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Abstract

The solution to a biobjective optimization problem is composed of a collection of
trade-off solution called the Pareto set. Based on a computer assisted proof methodol-
ogy, the present work studies the question of certifying numerically that a conjectured
set is close to the Pareto set. Two situations are considered. First, we analyze the case
where the conjectured set is directly provided: one objective is explicitly given as a
function of the other. Second, we analyze the situation where the conjectured set is
parameterized: both objectives are explicitly given as functions of a parameter. In
both cases, we formulate the question of verifying that the conjectured set is close to
the Pareto set as a global optimization problem. These situations are illustrated on a
new class of extremal problems over convex polygons in the plane. The objectives
are to maximize the area and perimeter of a polygon with a fixed diameter, for a given
number of sides.
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1 Introduction

In many situations, more than one objective need to be considered by an optimization
problem. The present work focuses on biobjective optimization problems of the form

max
x∈Ω

( f1(x), f2(x)) (1)

where Ω ⊂ Rn is a closed set, and fi : Ω→ R are real-valued functions, for i ∈ {1,2}. In
general, there is no single vector x∈Ω that simultaneously maximizes both objectives. The
solution of the biobjective problem consists of the set of tradeoff points selected according
to the Pareto dominance relation [42] which compares two different decision vectors u∈Ω

and v ∈Ω. In a maximization context, the vector u ∈Ω is said to dominate v ∈Ω (denoted
u � v) if both objective function values evaluated at u are greater than or equal to those
evaluated at v with at least one strict inequality.

The set of nondominated points defines the solution set of the biobjective problem.
Pareto optimality is formally defined in Definition 1

Definition 1 A point v ∈ Ω is said to be Pareto optimal if and only if there is no u ∈ Ω

such that u� v. The set of all Pareto optimal points is called the Pareto set, and its image
in R2 is called the Pareto front, denoted by P .

In the biobjective case, the Pareto set satisfies an ordering property: any two Pareto
optimal points u ∈ Ω and v ∈ Ω satisfy f1(u) > f1(v) if and only if f2(u) < f2(v). This
ordering property is lost when the optimization problem contains more than two objectives.

The present paper is not about devising a method to generate the Pareto front. The
interested reader may consult one of the recent surveys [3, 21, 22, 38, 43] on multiobjec-
tive optimization, including methods to approximate and compare Pareto fronts, including
branch and bound methods [23, 24, 33]. Our work is not as general, and considers sit-
uations in which one has what he believes to be the Pareto front, and wishes to certify
numerically that it is true. This task is similar to providing a certificate of global optimal-
ity of a single solution in single-objective optimization, with the important difference that
an entire set of solutions needs to be validated in the biobjective case.

Let P̃ ⊂R2 denote our conjectured approximation of the Pareto front P . Two types of
situations are considered. First, we propose a strategy where an analytical formulation of
P̃ explicitly gives one of the objectives as a function of the other. Second, we consider the
case where both objectives are parameterized by a single variable on a known interval. In
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both situations, we propose a generic computer assisted proof methodology to numerically
certify that P̃ is close to the Pareto front P .

Our methodology is then applied to a new class of optimization problems from planar
geometry. We study the optimal tradeoffs between maximal perimeter and maximal area
of unit-diameter polygons and give numerical results for the hexagon that illustrate the
strategies describing P̃ .

The structure of the paper is as follows. Section 2 starts by defining the meaning of
an approximate Pareto front being close to the true front, and then describes two strategies
to certify a given approximation P̃ of the Pareto front P of a biobjective problem. Sec-
tion 3 details two optimization problems from planar geometry, and provides a conjectured
approximation P̃ of their Pareto front. Extensive numerical experiments are reported in
Section 4. For the second problem, the Pareto front is discontinuous and each connected
part is treated separately. Finally, the last section contains some concluding remarks.

2 Pareto front certification

In single-objective numerical global optimization, numerical certification of a candidate
solution is usually accompanied by a small tolerance parameter denoted by a scalar ε > 0.
We use the following definition in the context of a biobjective optimization problem.

Definition 2 Let ε > 0 be a fixed scalar and P̃I ⊂ R2 be a curve whose projection on
the abscissa is a nonempty interval denoted by I. The set P̃I is said to be an ε-Pareto
approximation of the Pareto front P on the interval I if for every (a,b) ∈ P̃I there exists
an u ∈ Ω such that a = f1(u) and b = f2(u), and in addition, there is no v ∈ Ω such that
f1(v)≥ a+ ε and f2(v)≥ b+ ε.

The left part of Figure 1 illustrates an ε-Pareto approximation P̃I of a Pareto front P
on an interval I. The right part of the figure shows a situation where the definition is not
satisfied, as there is an element v ∈Ω such that f1(v)≥ a+ ε and f2(v)≥ b+ ε.

