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ABSTRACT
Finding solutions to least-squares problems with low cardinality has found many applications, including
cardinality-constrained portfolio optimization, subset selection in Statistics, and many sparsity-enhancing inverse
problems in signal processing. In general, this problem is NP-hard, and most works from a global optimization
perspective consider a mixed integer programming (MIP) reformulation with binary variables, whose resolution is
performed via branch-and-bound methods. We propose dedicated branch-and-bound algorithms for three possible
formulations: cardinality-constrained and cardinality-penalized least-squares, and cardinality minimization under
quadratic constraints. We show that the continuous relaxation problems involved at each node of the search tree are
`1-norm-based optimization problems. A dedicated algorithm is built, based on the homotopy continuation prin-
ciple, which efficiently computes the relaxed solutions for the three kinds of problems. The performance of the
resulting global optimization procedure is then shown to compete with or improve over the CPLEX MIP solvers,
especially for problems involving quadratic constraints. The proposed strategies are able to exactly solve some
problems involving 500 to 1 000 unknowns in less than 1 000 seconds, for which CPLEX mostly fails.

KEYWORDS
Sparse approximation; Cardinality constraint; Branch-and-bound; Continuous relaxation; Homotopy continuation.

1. Introduction

We are interested in solving optimization problems mixing a quadratic data adjustment term and
a sparsity measure. Such problems arise in many application fields, among which portfolio opti-
mization (see, e.g., [2, 3, 8, 18, 27]), sparse regularization for inverse problems [6, 13, 20, 28, 31]
and compressed sensing [5, 14], and variable or subset selection in statistics [11, 21, 24, 29]. In
operations research, many works addressed the cardinality-constrained problem:

P2/0 : min
x∈Rn

1

2
‖y −Ax‖22 subject to ‖x‖0 ≤ K,

where y ∈ Rm and A ∈ Rm×n with usually n > m, ||x||0 = Card{i|xi 6= 0} (which will be
called the `0-“norm” in this paper) and K ∈ N is a given cardinality that is fixed a priori. In some
applications, however, one may prefer solving the error-constrained problem:

P0/2 : min
x
‖x‖0 s.t.

1

2
‖y −Ax‖22 ≤ ε.
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Such a formulation may be more relevant in signal processing and statistical problems, where pa-
rameter ε ≥ 0 controls the approximation level (or the prediction accuracy), that can be tuned
according to prior knowledge on the data. One is then interested in finding the sparsest approxima-
tion compatible with some given noise level (or some prediction quality requirement). Finally, the
penalized problem:

P2+0 : min
x

1

2
‖y −Ax‖22 + µ‖x‖0,

where µ > 0 trades off between approximation error and sparsity, is also encountered in the field
of inverse problems, e.g., for Geophysics [20] or ultrasonic non-destructive testing [23, 31]. In the
Bayesian statistical framework, the `0-norm penalization term corresponds to a Bernoulli-Gaussian
prior assumption on the unknown components in x, and parameter µ then depends on the noise
variance and the expected rate of non-zero values in x [28].

Due to the discrete nature of the `0 norm, these three problems are essentially combinatorial.
Therefore, many works in signal processing and statistics proposed local optimization methods. On
the one hand, we find the substitution of the `0 norm by the `1 norm, for which the three problems
resort to convex, non-smooth optimization. In statistics, the `1-norm version of problem P2/0 is
known as the Least Absolute Shrinkage and Selection Operator (LASSO [29]). On the other hand,
greedy algorithms (e. g., [7, 25, 28]), which can similarly solve the three forms above, have been
developed. In very special cases as those addressed within the compressed sensing theory [14],
it has been shown that the `1-norm approach or greedy methods may give the solution to the `0
problem. However, in general, these approaches do not provide the global solution to the initial
problem with the `0 norm [4], and the three considered optimization problems are usually NP-
hard [22].

Dedicated global optimization algorithms have been proposed for solving P2/0, which is a
cardinality-constrained quadratic program (CCQP), in the context of sparse portfolio selection and
subset selection problems. To our knowledge, Bienstock was the first to propose a specific branch-
and-cut algorithm for such problems (including positivity constraints) [3]. Continuous relaxation
problems involved at each iteration were solved via a specific convex quadratic programming al-
gorithm. In [2], Bertsimas and Shioda extended this work using Lemke’s pivoting method to solve
the continuous relaxation. When the matrix involved in the quadratic term is the sum of a diagonal
positive matrix and a positive definite one, branch-and-bound techniques using perspective refor-
mulation [15], Lagrangian relaxation [8, 18, 27] or geometric approaches [16], were shown to give
tighter lower bounds than the continuous relaxation. In many problems of the form P2/0, how-
ever, variables involved in the columns of matrix A (explaining variables in statistics, dictionary
atoms in sparse approximation) are often highly correlated, so that matrix ATA is ill-conditioned
and such a decomposition is not possible. Much fewer works could be found that address prob-
lems P0/2 and P2+0 from a global optimization perspective. We remark, however, that P2/0 and
P2+0 both involve a quadratic cost function, therefore dedicated optimization methods developed
for the former may also be adapted to the latter. This is not the case for P0/2, for which quadratic
constraints may require adapted methodology.

