for Lagrangian predictors) but spacial and
related to the cover P .

Proof. First, note that we have
−→
f (Rn) = Rn. Moreover,

−→
f (A∩B) =

{
x|Ψγ|P(x)(x) ⊂ A∩B

}
=

{
x|
(

Ψγ|P(x)(x) ⊂ A
)

and
(

Ψγ|P(x)(x) ⊂ B
)}

=
{

x|Ψγ|P(x)(x) ⊂ A
}

∩
{

x|Ψγ|P(x)(x) ⊂ B
}

=
−→
f (A) ∩

−→
f (B).

(28)

This is illustrated by Figure 5 in the case where γ(x), represented by its blue arrow
vector field, is constant and oriented to the right. The polygonal set on the first sub-figure
represents A. In this figure, the cover is made with two boxes, which are open and overlap
(just a little) on their boundaries. Now, this overlapping is not represented for the sake
of clarity.

In the figure a ∈ A, P(a) is made with a single box (the left one). The set Ψγ|P(a)(a) is
represented by the blue dotted segment starting from a. Since Ψγ|P(a)(a) is not a subset

of A, a /∈
−→
f (A). It means from Proposition 6 that a /∈ Inv+(A), and this is why it can

be removed. We have b ∈ A and Ψγ|P(b)(b) is the blue dotted segment starting from b.

Since Ψγ|P(b)(b) ⊂ A, we have b ∈
−→
f (A). For point c ∈ A , the set P(c) is made with

the two boxes, instead of one for P(a) and P(b). As a result, Ψγ|P(c)(c), the left dotted

green segment is not a subset of A. Thus, c /∈
−→
f (A). Since c ∈ Ψγ|P(b)(b) and c /∈

−→
f (A),



Algorithms 2022, 15, 90 14 of 24

we conclude that Ψγ|P(b)(b) is not inside A∩
−→
f (A). Thus, b /∈ A∩

−→
f (A) ∩

−→
f 2(A). It is

eliminated, since it cannot be an element of Inv+(A).

Figure 5. Forward Eulerian predictor
−→
f (A) eliminating points that will escape from A.

5.4. Invariant Set

In this section, we now show that the automorphism is linked to invariant sets by
a Kleene star operator. More precisely, we will show that Inv+(A) =

−→
f ∗(A). As a con-

sequence, an interval evaluation of
−→
f ∗(A) will allow us to have an inner and an outer

approximation of an invariant set Inv+(A).

Theorem 3. The set
−→
f ∗(A) contains the greatest positive invariant subset of A, i.e.,

Inv+(A) ⊂
−→
f ∗(A). (29)

Proof. The proof is by contradiction. Assume that (6) is false. Thus, there exists the largest
integer i such that Inv+(A) ⊂ B = (Id∩

−→
f )i(A). Equivalently, there exists a (see Figure 6)

such that 
(i) a ∈ B
(ii) a /∈

(
Id∩
−→
f
)
(B)

(iii) a ∈ Inv+(B)
(30)

now (
Id∩
−→
f
)
(B) =

{
x ∈ B |Ψγ|P(x)(x) ⊂ B

}
, (31)

thus {
a ∈ Inv+(B) (see (30, iii))

Ψγ|P(a)(a) 6⊂ B (since (30, ii)) (32)

which is inconsistent with Proposition 6.

Theorem 4. We have −→
f ∗(A) ⊂ Inv+(A). (33)

Proof. The proof is by contradiction, i.e., we assume that
−→
f ∗(A) 6⊂ Inv+(A). In such a

case, there exists a ∈
−→
f ∗(A), which is not in Inv+(A), as illustrated by Figure 7. For such

a point a, the trajectory ϕγ(t, a), t ≥ 0 leaves
−→
f ∗(A) at the point b = ϕγ(tb, a) for some

tb > 0 and then leaves A at point d. In the figure, the set Ψγ|P(b)∩A(b) corresponds to the
trajectory between b and c. Therefore, we can write

(i) b ∈ boundary
(−→

f ∗(A)
)

(ii) b /∈
(

Id∩
−→
f
)(−→

f ∗(A)
) , (34)
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however, also, there exists a neighborhood Vb of b such that

∀b′ ∈ Vb, b′ /∈
(

Id∩
−→
f
)(−→

f ∗(A)
)

︸ ︷︷ ︸
=
−→
f ∗(A)

(35)

which is inconsistent with (34, (i)).

Figure 6. An inconsistent situation that can never occur where a ∈ Inv+(A) but a /∈
−→
f ∗(A).