The entire Pareto front is not necessarily connected, and may sometimes be obtained by
the union of connected parts (as illustrated in Section 4.3 by the non equilateral hexagon
problem with two connected parts). We consider problems in which the Pareto front is
composed of m parts:

P =
m⋃

i=1

PIi
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Figure 1: Illustrations of ε-Pareto approximation on I = [`,u]: satisfied (left); not satisfied
(right)

where {Ii}m
i=1 are disjoint intervals.

Definition 3 Let ε > 0 be a fixed scalar and for each i ∈ {1,2, . . . ,m} let P̃Ii ⊂ R2 be an
ε-Pareto approximation of the Pareto front component PIi . Then

P̃ =
m⋃

i=1

P̃Ii

is said to be an ε-Pareto approximation of the Pareto front P .

2.1 Certification of a connected part of an analytical front

The first situation that we consider is when one has a conjecture that provides an analytical
direct representation of one of the objective function in terms of the other on the Pareto
front. More precisely, let I ⊂ R be an interval on the value of the first objective function
value (for conciseness we use I rather than Ii for some i ∈ {1,2, . . . ,m}), and let g : I→ R
be a function such that the set

P̃I =
{
(a,g(a)) ∈ R2 : a ∈ I

}
is believed to be the part of the Pareto front P where the values of the first objective
function are taken from I.

Proposition 4 Suppose that for each a ∈ I, there exists an u ∈Ω such that f1(u) = a and
f2(u) = g(a). Then P̃I is equal to the Pareto front component PI if and only if the optimal
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value of the single-objective problem

max
x∈Ω

f2(x)−g( f1(x))

s.t. f1(x) ∈ I
(2)

is zero.

Proof. Consider any (a,b) ∈ P̃I . By definition b = g(a) and a ∈ I, and by the assumption,
there exists an u ∈ Ω such that f1(u) = a ∈ I and f2(u) = g(a). Therefore u satisfies the
constraint of Problem (2) and the optimal value is nonnegative since f2(u)−g( f1(u)) = 0.

If the optimal value of Problem (2) is zero, then f2(x) ≤ g( f1(x)) for all x ∈ Ω with
f1(x) ∈ I and consequently P̃I = PI .

If the optimal value of Problem (2) is strictly positive, then there exists an optimal
solution x of (2) such that f2(x) > g( f1(x)) which implies that ( f1(x),g( f1(x))) ∈ P̃I but
( f1(x),g( f1(x))) is not a Pareto front point. �

In the situation where P̃I is a subset of the Pareto front, solving Problem (2) causes
some numerical difficulties because every Pareto point is a global optimal solution of the
problem. So in practice, we introduce a small scalar ε > 0 and add an additional constraint
that makes the domain void when P̃I is a subset of the Pareto front:

max
x∈Ω

f2(x)−g( f1(x))

s.t. f2(x)−g( f1(x))≥ ε

f1(x) ∈ I.

(3)

The goal is now to apply a global optimization algorithm to this problem to show that there
are no feasible solutions. If there are no feasible solutions to Problem (3), and if for each
a ∈ I, there exists an u ∈ Ω such that f1(u) = a and f2(u) = g(a), then P̃I is an ε-Pareto
approximation of P on I, in the sense of Definition 3. Alternatively, if the global opti-
mization algorithm finds an optimal solution to this problem, then this solution belongs to
the Pareto set, showing that the conjectured set is incorrect. Any objective function could
have been chosen in Problem (3), as this is a constraint satisfaction problem (CSP). How-
ever, our numerical experiments suggest that using this function is preferable. In the same
way, any deterministic global optimization solver or CSP solver can be used, as long as it
performs a complete search on the entire domain and takes care about rounding numerical
errors of floating point numbers by using interval arithmetic, [16, 20, 31, 35]. The only
restriction is to be able to provide a certificate on the optimality of the solution found,
or on the guaranteed infeasibility of the problem. The IBBA solver used in Section 4.1
satisfy these requirements, [25, 29, 34].
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2.2 Certification of a connected part of a parameterized front

The second situation is when one has a conjecture that provides a parameterized represen-
tation of both objective functions on the Pareto front. More precisely, for i ∈ {1,2} let
gi : [q,q]→ R be functions defined on an interval bounded by the scalars q,q ∈ R. The
conjectured Pareto front on the interval I = [g1(q),g1(q)] is

P̃I =
{
(a,b) ∈ R2 : a = g1(q), b = g2(q), q ∈ [q,q]

}
.

Proposition 5 Suppose that for any (a,b)∈ P̃I , there exists an u∈Ω and a scalar q∈ [q,q]
such that f1(u) = g1(q) = a and f2(u) = g2(q) = b. Then P̃I equals the Pareto front
component PI if and only if the optimal value of the problem

max
x∈Ω,q∈R

f2(x)−g2(q)

s.t. f1(x)≥ g1(q)
q ∈ [q,q]

(4)

is zero.

Proof. Consider any (a,b) ∈ P̃I . By definition a = g1(q),b = g2(q) for some q ∈ [q,q],
and by the assumption, there exists an u ∈Ω such that f1(u) = a and f2(u) = b. Therefore
u satisfies the constraints of Problem (2) and the optimal value is nonnegative.