In [4], the three problems were reformulated as mixed-integer programs (MIPs). Resolution was
performed with the CPLEX solver. It was experimentally shown that exact resolution of difficult
sparse approximation problems was possible in practice for small-size problems, but that comput-
ing times for solving P0/2 were far higher than for the two other ones. In this paper, we propose
a branch-and-bound resolution strategy for such problems. Following the works in [2, 3], our mo-
tivation lies on the fact that sparsity-enhancing least-squares problems are very specific MIPs,
that could be advantageously solved by dedicated implementation. In particular, we show that all
continuous relaxation problems involved in the resolution are particular forms of `1-norm-based
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problems, for which we build a dedicated continuous optimization method, based on the homotopy
principle [10, 11, 24]. Our algorithm is able to solve the relaxation problems involved in any of the
three problems P2/0, P0/2 and P2+0. Therefore, these three problems can be solved exactly by our
procedure, with similar computational burden.

The paper is organized as follows. In Section 2, we study the structure of continuous relaxation
problems involved at each node of a branch-and-bound algorithm solving P2/0, P0/2 and P2+0,
which are reformulated as `1-norm-based problems. In Section 3, we build a dedicated algorithm
for such problems, based on the homotopy principle. In Section 4, the performance of our method
is evaluated through numerical experiments, on both sparse deconvolution and subset selection
problems. The discussion in Section 5 closes the paper.

2. Continuous relaxations within a branch-and-bound algorithm

In this section, we consider the MIP reformulations of problems P2/0, P0/2 and P2+0, and we
study/reformulate the continuous relaxation problems involved at each node of the branch-and-
bound strategy.

We introduce binary decision variables bi such that bi = 0⇔ xi = 0. We use the classical bigM
formulation: assuming that solutions of interest satisfy ∀i, |xi| ≤M for some known value M , the
former logical constraint reads −Mbi ≤ xi ≤ Mbi. Trivial extensions of such assumption write
−M inf

i ≤ xi ≤ M sup
i , with M inf

i ,M
sup
i ≥ 0, but in the following we keep |xi| ≤ M to simplify

notations. The three problems can then be reformulated as the standard MIPs given in Table 1 (see
for example [4]).

Problem MIP Reformulation

min
x∈Rn

1
2‖y −Ax‖

2
2

s.t. ‖x‖0 ≤ K
‖x‖∞ ≤M

min
b∈{0,1}n,x∈Rn

1
2‖y −Ax‖

2
2

s.t.
∑n

i=1 bi ≤ K
|x| ≤Mb

min
x∈Rn

‖x‖0
s.t. 1

2‖y −Ax‖
2
2 ≤ ε

‖x‖∞ ≤M

min
b∈{0,1}n,x∈Rn

∑n
i=1 bi

s.t. 1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb

min
x∈Rn

1
2‖y −Ax‖

2
2 + µ‖x‖0

s.t. ‖x‖∞ ≤M
min

b∈{0,1}n,x∈Rn
1
2‖y −Ax‖

2
2 + µ

∑n
i=1 bi

s.t. |x| ≤Mb

Table 1. Initial problems (left) and their MIP reformulations (right).

We consider a resolution strategy based on a branch-and-bound procedure, as adopted by most
MIP solvers. The initial problem defines a root node. At each iteration of the algorithm, one node
is selected from the list of subproblems that have not been processed yet, and a lower bound for
the node is computed via the continuous relaxation of the binary variables. If this bound is greater
than the current upper bound, defined by the best feasible solution found, then the subproblem is
discarded. Otherwise, two children of this node are built through the addition of constraints fixing
one of the relaxed variables bi to 0 and 1. The two new nodes are then added to the list. In the
following, we focus on the node evaluation step by continuous relaxation.
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2.1. Continuous relaxation of the root node

At the root node, no decision has been made concerning any binary variable. The continuous re-
laxation of binary variables in P2/0 then reads:

PR2/0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2 s.t.

{∑n
i=1 bi ≤ K

|x| ≤Mb
.

Proposition 1. Let P2/1 be the following problem:

P2/1 : min
x∈Rn

1
2‖y −Ax‖

2
2 s.t.

{
‖x‖1 ≤ KM
‖x‖∞ ≤M

.

Then, PR2/0 and P2/1 have the same minimum value.

Proof. Let (b∗R,x∗R) be a minimizer of PR2/0 and let x∗1 be a minimizer of P2/1. Let b̃ =

1
M

∣∣x∗1∣∣. Then, (b̃,x∗1) is a feasible solution of PR2/0, therefore ‖y −Ax∗R‖22 ≤ ‖y −Ax∗
1‖22.

Conversely, consider bR2/0
′
= 1

M |x
∗R|. Then, x∗R is a feasible solution of P2/1 because ‖x∗R‖1 =

M‖b̃‖1 ≤ KM and ‖x∗R‖∞ ≤M . Consequently, ‖y −Ax∗1‖22 ≤ ‖y −Ax∗
R‖22.