Figure 7. An impossible situation where a /∈ Inv+(A) but a ∈
−→
f ∗(A) that is used in the proof of

Theorem 4.

Corollary 1. The set-valued function

←−
f (A) =

{
x|Ψ−γ|P(x)(x) ⊂ A

}
(36)

is an automorphism. Moreover,
←−
f ∗(A) corresponds to the greatest negative invariant subset of A,

i.e.,
←−
f ∗(A) = Inv+(−γ,A) (3)

=
{

a|∀t ≥ 0,ϕγ(−t, a) ∈ A
}

. (37)
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6. Test Cases

We consider here several test cases in order to illustrate the principle and the efficiency
of our approach. We can note that our method is limited to small-dimension systems
because of the exponential complexity of the algorithm w.r.t. the dimension. This is indeed
the case for all safe methods dealing with non-convex solution sets.

6.1. Negative Invariant

We consider here a problem treated in [30] involving the Van der Pol system:{
ẋ1 = x2
ẋ2 =

(
1− x2

1
)
· x2 − x1.

(38)

Let us take for initial box A = [−3, 3]× [−3, 3]. To compute the greatest negative invariant
subset X of A, we compute

[←−
f ∗
]
(A), where

←−
f is the automorphism defined by 36 and[←−

f ∗
]

is a machine interval enclosure for
←−
f ∗ (see Equation (21)). The resulting approxima-

tion is illustrated by Figure 8, which is obtained in less than 5 s on a standard laptop (all
the computations were performed on an Intel i5-3320M@2.6 GHz with 8 GB of RAM). The
magenta part corresponds to the inner approximation X− of X. From (19), we know that
X− (magenta) is a negative invariant set. The outer approximation X+ corresponds to the
union of the yellow and the magenta zones. Note that X+ may not be negative invariant.

Figure 8. Approximation of the greatest negative invariant set included in the frame box A.
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6.2. Forward Reach Set

Given the system (38), the forward reach set [48] of a set A is defined by

Fwd(A) =
{

x | ∃t ≥ 0,ϕγ(−t, x) ∈ A
}

=
{

x | ∀t ≥ 0,ϕγ(−t, x) ∈ A
}

(37)
=

←−
f ∗
(
A
) (39)

We obtain in less than 4 s, with A =
{
(x1, x2) ∈ R2 | (x1 − 1.2)2 + (x2 − 1)2 ≤ 0.32

}
, the

approximation illustrated by Figure 9. The frame box is [−3, 3]× [−3, 3]. Note that we
were able to get a non-empty inner approximation of Fwd(A) that was not possible with
existing interval base methods such as [49]. Similar results could have been obtained using
flow* [50], but to have the guarantee to enclose the whole trajectory, we need to deal with
an infinite horizon, whereas the Taylor-based method (used in Flow*) is devoted to predict
the trajectory for a limited time horizon.

6.3. Backward Reach Set

Given a set A, the backward reach set is defined by

Bwd(A) =
{

x | ∃t ≥ 0,ϕγ(t, x) ∈ A
}

=
{

x | ∀t ≥ 0,ϕγ(t, x) ∈ A
}

(23)
=

−→
f ∗
(
A
) (40)

For the system (38), we get in less than 4 s the approximation of Bwd(A), as illustrated
by Figure 10. The frame box is [−3, 3]× [−3, 3].

Figure 9. Forward reach set associated with the red disk A for an infinite time horizon.
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Figure 10. Forward reach set associated with the red disk A.

6.4. Control Forward Reach Set

Consider the system:

S : ẋ(t) = γ(x(t), u), u ∈ {u0, u1} (41)

where u is the control that can be chosen asynchronously inside the set {0, 1}. Given an
initial state set A, we want to compute the set X of all states that can be reached from A [51].
We have

X = (Forwu=u1 ◦ Forwu=u0)
∞(A) . (42)

Equivalently, X can be defined as the limit of the sequence

X(k + 1) = Forwu=u1(Forwu=u0(X(k)))
X(0) = A , (43)

thus,
X(k + 1) =

←−
f1
∗
(

Forwu=u0(X(k))
)

=
←−
f1
∗
(←−

f0 ∗
(
X(k)

))
=

←−
f1
∗ ◦
←−
f0
∗
(
X(k)

)
.