If the optimal value of Problem (4) is zero, then f2(x)≤ g2(q) for all x∈Ω and q∈ [q,q]
with f1(x)≥ g1(q) and consequently P̃I = PI .

If the optimal value of Problem (4) is strictly positive, then there exists an optimal
solution x ∈ Ω and q ∈ [q,q] such that f2(x) > g(q) and f1(x) ≥ g1(q). It follows that
(a,b) := (g1(q),g2(q)) belongs to P̃I but not to the Pareto front PI . �

As in the previous subsection, solving this problem is subject to numerical difficulties.
So we introduce a second feasibility problem for a fixed scalar ε > 0

max
x∈Ω,q∈R

f2(x)−g2(q)

s.t. fi(x)−gi(q)≥ ε i ∈ {1,2}
q ∈ [q,q].

(5)

Again, if there are no feasible solutions to Problem (5), and if for each a ∈ I, there
exists an u ∈Ω and a scalar q ∈ [q,q] such that f1(u) = g1(q) = a and f2(u) = g2(q), then
P̃I is an ε-Pareto approximation of P on I, in the sense of Definition 3.
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3 Maximizing the area and perimeter of small hexagons

A number of authors studied the questions of maximizing an attribute such as area, perime-
ter, diameter, width and sum of distances between vertices of a n-sided planar convex poly-
gon, while fixing another attribute to a fixed value. Surveys of recent progress on these
problems can be found in [1, 4, 6].

These problems can be generalized, by optimizing over more than one attribute. We
consider in the remaining of the paper the biobjective problem of maximizing the area
and perimeter of unit-diameter convex polygons. Recall that the diameter of a polygon is
defined to be the length of the longest line segment joining two of its vertices.

3.1 Optimization problems in planar geometry

Throughout the paper we use the following notation. For a given value of n, let Ω denote
the set of convex n-sided polygons with diameter equal to 1; such polygons are said to be
small. For any polygon x ∈Ω, let P and A denote the perimeter and area. The biobjective
problem considered in the present work may be stated as

max
x∈Ω

(P, A) . (6)

The cases where the number of sides is odd is trivial, since Reinhardt [36] and Tam-
vakis [39] show that the regular polygons are optimal for both single-objective optimiza-
tion problems. It follows that the set of Pareto optimal solution is a singleton.

We consider two families of problems. First, we study equilateral polygons. For any
value of n≥ 3, the small n-gon that maximizes the area is the regular n-gon [2]. However,
when n≥ 8 is a power of two, the small equilateral polygon that maximizes the perimeter
is not the regular polygon [7]. When n ≥ 3 is not a power of two, the optimal solutions
which maximize the perimeter are clipped-Reuleaux polygons [39, 41].

Second, we study polygons that are not constrained to be equilateral. The cases where
the number of sides n is even is not trivial. For the maximization of the area, Foster and
Szabo [12] prove a conjecture of Graham [15] stating that the optimal diameter graph con-
sists of a cycle of length n−1 together with a pending edge. The nodes of a diameter graph
are the vertices of the polygon, and an edge between two nodes exists if and only if their
distance between the vertices equals one. An edge is said to be pending if the degree of
one of its node equals one. This additional structure allows Henrion and Messine [17] to
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numerically certify cases up to n = 10 in a few minutes using a semi-definite global opti-
mization approach. The exact solution for the hexagon is shown to be the root of a degree
10 polynomial with integer coefficients [15], and under an axial symmetry assumption,
the exact solution for the octagon is shown to be the root of a degree 42 polynomial with
integer coefficients [9]. Mossinghoff [32] constructs families of approximate solutions
with a guarantee that the error is less than O( 1

n3 ). For the maximization of the perimeter,
the optimal solutions are equilateral polygons clipped-Reuleaux polygons when n is not a
power of two [39]. The maximization of the area and perimeter of the octagon are studied
in [5, 8, 13].

The quadrilateral case is easy. It can easily be shown that the square is the small
equilateral quadrilateral that maximizes both the perimeter P = 2

√
2 and area A = 1

2 . In
the non-equilateral case, any small quadrilateral with two perpendicular unit diagonals
maximizes the area. The Tamvakis quadrilateral [39] maximizes the perimeter, and has
two perpendicular unit diagonals. Therefore, the Pareto front for the quadrilateral contains
a single solution with a perimeter P = 2+2

√
2−
√

3 and area A = 1
2 .

The remaining of the section is devoted to the next case: the hexagon.

3.2 The equilateral hexagon

This section is devoted to equilateral small hexagons. The regular hexagon maximizes the
area, and the clipped-Reuleaux hexagon maximizes the perimeter. Table 1 gives lower and
upper bounds on the Pareto front.