We note that the same result was given in [2, 3] for problems with positivity constraints, and in [1]
in our case.

A similar result holds for PR0/2, the continuous relaxation of P0/2 :

PR0/2 : min
b∈[0,1]n,x∈Rn

n∑
i=1

bi s.t.

{
1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb

Proposition 2. Let P1/2 be the following problem:

P1/2 : min
x∈Rn

‖x‖1 s.t.

{
1
2‖y −Ax‖

2
2 ≤ ε

‖x‖∞ ≤M
.

Then, PR0/2 and P1/2 have the same minimum value.

Proof. Let (b∗R,x∗R) an optimal solution of PR0/2. Suppose that |x∗Ri | < Mb∗Ri for some compo-

nent i. Consider b̃ = 1
M |x

∗R|, such that b̃i < b∗Ri . Then, (b′,x∗R) is a feasible solution for PR0/2
with

∑n
i=1 b̃i <

∑n
i=1 b

∗R
i , which contradicts the definition of (b∗R,x∗R). Indeed, |x∗R| = Mb∗R

and ‖x∗R‖1 = M
∑n

i=1 b
∗R
i . Thus (b∗R,x∗R) is an optimal solution of P1/2.

Finally, consider the continuous relaxation of binary variables in the penalized problem P2+0 as
follows:

PR2+0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2 + µ

∑n
i=1 bi s.t.|x| ≤Mb .

Proposition 3. Let P2+1 be the following problem:

P2+1 : min
x∈Rn

1
2‖y −Ax‖

2
2 + µ

M ‖x‖1 s.t.‖x‖∞ ≤M.
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Then, PR2+0 and P2+1 have the same minimum value.

Proof. The proof is similar to that of Proposition 2.

The three continuously relaxed problems can therefore be reformulated without binary variables,
and correspond to `1 optimization problems with box constraints.

2.2. Continuous relaxation in the branch-and-bound algorithm

We now consider a given node in the branch-and-bound algorithm and the corresponding continu-
ous relaxation sub-problem. Let S0 (respectively, S1) denote the index set of binary variables that
are set to 0 (respectively, to 1), and let S̄ collect all remaining indices:

∀i ∈ S1, bi = 1 and |xi| ≤M
∀i ∈ S0, bi = 0 and xi = 0
∀i ∈ S̄, bi ∈ [0, 1] and |xi| ≤Mbi

Let AS denote the sub-matrix formed by all columns of matrix A indexed by S. Similarly, uS
denotes the corresponding sub-vector of u.

For problem P2/0, the continuous relaxation of variables bS̄ in the corresponding sub-problem
reduces to:

QR2/0 : min
xS1 ∈ Rn1

bS̄ ∈ [0, 1]n̄

xS̄ ∈ Rn̄

1

2
‖y −AS1xS1 −AS̄xS̄‖

2
2 s.t.


∑

i∈S̄ bi ≤ K − n1

|xS̄| ≤MbS̄

‖xS1‖∞ ≤M
,

where n1 and n̄ denote the size of S1 and S̄. Then, similarly to the developments in Section 2.1,
one can show that QR2/0 and Q2/1 have the same minimum value:

Q2/1 : min
xS1 ,xS̄

1
2‖y −AS1xS1 −AS̄xS̄‖22 s.t.


‖xS̄‖1 ≤M(K − n1)

‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

.

Applying a similar reasoning to the two other formulations, we finally obtain the equivalent
problems summarized in Table 2.

Two important comments arise from these results:

• Whatever the formulation (constrained or penalized), all continuously relaxed subproblems
involved in the evaluation of the nodes in the branch-and-bound algorithm can be reformu-
lated without binary variables.

• They all reduce to optimization problems mixing a least-squares function, `1-norm terms
involving only a part of the variables, and box constraints.

In Section 3, we build a dedicated algorithm which solves the three problemsQ2/1,Q1/2 andQ2+1.

3. A dedicated homotopy continuation algorithm for relaxed problems

Optimization involving quadratic misfits and `1-norm terms has been a very active field of research
in the past ten years. Many dedicated convex, non-smooth, optimization algorithms have been
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Continuous relaxation problem Equivalent `1-norm-based problem

QR2/0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2

s.t.
∑n

i=1 bi ≤ K
|x| ≤Mb
bS1 = 1
bS0 = 0

Q2/1 : min
xS1 ,xS̄

1
2‖y −AS1xS1 −AS̄xS̄‖22

s.t. ‖xS̄‖1 ≤M(K − n1)
‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

QR0/2 : min
b∈[0,1]n,x∈Rn

∑n
i=1 bi

s.t. 1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb
bS1 = 1
bS0 = 0

Q1/2 : min
xS1 ,xS̄

1
M ‖xS̄‖1 + n1

s.t. 1
2‖y −AS1xS1 −AS̄xS̄‖22 ≤ ε
‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

QR2+0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2 + µ

∑n
i=1 bi

s.t. |x| ≤Mb
bS1 = 1
bS0 = 0

Q2+1 : min
xS1 ,xS̄

1
2‖y −AS1xS1 −AS̄xS̄‖22
+ µ
M ‖xS̄‖1 + µ n1

s.t. ‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

Table 2. Continuous relaxation problems at any node in the branch-and-bound procedure (left), and equivalent problem without binary
variables involving the `1 norm (right), for the three considered formulations.

developed (see for example [14, 30] and references therein), for solving problems:

Pτ1 : min
x

1
2‖y −Ax‖

2
2 s. t. ‖x‖1 ≤ τ ;

Pε1 : min
x
‖x‖1 s. t. 1

2‖y −Ax‖
2
2 ≤ ε;

Pµ1 : min
x

1
2‖y −Ax‖

2
2 + µ‖x‖1.