(44)

Therefore, we have:

X = lim
k→∞

X(k) =
(←−

f1
∗ ◦
←−
f0
∗
)∗(

A
)
=
(←−

f1 ◦
←−
f0

)∗(
A
)

(45)

and finally,

X =
(←−

f1 ◦
←−
f0

)∗(
A
)

. (46)
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We consider as an example the car on the hill system [47] where
ẋ1 = x2

ẋ2 = −9.81 sin(0.55 sin(1.2x1)− 0.6 sin(1.1x1))

−0.7x2 + u

with the set A =
{
(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 0.52} and u ∈ {−1, 1}. We get in less than 10 s

the approximation illustrated by Figure 11, where the frame box is [−1, 6]× [−4, 4].

6.5. Minimal Robust Positive Invariant Set

The example is a continuous-time version of the example taken from [52]. We consider
the system described by {

ẋ1 = 0.2x1 + 0.2x2 − x1

ẋ2 = −0.2x1 + 0.5x2 + ω− x1

where ω ∈ [ω] = [−1, 1] is the perturbation. The system has the form ẋ(t) = γ(x(t), ω).
We want to compute the smallest set X containing 0 such that the system cannot escape.
This set corresponds to the minimal robust positively invariant set [53] and is known to be
difficult to compute. Moreover, no method exists in the literature to get a guaranteed inner
approximation for nonlinear continuous-time systems. Now, this problem is similar to the
previous one except that the control u is now replaced by a perturbation ω, and we can use
the same method. In 2 s, we obtain the approximation illustrated by Figure 12 where the
frame box is [−3, 3]× [−3, 3].

Figure 11. Inner and outer approximation of the control forward reach set.
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Figure 12. Approximation of the smallest positive invariant set containing 0.

6.6. Path Planning

Given the system (38) and three sets
A : (x1 − 0.8)2 + (x2 − 1.3)2 ≤ (0.4)2

B : [1.35, 1.45]× [−0.2, 0]
C : [0.74, 1.2]× [−1.5,−1.06]

.

Let us find the set X of all points corresponding to a path that starts from A, avoids B, and
reaches C. It corresponds to a path planning problem [54,55] for which interval analysis
has been shown to be particularly efficient [56–58]. We have

X = Forwγ|B(A) ∩ Backγ|B(C)

=
←−−
fγ|B

∗
(
A
)
∩
−−→
fγ|B

∗
(
C
) (47)

and thus our methodology applies. The result, depicted on Figure 13 left, was obtained
in less than 38 s for a search box [−3, 3]× [−3, 3]. The three images on the right show on
several zooms around A,B,C that a non-empty inner approximation was obtained, which
was not possible with existing solvers.
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Figure 13. Paths starting from A, avoiding B, and reaching C.

7. Conclusions

In this paper, we have proposed a new approach to compute invariant sets of continuous-
time dynamical systems. Our contributions are the following:

• A link between Kleene algebra and invariant sets. This allowed us to derive a simple
fixed point method able to compute guaranteed inner and outer approximations of
invariant sets.

• The treatment of toy examples for which no other existing approach is able to deal with.

The approach uses the fact that a suited automorphism has been found for a dynamical
system described by a deterministic state equation.

Moreover, our formalism allowed us to compute sets that can be defined as combi-
nations (intersection, union, complementary, image by automorphism) of invariant sets.
This combination can be interpreted as a first step toward what could be called an invariant
algebra, i.e., an algebra the atoms of which are positive invariant sets of dynamical systems.
This algebra transforms a complex problem such as the reach and avoid problem without
developing a complex algorithm with properties that are difficult to analyze. Instead, our
algebra yields a simple expression operating in our invariant algebra.

Our approach can directly be extended to discrete time system and the algorithm,
based on a formal expression, remains unchanged. Only atoms (i.e., the automorphisms)
have to be adapted. For a discrete time system of the form x(k + 1) = γ(x(k)), the
automorphism is even simpler, since it could be X 7→ γ(X) = {y|∃x ∈ X, y = γ(x)}. Thus,
we get an approach similar to that proposed in [59] where the set invariance is used to
prove properties of discrete-time dynamical systems in a context of temporal logic.

In our approach, we have chosen a structure that is a Kleene algebra. It captures many
properties we have when we deal with invariant sets. Now, some properties are forgotten
by the Kleene algebra. For instance, for our continuous-time systems, we have the property
−→
f ◦
−→
f ⊃

−→
f . From this property, we may get some other simplifications that could be

used to increase the efficiency of the resolution.
The Python code with all examples is made available at (1 March 2022): https://www.

ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html.

https://www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
https://www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
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