Perimeter Area

regular p = 3 a = 3
√

3
8 ≈ 0.6495190530

clipped-Reuleaux p = 6
√

2−
√

3≈ 3.105828541 a = 1
2(3−

√
3)≈ 0.6339745960

Table 1: Bounds on the perimeter and area of Pareto equilateral small hexagons

In order to conjecture about the expression of the Pareto front, we consider an equi-
lateral triangle with side length s ≤ 1 and add a vertex at unit distance from each of the
vertices of the triangle by bisecting each angle. Figure 2 illustrates the resulting hexagon.
The value s needs to be bounded below by 1√

3
to ensure that the hexagon is convex, and

must be between
√

3−1 and 1 to ensure that it is small.
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3
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3
2 , 1

2
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Figure 2: An equilateral triangle with side length s, with three pending diameters forming
a small equilateral hexagon

The perimeter P and area A can be written as

P = 6

√(√
3

2 − s
)2

+ 1
4 ,

A =
s
2
(3−
√

3s).

Adding
√

3
2

(P
6

)2 to A simplifies to
√

3
2 and therefore, the relation between the perimeter

and area is A =
√

3
2

(
1−
(P

6

)2
)

on the interval I = [p, p] = [3,6
√

2−
√

3]. Our conjecture
of the Pareto front is the analytical expression

P̃I =

{
(P,A) : A =

√
3

2

(
1−
(

P
6

)2
)
, P ∈ I

}
.

We next apply Proposition 4 in which f1 is the perimeter P, f2 is the area A, g(P) =√
3

2

(
1−
(P

6

)2
)

, I = [p, p] with the parameterization depicted in Figure 3.
The optimization Problem (3) for the equilateral hexagon is therefore
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Figure 3: Parameterization of a small hexagon
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max
x,y∈R6

1
2

5

∑
i=1

(xiyi+1− xi+1yi)−
√

3
2

(
1− x2

1
)

s.t. 1
2

5

∑
i=1

(xiyi+1− xi+1yi)−
√

3
2

(
1− x2

1
)
≥ ε (E0)

‖(xi+1,yi+1)− (xi,yi)‖2 = x2
1 i ∈ {1,2,3,4,5} (E1)

‖(xi+3,yi+3)− (xi,yi)‖2 ≤ 1 i ∈ {1,2,3} (E2)
‖(x6,y6)− (x4,y4)‖2 ≤ 1 (E3)
‖(xi+2,yi+2)− (xi,yi)‖2 ≤ ‖(x6,y6)− (x2,y2)‖2 i ∈ {1,2,3,4} (E4)
‖(x5,y5)− (x1,y1)‖2 ≤ ‖(x3,y3)− (x1,y1)‖2 (E5)
−1≤ xi ≤ 1 i ∈ {2, · · · ,5} (E6)
0≤ yi ≤ 1 i ∈ {2, · · · ,5} (E7)
x6 = y6 = y1 = 0 (E8)
y2 ≥ y5 (E9)
0.5≤ x1 ≤ 0.517638090205043 (E10).

The constraint (E0) makes the optimization problem infeasible if the conjectured front
is indeed the Pareto front. The side lengths are all equal to the variable x1 and (E1) is
the equilateral constraint. (E2-3) are the diameter constraints. (E4) breaks the symmetry
by requiring that the longest segment joining two vertices whose indices differ by 2 is
associated with the indices 2 and 6 as (6+ 2)mod6 = 2. (E5) breaks the symmetry by
requiring that (x3,y3) is further from (x1,y1) than (x5,y5) is. (E6-7) are trivial bounds that
help the numerical optimization procedure. (E8) fixes a vertex at the origin and another
on the x axis. This reduces the size of the optimization problem. (E9) breaks vertical
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symmetry by imposing that the vertex to the right is not lower than the one to the left.
(E10) is equivalent to p = 3≤ P≤ 3.105828541230258 < p = 6

√
2−
√

3.
Remark: To handle the equality constraints (E1) with the IBBA solver described in Sec-
tion 4.1, we reformulate it using two opposite inequality constraints with an error of 10−10.
Moreover, the constraint (E10) involves a constant which is rounded above to slightly ex-
ceed the value p

6 . Therefore, if the parameter ε is chosen to be too small, then there will
be a solution that satisfies all the constraints. In the numerical experiments of Section 4.2,
the value ε = 10−6 is sufficiently large to show that the problem is infeasible.

3.3 The hexagon without the equilateral requirement

This section is devoted to small hexagons, that are not restrained to be equilateral. Gra-
ham’s hexagon [15] maximizes the area. A lower bound on its area is once again achieved
by the clipped-Reuleaux hexagon [39] which maximizes the perimeter. Figure 4 illustrates
five hexagons that appear in Section 4 on the numerical experiments. -a- is the regular, -b-
is Graham’s and -e- is the clipped Reuleaux. The experiments show that the Pareto front
is composed of two parts. The endpoints of one part correspond to Graham’s hexagon,
and the other corresponds to the hexagon illustrated in -c-. The diameter graph of all the
hexagons on this part are composed of a cycle of length five with a pending diameter. The
endpoints of the other part correspond to the clipped-Reuleaux and the other corresponds
to the hexagon illustrated in -d-. The diameter graphs contain a path of length four with a
pending diameter.