Most works addressed the penalized form, which resorts to unconstrained optimization. Since the
two objectives are convex, the three problems are equivalent, that is, for any τ ≥ 0, there exists
µ(τ) ≥ 0 such that Pτ1 and Pµ

(τ)

1 have the same solution, and reciprocally. Similarly, for any ε ≥ 0,
there exists µ(ε) ≥ 0 such that Pε1 and Pµ

(τ)

1 are equivalent. However, in general, there is no explicit
mapping between the three parameters.

In this section, we propose to solve the three problemsQ2/1,Q1/2 andQ2+1 by a generalization
of the homotopy continuation principle [10, 11, 24]. This choice is motivated by the following
reasons:

• First and foremost, the same algorithm can solve the three problems with the same compu-
tational efficiency.

• Then, it can naturally incorporate specificities of the problems Q2/1, Q1/2 and Q2+1, such
as box constraints and partial `1-norm terms.

• In addition, it is an exact algorithm, for which the solution is obtained in a finite number of
iterations.

• Last, its efficiency increases with the sparsity level in the sought solution.

The homotopy continuation method considers the penalized form Pµ1 , and exploits the fact that
the solution path is piecewise linear as a function of µ. Starting from µ(0) = ‖ATy‖∞ (such that
the solution is identically zero ∀µ > µ(0)), it iteratively computes all solutions by continuously
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decreasing parameter µ until the target value is reached. Therefore, it can similarly solve problems
Pτ1 or Pε1, by stopping when the corresponding value of τ or ε is reached, respectively. Figure 1
shows a typical solution path (left part) and the corresponding evolution on the Pareto front (right
part).

µ

x∗1

x∗2

x∗3

x∗4

x∗

µ(0)µ(1)µ(2)µ(3)µ(4)µ∗

1
2‖y −Ax

∗‖2

‖x∗‖1

τ?

ε? µ(0)
µ(1)

µ(2)

µ(3)

µ(4)

µ∗

Solution path for Pµ1 Corresponding Pareto curve

Figure 1. Homotopy method: example of solution path x?(µ) = arg minx
1
2
‖y −Ax‖22 + µ‖x‖1 as a function of µ (left), and

corresponding set ( 1
2
‖y −Ax?‖2

2
, ‖x?‖1) as a function of µ (right).

In the following, we generalize the homotopy method to the class of problems Q2/1, Q1/2 and
Q2+1, where the `1 norm only operates on some of the variables and box constraints are included.
Note that the homotopy method with box constraints was recently proposed in [19], which also es-
tablished convergence proofs. Including partial `1-norm penalization mainly impacts initialization
and additional tests to be performed at each iteration. We first derive optimality conditions in § 3.1.
Then, the algorithm is built in § 3.2. Implementation details are discussed in § 3.4.

3.1. Optimality conditions

We first focus on problemQ2+1 in Table 2, that is, the relaxed problem involved in the cardinality-
penalized form. We remove from the problem the variables xS0 which are fixed to zeros and con-
sider equivalently the optimization problem of the form:

min
x

F (x) := J(x) + λh(x) s. t. gi(x) ≤ 0 ∀i = 1, . . . , n,

with J(x) := 1
2‖y −AS̄xS̄ −AS1xS1‖22

h(x) := ‖xS̄‖1
gi(x) := |xi| −M

. (1)

The Lagrangian function is:

L(x,π) = J(x) + λh(x) +

n∑
i=1

πigi(x),

with π ∈ Rn the vector of Lagrange multipliers associated with the bound constraints gi(x) ≤ 0.
The function J is differentiable with ∇J(x) = −AT (y − Ax). The subdifferentials of h(x) =
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‖xS̄‖1 and of gi(x) = |xi| −M are respectively:

∂h(x) =

z ∈ Rn
∣∣∣∣∣∣
zi = 0 if i ∈ S1 ∪ S0

zi = sgn(xi) if i ∈ S̄ and xi 6= 0
zi ∈ [−1, 1] if i ∈ S̄ and xi = 0

 (2)

and

∂gi(x) =

z ∈ Rn
∣∣∣∣∣∣
zj = 0 for j 6= i
zi = sgn(xi) if xi 6= 0
zi ∈ [−1, 1] if xi = 0

 . (3)

The vector x? is optimal if and only if there exists π such that (x?,π) satisfies the Karush-Kuhn-
Tucker optimality conditions applied to continuous convex non-differentiable functions (see for
example [26]):

(PKKT)


0 ∈ −AT (y −Ax?) + λ∂h(x?) + ∂

n∑
i=1

πigi(x
?) (4)

gi(x
?) ≤ 0 ∀i = 1, . . . , n (5)

πi ≥ 0 ∀i = 1, . . . , n (6)
πigi(x

?) = 0 ∀i = 1, . . . , n. (7)

Particular points are those which activate the bound constraint (x?i = ±M for i ∈ S̄ ∪ S1) or non-
differentiability points (x?i = 0 for i ∈ S̄). We now split the variable indices into the five possible
cases.

- Case 1. Let S̄0 = {i ∈ S̄ | |x?i | = 0}. From equation (7), πS̄0
= 0 and using equations (2)

and (4), optimality conditions of x?S̄0
become:

|AT
S̄0

(y −AS1x?S1 −AS̄x
?
S̄)| < λ. (8)

- Case 2. Let S̄in = {i ∈ S̄ | 0 < |x?i | < M}. From equation (7), πS̄in = 0 and using
equations (2) and (4), optimality conditions of x?S̄in become:

−AT
S̄in(y −AS1x?S1 −AS̄x

?
S̄) + λsgn(x?S̄in) = 0. (9)

- Case 3. Let S̄� = {i ∈ S̄ | |x?i | = M}. From equation (6), πS̄�
≥ 0 and using equations (3)

and (4), optimality conditions of x?S̄�
become:

−AT
S̄�

(y −AS1x?S1 −AS̄x
?
S̄) + λsgn(x?S̄�

) + πS̄�
� sgn(x?S̄�

) = 0, πS̄�
≥ 0, (10)

where � denotes the Hadamard (entrywise) product.
- Case 4. Let S1

in = {i ∈ S1 | 0 ≤ |x?i | < M}. From equation (7), πS1
in

= 0 and using
equations (2) and (4), optimality conditions of x?S1

in
become:

−AT
S1
in

(y −AS1x?S1 −AS̄x
?
S̄) = 0. (11)
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- Case 5. Let S1
� = {i ∈ S1 | |x?i | = M}. From equation (6), πS1

�
≥ 0 and using equations (3)

and (4), optimality conditions of xS1
�
? become:

−AT
S1
�

(y −AS1x?S1 −AS̄x
?
S̄) + πS1

�
� sgn(x?S1

�
) = 0, πS1

�
≥ 0. (12)

Let us remark that equations (9), (10) and (12) concern non-zero variables, therefore the corre-
sponding sign function is well-defined.

3.2. Homotopy continuation algorithm

We now build the homotopy algorithm that solves the problem (1). Let r = y − AS̄�
x?S̄�
−

AS1
�
x?S1

�
, where each component in xS̄�

and xS1
�

equals ±M . Equations (9) and (11) are linear
systems in x?S̄in and x?S1

in
, whose the solution is: x?S̄in =

(
AT

S̄in(I − P S1
in)AS̄in

)−1 (
AT

S̄in(I − P S1
in)r − λ sgn(x?S̄in)

)
, (13)

x?S1
in

= (AT
S1
in
AS1

in
)−1(AT

S1
in
r −AT

S1
in
AS̄inx

?
S̄in), (14)

where P S1
in = AS1

in
(AT

S1
in
AS1

in
)−1AT

S1
in

and I is the identity matrix of appropriate size. These
equations show that, in a given configuration of the index sets {S̄in,S1

in, S̄�,S1
�, S̄0} (which we

call the support configuration), the solution of the problem (1) is linear in λ. Indeed, variables in
S̄� and S1

� are fixed to ±M , and variables in S̄0 are zero. The homotopy method then constructs
the solution path (the set of all solutions as a function of λ) by identifying iteratively the different
breakpoints that lead to changes in the support configuration. These breakpoints will occur at spe-
cific values of λ, for which (at least) one of the conditions in equations (8)–(12) is violated. The
algorithm works as follows:

(1) First, it is clear that as λ→ +∞, `1-norm-penalized variables xS̄ are zero. In that case, other
variables xS1 are found by solving the least-squares problem: min

−M≤xS1≤M
1
2‖y−AS1xS1‖22.

We note x(0) the vector defined by{
x

(0)
S1 := argmin

−M≤xS1≤M

1
2‖y −AS1xS1‖22, (15)

x
(0)

S̄ := 0. (16)

Equation (8) shows that x(0) is the solution of the problem (1) as long as λ ≥ λ(0), with:

λ(0) := ‖AT
S̄ (y −AS1x

(0)
S1 )‖∞. (17)

(2) As λ decreases below λ(0), indices j ∈ S̄ such that |aTj (y − AT
S1x

(0)
S1 )| = λ(0) leave

S̄0 to form the new subset S̄in. This new support configuration remains valid for any
λ ∈ [λ(1), λ(0)], where λ(1) defines the next breakpoint, etc. A monotonically decreasing
sequence {λ(k)}k is built iteratively, by testing all possible changes that can occur to the
support configuration, and selecting the one(s) corresponding to the smallest decrease in λ.
Then, the support configuration is updated, and a new breakpoint in λ is searched. Since the
solution path is piecewise linear as a function of λ, the solution x(k) at the k-th breakpoint
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reads: {
x(k) = x(k−1) + γ(k)d(k) (18)
and λ(k) = λ(k−1) − γ(k), (19)

where d(k) represents the vector of slope changes and γ(k) > 0 represents the length of
interval [λ(k), λ(k−1)]. From equations (13) and (14), the direction d(k) is obtained by:

d
(k)