•

• •

•

• •
-a-

•

•

•

•
•

•

-b-

•

•

•

•
•

•

-c-

•

•

•
•

•

•

-d-

•

•

•

••

•
-e-

Figure 4: Five small hexagons

Table 2 gives lower and upper bounds on the Pareto front for small hexagons without
the equilateral requirement.

The following lemma provides an upper bound on the side length of a Pareto optimal
hexagon. This upper bound is necessary to make the optimization problem tractable.
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Perimeter Area
Graham p = 3.099788706 a = 0.6749814429

clipped-Reuleaux p = 6
√

2−
√

3≈ 3.105828541 a = 1
2(3−

√
3)≈ 0.6339745960

Table 2: Bounds on the perimeter and area of small Pareto hexagons

Lemma 6 The length of any side of a Pareto optimal hexagon of Problem (6) is less than
0.978.

Proof. Let c be the length of a side of a Pareto optimal hexagon of Problem (6), and let A
denote its area. The requirement that the polygon is small implies that c≤ 1. Figure 5 de-
picts the region delimited by the two unit-radius circles centered at the vertices of the side
of length c, and by the support line containing that side. Let θ be the angle whose cosine
is c

2 . The hexagon is necessarily contained in that region, whose area is θ− 1
2 sin(2θ).

θ
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1 1

1− c c 1− c
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.
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................
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................
................
.....

................
................
......

Figure 5: Bounding the side length of a Pareto hexagon

Now, since the area of any Pareto optimal hexagon is bounded below by a, it follows
that

a≤ A≤ θ− 1
2

sin(2θ) ⇒ θ > 1.06 ⇒ c = 2cos(θ)< 0.978.

�
Preliminary numerical experiments suggest that the Pareto front is composed of two

disjoint parts. Our conjecture is that the diameter graph of the first part is obtained by
axially symmetrical hexagons whose diameter graphs are composed of a cycle of length
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five with a pending diameter, as with Graham’s hexagon. This corresponds to the top part
of the Pareto front. The second part of the front is conjectured to be generated by axially
symmetrical hexagons whose diameter graphs are composed of a path of length four with a
pending diameter, as with the clipped-Reuleaux hexagon. This corresponds to the bottom
part of the Pareto front. We study both parts independently.

Top part of the Pareto front: A cycle of length five with a pending diameter

Consider an axially symmetrical diameter graph composed of a cycle of length five, to-
gether with a pending diameter, and parameterized using the variables u,v and b in [0,1]
as illustrated in Figure 6. The variables defining this hexagon satisfy u2 +(b+ v)2 = 1

•

•

•

•• •

(0,b)

(
−1

2 ,0
)

(−u,−v)
(0,b−1)

(u,−v)

(1
2 ,0
)

Figure 6: An cycle of length five with a pending diameter

and (u+ 1
2)

2 + v2 = 1. By substituting b = 1
2

√
q2−1, the perimeter P and area A are

parameterized as

P(q) = q+

√
6− 2

q

√
q2−1

√
16−q2 +

√
8−2

√
q2−1− 2

q

√
16−q2,

A(q) =
1
4

(√
q2−1+

1
q

√
16−q2 +

1
q

√
q2−1

√
16−q2− q

2

√
16−q2−1

)
.

where the lower bound on q is q = 1.28356703414671; i.e., P(q) is equal to the perimeter
of Graham’s hexagon. The upper bound on q is found by maximizing the function P(q)
and corresponds to q = 1.31490238364 with P(q) = 3.100102486
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We next apply Proposition 5 in which f1 is the perimeter P, f2 is the area A, g1(q) =
P(q) and g2(q) = A(q). The corresponding optimization problem (T) is based on the
parameterization illustrated in Figure 3 and is stated as

(T)



max
x,y∈R6;q∈R

1
2

5

∑
i=1

(xiyi+1− xi+1yi)

−1
4

(√
q2−1+ 1

q

√
16−q2 + 1

q

√
q2−1

√
16−q2− q

2

√
16−q2−1

)
s.t. 1

2

5

∑
i=1

(xiyi+1− xi+1yi)

−1
4

(√
q2−1+ 1

q

√
16−q2 + 1

q

√
q2−1

√
16−q2− q

2

√
16−q2−1

)
≥ ε (T0)

x1 +
5

∑
i=1
‖(xi+1,yi+1)− (xi,yi)‖−q

−
√

6− 2
q

√
q2−1

√
16−q2−

√
8−2

√
q2−1− 2

q

√
16−q2 ≥ ε (T1)

‖(xi+3,yi+3)− (xi,yi)‖2 ≤ 1 i ∈ {1,2,3} (T2)
‖(x6,y6)− (x2,y2)‖2 ≤ 1 (T3)
‖(xi+2,yi+2)− (xi,yi)‖2 ≤ 1 i ∈ {1,2,3,4} (T4)
‖(x5,y5)− (x1,y1)‖2 ≤ 1 (T5)
xi+1yi + xi+2yi+1 + xiyi+2 ≤ xiyi+1 + xi+1yi+2 + xi+2yi i ∈ {1,2,3,4} (T6)
‖(x4,y4)− (x3,y3)‖2 ≤ x2