S̄in
= (AT

S̄in(I − P S1
in)AS̄in)−1sgn(x

(k−1)

S̄in
) (20)

d
(k)
S1
in

= −(AT
S1
in
AS1

in
)−1AT

S1
in
AS̄ind

(k)

S̄in
(21)

d
(k)
i = 0 ∀i /∈ {S̄in ∪ S1

in}, (22)

where the last equality concerns variables that are fixed to zero or to±M . The step size γ(k)

is obtained as the smallest positive value γ > 0 such that x(k−1) + γd(k) reaches a new
breakpoint. Five different cases can occur, which are detailed hereafter. We introduce the
following notation, where exponentiation by k is removed to simplify it.

c = AT (y −AS̄x
(k−1)

S̄ −AS1x
(k−1)
S1 ) and u = AT (AS̄ind

(k)

S̄in
+AS1d

(k)
S1 ).

(a) A component with index ` ∈ S̄0 becomes nonzero when equality in equation (8) is
reached. Inserting equations (13) and (14) into equation (8), one can show that x`
become positive (respectively, negative) if:

γ =
λ(k−1) + c`

1− u`

(
respectively, when γ =

−λ(k−1) + c`
−1− u`

)
. (23)

(b) A component with index ` ∈ S̄in becomes zero. From equation (18), this occur if:

γ =
−x(k−1)

`

d
(k)
`

. (24)

(c) A component with index ` ∈ S̄in or S1
in yields the bound M or −M , depending on its

current sign. From (18), this occur if:

γ =
Msgn(x

(k−1)
` )− x(k−1)

`

d
(k)
`

. (25)

(d) The bound constraint for some component with index ` ∈ S̄� becomes inactive. This
may occur when the corresponding Lagrange multiplier π` = 0 in equation (10), which
yields:

γ =
sgn(x

(k−1)
` )λ(k−1) − c`

sgn(x
(k−1)
` )− u`

. (26)

(e) The bound constraint for some component with index ` ∈ S1
� becomes inactive. This

may occur when the corresponding Lagrange multiplier π` = 0 in equation (12), which

10



yields:

γ =
−c`
u`

. (27)

The shortest step size γ(k) is then defined as the shortest positive step among all possible
ones, defined by equations (23)–(27). In theory, γ(k) may be obtained by several conditions
above simultaneously; should this happen, the support configuration is updated correspond-
ingly.

(3) The algorithm stops when the target λ, say λ?, is reached, that is, after iteration k such that
λ? ∈ [λ(k), λ(k−1)]. Then, the optimal solution is found by:

x? = x(k−1) + γ?d(k), (28)

with γ? = λ? − λ(k).

The homotopy algorithm is summarized in Algorithm 1. Figure 2 shows the solution path for a
toy example with 5 variables: S̄ = {1, 2, 3} and S1 = {4, 5}.

Algorithm 1 Homotopy algorithm for solving the problem Q2+1 in Table 2, reformulated as the
problem (1) with λ = λ?.

1: Set k = 0. Initialize λ(0), x(0) by equations (15)–(17)
2: while not stop condition do
3: k ← k + 1
4: Update d(k) by equations (20)–(21)
5: Determine the step size γ(k) as the smallest positive value among all cases of equa-

tions (23)–(27)
6: Compute accordingly (x(k), λ(k)) by equations (18)–(19)
7: Update index sets {S̄in,S1

in, S̄�,S1
�, S̄0}

8: If λ(k) ≤ λ?, then stop.
9: return x

3.3. Solutions to constrained problems Q2/1 and Q1/2

As λ is continuously decreased, the `1 norm of the penalized variables ‖x?S̄‖1 continuously in-
creases and the least squares function 1

2‖y −AS̄x
?
S̄ −AS1x?S1‖22 continuously decreases. There-

fore, the homotopy method can also solve the constrained problems Q2/1 and Q1/2 in Table 2.
More precisely:

• For Q2/1, iterations stop at the first breakpoint when the `1 norm of the penalized variables

‖x(k)

S̄ ‖1 exceeds the threshold value τ := M(K − n1). Then, in the corresponding interval
[λ(k), λ(k−1)], the solution is given by equation (28). By construction, there is no sign change
between x(k−1) and x?, and the value of γ is obtained when ‖x?‖1 = τ , which happens if:

γ =
τ − ‖x(k−1)‖1

sgn(x(k−1))Td(k)
.

11



M

−M

λ

x∗

x∗1

x∗2

x∗3

x∗4

x∗5
λ(0)λ(1)λ(2)λ(3)λ(4)λ(5)λ(6)λ(7) λ

∗

γ(0)γ(1)γ(2)γ(3)γ(4)γ(5)γ(6)

γ?