1 (T7)
‖(xi+1,yi+1)− (xi,yi)‖2 ≤ 0.9782 i ∈ {1,2,4,5} (T8)
0≤ x1 ≤ 0.978 (T9)
−1≤ xi ≤ 1 i ∈ {2, · · · ,5} (T10)
0≤ yi ≤ 1 i ∈ {2, · · · ,5} (T11)
x6 = y6 = y1 = 0 (T12)
q ∈ [1.28356703414671, 1.31490238364] (T13).

Constraints (T0-1) are fi(x)−gi(q)≥ ε. The constraints (T2-5) ensure that the length
of all diagonals (for non-consecutive vertices) is less than or equal to 1. (T6) ensures
that the figure is a convex polygon. The constraints (T7-9) use Lemma 6 and impose
that the side lengths do not exceed 0.978 and (T7) breaks the symmetry. (T10-11) are
trivial bounds and (T12) roots the sixth vertex at the origin and the first one on the positive
abscissa. Constraint (T13) ensures that q ∈ [q,q].
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Bottom part of the Pareto front: A path of length four with a pending diameter

Consider a symmetrical diameter graph composed of a path of length four, together with a
pending diameter, and parameterized using the scalar r as illustrated in Figure 7.

•

•
•

•

•
•

(
r−
√

1− r2, r−
√

1− r2
)

(
r−
√

1− r2, −r+
√

1− r2
)

(
r,
√

1− r2
)

(
r, −
√

1− r2
)

(0, 0) (1, 0)

Figure 7: A path of length four with a pending diameter

The perimeter and area of this hexagon can be written as follows

P(r) = 2
(√

2(r+
√

1− r−
√

1− r2)+

√
5−4r2−4r

√
1− r2

)
,

A(r) = 1+(1−2r)
√

1− r2.

The lower bound on r is r =
√

3
2 (a lower value would lead to a diagonal of length

greater than one). This corresponds to the clipped-Reuleaux hexagon. The upper bound
r = 0.86935309619661 corresponds to a hexagon of perimeter P(r) = 3.100102485+ ε,
associated with q from the upper part of the Pareto front.

The corresponding optimization problem (B) is based on the parameterization illus-
trated in Figure 3 and is stated as
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(B)



max
x,y∈R6;r∈R

1
2

5

∑
i=1

(xiyi+1− xi+1yi)−
(

1+(1−2r)
√

1− r2
)

s.t. 1
2

5

∑
i=1

(xiyi+1− xi+1yi)−
(

1+(1−2r)
√

1− r2
)
≥ ε (B0)

x1 +
5

∑
i=1
‖(xi+1,yi+1)− (xi,yi)‖

−2
(√

2
(

r+
√

1− r−
√

1− r2
)
+
√

5−4r2−4r
√

1− r2
)
≥ ε (B1)

‖(xi+3,yi+3)− (xi,yi)‖2 ≤ 1 i ∈ {1,2,3} (B2)
‖(x6,y6)− (x2,y2)‖2 ≤ 1 (B3)
‖(xi+2,yi+2)− (xi,yi)‖2 ≤ 1 i ∈ {1,2,3,4} (B4)
‖(x5,y5)− (x1,y1)‖2 ≤ 1 (B5)
xi+1yi + xi+2yi+1 + xiyi+2 ≤ xiyi+1 + xi+1yi+2 + xi+2yi i ∈ {1,2,3,4} (B6)
‖(x4,y4)− (x3,y3)‖2 ≤ x2

1 (B7)
‖(xi+1,yi+1)− (xi,yi)‖2 ≤ 0.9782 i ∈ {1,2,4,5} (B8)
0≤ x1 ≤ 0.978 (B9)
−1≤ xi ≤ 1 i ∈ {2,3,4} (B10)
−0.978≤ x5 ≤ 0.978 (B11)
0≤ yi ≤ 1 i ∈ {3,4} (B12)
0≤ yi ≤ 0.978 i ∈ {2,5} (B13)
x6 = y6 = y1 = 0 (B14)
r ∈ [0.866025403784438, 0.86935309619661] (B15)

Constraints (B0-1) are fi(x)−gi(q)≥ ε. The constraints (B2-5) ensure that the length
of all diagonals (for non-consecutive vertices) are less than or equal to 1. (B6) ensures
that the figure is a convex polygon. The constraints (B7-9) use Lemma 6 and impose that
the side lengths do not exceed 0.978 and (B7) breaks the symmetry. (T10-13) are bounds
and (B14) roots the sixth vertex at the origin and the first one on the positive abscissa.
Constraint (B15) ensures that r ∈ [r,r].

4 Numerical experiments

Numerical experiments are conducted using an interval global optimization algorithm. The
experiments are first conducted on the equilateral hexagon, and then on the non-equilateral
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hexagon. The latter are decomposed into the top and bottom part of the Pareto front. They
are further decomposed to make the experiments tractable.

4.1 The IBBA interval global optimization algorithm

IBBA is an interval branch-and-bound based code developed during Messine’s and then
Ninin’s PhD [25, 29, 34]. IBBA is based on interval arithmetic introduced by Moore [31]
in 1966 and on a branch-and-bound algorithm in order to solve global optimization prob-
lems. The basis of those interval global optimization codes comes from the eighties [35]
and these algorithms were strongly improved during the nineties [16, 20, 25]. The orig-
inality of IBBA lies mainly in the way to deal with equality and inequality constraints,
including constraint propagation techniques [25, 27], and the way to compute bounds by
developing reliable linear relaxation techniques based on affine forms and affine arith-
metics [19, 26, 30, 34]. Both techniques are now included in recent and efficient global
optimization solvers such as COUENNE [10], BARON [37] and IBEX-opt [40]. The
global optimization codes based on interval arithmetic have the property to be rigorous
and reliable from a numerical point of view; i.e., no floating point operation nor floating
point number approximation can provide wrong results. Indeed, all floating point numbers
are enclosed in intervals and special care is devoted when floating point operations and
approximations are performed. Note that unlike COUENNE and BARON, IBEX-opt and
IBBA are numerically reliable as defined by Moore in [31]. IBBA was used to design nu-
merous innovative electromechanical actuators [11, 18, 28] and also to solve geometrical
problems [5, 17, 34].

In order to use IBBA, it is necessary to slightly relax the equality constraints by a
tolerance δ > 0 in order to obtain a numerical solution. In our case, we use δ = 10−10.
Moreover, using IBBA, the numerical solution is proved to be the global one within the
tolerance ε fixed by the user. Therefore, if IBBA converges, it is proven that no point (even
with real components and not only floating point ones) can be better than the numerical
solution (of the relaxed problem) within the fixed tolerance; this also includes all the (real
and floating-point) solutions of the original problem. If IBBA terminates without a feasible
solution, this means that there is no feasible solution (even real ones) to the problem in
which each equality constraint is relaxed by the tolerance δ; this also includes the original
problem without relaxing any constraints. Indeed IBBA can guarantee that an optimization
problem has strictly no feasible solution.
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4.2 The Pareto front for the equilateral small hexagons

Solving problem (E) of Section 3 using IBBA and with a precision ε = 10−6 for the biob-
jective functions and with a tolerance of δ = 10−10 on the equality constraints requires
0.46s on a 2.8GHz PC-computer with 10GB to show that there are no feasible solutions.
The constraint (E0) is implicitly handled by IBBA as it solves the problem with a precision
of ε on the objective function value. This proves that the perimeter P and area A of any
unit-diameter equilateral hexagon satisfies

A ≤
√

3
2

(
1−
(

P
6

)2
)
+ ε with ε = 10−6.

Therefore, the above certifies the ε−Pareto front of the area vs. perimeter of the small
equilateral hexagons. This ε−Pareto front is represented by the dotted curve in Figure 9.

4.3 The Pareto front for small hexagons

IBBA fails to solve both problems (T) and (B) efficiently, even if constraints on the ob-
jective function are added as in the previous subsection. Hence, we further decompose
each of the programs (T) and (B) into three sub-cases by studying the structures of Pareto
optimal solutions. This is described in the following proposition.

Proposition 7 The diameter graphs of a Pareto optimal hexagon have either 3,2 or 1
main diagonals as diameters, and their possible configurations are illustrated in Figure 8.

•

• •

•

• •
v6 v1

v2

v3v4

v5

(a) 3 main diagonals

•

• •

•

• •
v6 v1

v2

v3v4

v5

(b) 2 main diagonals

•

• •

•

• •
v6 v1

v2

v3v4

v5

(c) 1 main diagonal

Figure 8: The three possible diameter graph configurations of Pareto optimal hexagons

Proof. Let v1,v2, . . . ,v6 denote the consecutive vertices of a Pareto optimal hexagon. Each
vertex is the endpoint of at least one diameter, because moving the vertex away from

18



the center of the hexagon increases both its area and its perimeter. None of the sides
are diameters, because Lemma 6 ensures that the side lengths are strictly less than one.
Furthermore, any two diameters intersect in the hexagon [7].

We consider four cases involving the three main diagonals of the hexagon.
Case (a): The three main diagonals are diameters.
This case trivially corresponds to subfigure (a).
Case (b): Exactly two main diagonals are diameters.
Without any loss of generality, suppose that the main diagonals v1v4 and v3v6 are diameters
but v2v5 is not a diameter. Since v2 is the endpoint of a diameter, we may assume that v2v6

is a diameter. Finally, v5 is also the endpoint of the diameter, and its other endpoint is not
v2, and cannot be v3 (otherwise two diameters would be non-intersecting). The remaining
possibility is that v5v1 is a diameter, as illustrated in subfigure (b).
Case (c): Only one main diagonal is a diameter.
Without any loss of generality, suppose that the main diagonal v2v5 is a diameter but v1v4

and v3v6 are not diameters. We refine the analysis into two more subcases involving the
diameter involving v1.