Figure 2. Example of solution path x? giving the solutions of the problem (1) as a function of λ, with 5 variables: S̄ = {1, 2, 3}
and S1 = {4, 5}. Circles represent the events that cause a change in the support configuration. Vertical dotted lines represent the
breakpoints.

• Similarly, for Q1/2, iterations stop at the first breakpoint such that 1
2‖y − AS̄x

(k)

S̄ −
AS1x

(k)
S1 ‖22 ≤ ε. Substituting equation (28) in the least squares expression, the value of γ

such that 1
2‖y −AS̄x

∗
S̄ −AS1x∗S1‖22 = ε can be found by solving a (scalar) quadratic equa-

tion, whose solution is:

γ =
rTv −

√
(rTv)2 − vTv(rTr − 2ε)

vTv
,

with r = y −AS̄x
(k−1)

S̄ −AS1x
(k−1)
S1 and v = AS̄ind

(k)

S̄in
+AS1d

(k)
S1 .

3.4. Implementation and practical issues

Some practical remarks concerning the numerical implementation of the homotopy algorithm 1 are
detailed in this section.

First, each iteration mostly consists of solving linear systems of equations (20) and (21), whose
size respectively correspond to the current number of variables in S̄in and S1

in. Since the support
configuration only slightly changes between two breakpoints1, the matrix inverses of equations (20)
and (21) can be computed recursively by performing rank-one updates. In our simulations, using
the block matrix inversion formulas appeared to be the most efficient strategy.

We also remark that, for a given non-zero component, all computations of equations (20)–(21)
are not necesarry. In particular, if x(k−1)

` > 0 and d(k)
` > 0 (or respectively, d(k)

` < 0), then the only
possible breakpoint that can occur for component ` is when x` reaches the upper bound M , i.e.
the case 2c in §3.2 (or respectively, 0, i.e. the case 2b). A similar reasoning is applied to negative
components if x(k−1)

` < 0.

1Although several support configuration changes may happen simultaneously, in practice, S̄in and S1
in are usually modified by at most

one element at each breakpoint, corresponding to the activation of one condition among equations (23)–(27).
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We conclude this section with an important remark concerning the use of the homotopy algo-
rithm in the branch-and-bound resolution of the error-constrained problem P0/2. At each node, the
continuous relaxation brought by the solution to problems such asQ1/2 in Table 2 provides a lower
bound on the global optimum value of P0/2, which is compared to the best known feasible solu-
tion. Since the objective function in Q1/2 increases within the homotopy iterations, the homotopy
algorithm is stopped as soon as the `1 norm of the current iterate exceeds the global upper bound.
In this case, the node of the branch-and-bound tree is pruned.

4. Experimental results

We now insert the continuous relaxation algorithms built in Section 3 into dedicated branch-and-
bound procedures for the resolution of the three problems P2/0, P0/2, and P2+0. We use depth-first
search and we choose to branch on the continuous variable xk with the maximum absolute value
in the solution of the relaxed problem. We branch up first, that is, we first explore the branch
corresponding to the decision xk 6= 0. This strategy is well adapted for problem P2/0, in which
the depth limit is imposed by the cardinality constraint. It also allows one to quickly find feasible
solutions for problems P2+0 and P0/2 with limited depth search, since we know in advance that
their solutions are sparse. For problem P2+0, we also exploit the fact that the initialization step in
the homotopy algorithm at each node evaluation (see § 3.2) produces a feasible solution, which is
used in order to improve the best solution found.

In this section, we compare our homotopy-based branch-and-bound implementation, named
B&BR-HOM, to:

• the same branch-and-bound exploration strategy, where the continuous relaxation problems
QR2/0, QR0/2 and QR2+0 in Table 2 are solved with the CPLEX 12.8 quadratic programming
solver (B&BR-Cplex);

• the resolution of the MIP problems in Table 1 with the CPLEX 12.8 MIP solver (MIPCplex).

All methods are implemented in C++ and executed on a UNIX machine equipped with 31.1Go
RAM and four Intel Core i7-6600U central processing units (CPUs) clocked at 2.60 GHz. Compu-
tations are restricted to one core in order to focus on the algorithm performance, disabling paral-
lelization capacities. All experiments are run by using the default CPLEX settings, and the maxi-
mum CPU time allowed was set to 1000 s.

In § 4.1, we study the performance of our algorithm on simulated sparse deconvolution problems
typically encountered in signal processing. Then, simulated subset selection problems with random
entries are considered in § 4.2.