• v1v5 is a diameter. It follows that v4v2 cannot be a diameter (otherwise two diameters
would be non-intersecting), and consequently v4v6 is a diameter. The diagonal v3v1

cannot be a diameter, and therefore v3v5 is a diameter, as illustrated in subfigure (c).

• v1v3 is a diameter. It follows that v4v6 cannot be a diameter (otherwise two diameters
would not intersect), and consequently, both v4v2 and v4v2 are diameters. By rela-
beling the vertices (adding 3 modulo 6), the diameter graph corresponds to subfigure
(c).

Case (d): None of the main diagonals are diameters.
If none of the main diagonals are diameters, then by symmetry, we can assume that v4v6 is
a diameter. It follows that v1v3 cannot be a diameter (otherwise two diameters would not
intersect), and consequently, both v1v5 and v3v5 are diameters. This leads to an impossi-
bility: v2 cannot be the endpoint of any diameters.

�
Using Proposition 7 and the two programs (T) and (B), 6 optimization subproblems are

generated by just changing some inequality constraints into equality constraints; for exam-
ple, the constraints (T3) and (B3), for case (b) are both replaced by ‖(x6,y6)−(x2,y2)‖2 =

1.
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For each of these six problems, IBBA shows with a tolerance of δ = 10−10 (on the
equality constraints) and a precision ε = 10−6 that there is no feasible solution. The con-
straints (T0) and (B0) are implicitly handled by IBBA as it solves the problem with a
precision of ε on the objective function value. The CPU times of these numerical proofs
are reported in Table 3. The overall computational time is close to 24 hours. The CPU
time required to solve the three different cases share a comparable order of magnitude.

Problem Case (a) Case (b) Case (c) Total

(T) 3:21:15 4:07:04 2:13:03 9:41:23
(B) 4:39:54 5:07:31 4:21:37 14:09:03

Total 8:01:10 9:14:36 6:34:40 23:50:27

Table 3: CPU-time in h:m:s used by IBBA to prove the ε−Pareto front for the cases from
Proposition 7, on a 2.8GHz PC-computer with 10GB, and with a tolerance of 10−10 on the
equality constraints.

Therefore, using IBBA, we prove that the parametrized Pareto fronts provided in Sec-
tion 3 for small not necessarily equilateral hexagons are ε−optimal with respect to the area
and the perimeter with numerical precision ε = 10−6.

The corresponding ε−Pareto front is plotted in Figure 9. The front for the equilateral
case is clearly visible, however, only the bottom part of the front is clearly visible for the
non-equilateral case. Careful inspection of the figure reveals the top part. For clarity, the
bottom part of Figure 10 zooms in on three distinct regions of the fronts. The dotted lines
show the Pareto front of the equilateral hexagon (for small values of the perimeter on the
left, and for large values on the right). The solid curves of the two graphs on the right
show the two disjoint components of the Pareto front of the non-equilateral hexagon.

The five hexagons corresponding to the end of the pareto curves, labelled from -a-
to -e- in Figure 10 are the ones whose diameter graphs are illustrated in Figure 4. The
hexagons -c- and -d- correspond to the discontinuity on the Pareto front.

5 Discussion

Some numerical experimentations via optimization codes can make it possible to con-
jecture on the form of a Pareto front. The question of certifying numerically that the
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Figure 9: Pareto fronts for the equilateral and non-equilateral hexagons

Figure 10: Detailed view of the Pareto fronts for the equilateral and non-equilateral
hexagons
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conjecture is correct may be formulated as a single-objective optimization problem. Then,
by using deterministic global optimization codes, it is possible to give a computer as-
sisted proof that these explicit Pareto fronts are optimal within a given threshold ε. This
methodology is general and was applied in the present work to the question of finding
the Pareto fronts of the area versus perimeter over equilateral small hexagons and over
non-equilateral small hexagons.

Future research might consider increasing the strength of the proposed computer as-
sisted proof by proving numerically that the conjectured Pareto fronts satisfies the first
order conditions of multi-objective optimization [14]. In addition, future work might gen-
eralize the approach to optimization problems with more than two objectives. Many diffi-
culties are anticipated. Deriving the analytical expression of an approximated Pareto front
will be more difficult. With three objectives for example, one of the objectives will need
to be written as the union of surfaces rather than curves, and the domain will need to be
partitioned into more complicated sets than intervals. Furthermore, the parametrization
will necessarily need to involve more than one variables. Finally, the ordering property of
a biobjective Pareto front is lost in the presence of more than two objectives.
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[34] J. Ninin. Optimisation Globale basé sur l’Analyse d’Intervalles: Relaxation affine et
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