4.1. Sparse deconvolution problems

Sparse deconvolution is a classical signal processing problem [17, Chapter 5], which aims to esti-
mate a sparse sequence x from filtered and noisy observations. Collecting sampled data in vector y
and the unknown sparse sequence in vector x, we obtain a model of the form y = Ax+n, where
A is a convolution matrix and n is a random term representing noise and model errors. Deconvolu-
tion is an ill-posed inverse problem [17], whose resolution with sparsity-enhancing regularization
is often addressed through suboptimal `1-norm-based or greedy methods. It was shown in [4] that
exact resolution of `0-norm problems (with the CPLEX MIP solver) achieves better solutions, ob-
viously with higher computing times. From a practical point of view, the three problems P2+0,
P2/0 and P0/2 are of interest, depending on the available information for tuning their respective
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parameter. We consider the problem instances2 proposed in [4], with y ∈ R120, A ∈ R100×120,
noise samples are independent, identically and normally distributed with signal-to-noise ratio SNR
= 10 dB and M = 1.1‖ATy‖∞. Columns ofA have been normalized. The cardinality varies from
K = 5 to K = 9 for P2/0. For problems P0/2 and P2+0, the respective parameters ε and λ are
tuned from statistical rules accounting for the noise level and the sparsity degree (see [4] for de-
tails): if n denotes the noise vector, ε is tuned such that the probability P (‖n‖2 ≤ ε) = 95 %, and
λ = 2σ2 log(1/ρ− 1), where σ2 is the noise variance and ρ = K/n.

Computational results are reported in Table 3.

Problem Branch-and-bound MIP solver CPLEX

B&BR-HOM B&BR-Cplex CPLEX 12.8

Time Nodes F Time Nodes F Time Nodes F

(s) (103) (s) (103) (s) (103)

K = 5 1.9 1.28 0 7.7 1.28 0 3.0 1.71 0

P2/0 K = 7 26.1 17.89 0 141.9 17.89 2 16.6 21.51 0

K = 9 124.3 57.37 16 448.1 57.46 30 53.8 72.04 6

K = 5 3.9 2.01 0 37.7 2.02 0 3.2 1.98 0

P2+0 K = 7 26.3 10.20 0 187.9 10.22 7 7.4 9.61 0

K = 9 91.1 31.80 14 470.7 31.87 28 17.3 23.74 2

K = 5 3.4 1.98 0 102.4 2.05 0 25.7 6.71 0

P0/2 K = 7 9.4 8.26 0 274.4 8.25 13 52.7 20.48 2

K = 9 21.3 13.14 7 485.2 13.15 35 111.3 28.36 17
Table 3. Computational results for simulated sparse deconvolution problems. For each algorithm, columns “Time”, “Nodes”, and “F”
respectively give the average computing time in seconds, the average number of explored nodes, and the number of problems that could
not be solved in 1000s. 50 instances of each problem were considered. Averages are performed only over instances which could be
solved in less than 1000s by the three algorithms.

For all problems, B&BR-HOM and B&BR-Cplex explore the same number of nodes, since they use
the same branch-and-bound strategy (slight differences are observed, though, that may be due to
numerical issues). However, B&BR-HOM requires significantly less execution time: about a factor
between 3.6 and 9 for P2/0 and P2+0, and about a factor between 20 and 30 for P0/2. It also
successfully solves more instances in 1000s.

Unsurprisingly, MIPCplex performs better than B&BR-HOM on P2/0 and P2+0: it runs generally
2 to 3 times faster (up to 5.3 on the most difficult P2+0 problem with K = 9), and both the
resolution strategy (number of nodes) and the continuous relaxation efficiency (computing time
per node) are favorable to MIPCplex. This was expected, since the CPLEX MIP solver benefits from
many additional developments that are not implemented in our branch-and-bound algorithm, such
as cutting planes, heuristics, warm start, etc..

However, our algorithm outperforms MIPCplex on all instances of P0/2, both in terms of number
of nodes (2 to 3 times less) and CPU time. In particular, the computing time per node is reduced

2Data are available online at pagesperso.ls2n.fr/∼bourguignon-s/download MIP.html
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by more than 2 with the homotopy algorithm. As a result, B&BR-HOM runs 4 to 8 times faster than
MIPCplex on these instances, even with a rather basic branch-and-bound strategy.

We also note that the relative efficiency of B&BR-HOM compared to other tested algorithms in-
creases as K decreases. Indeed, when the global optimum is sparse, the solutions to the continuous
relaxation problems are sparse, too. Therefore, the homotopy algorithm becomes more efficient.
Indeed, the computing time increases with the number of non-zero components in the solution of
the relaxed problem.

In Figure 3, the performance profiles, defined by Dolan and Moré in [9], are visual tools to
benchmark algorithms. The fraction of solved problems is represented as a function of the per-
formance ratio: for each instance, the ratio between the computing time of each algorithm and
the minimum computing time is computed. Then, the performance profiles draw the cumulative
distribution functions for such ratios.
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Figure 3. Performance profiles obtained on 450 sparse deconvolution (left, see § 4.1) and 900 random subset selection problems (right,
see § 4.2), for the three algorithms: B&BR-HOM (full line), MIPCplex (dotted line) and B&BR-Cplex (dashed line).

Performance profiles obtained over the 450 considered instances (50 instances for each of the
9 problems defined in Table 3) are shown in the left part of Figure 3, from which we have the
following conclusions:

• The performance of B&BR-HOM is far above that of B&BR-Cplex, confirming the results in
Table 3.

• MIPCplex solves more problems in 1000 s and is globally the fastest when considering all
instances (the green curve achieves the higher value on the top-right corner).

• Nevertheless, the performance of B&BR-HOM is above that of MIPCplex in most part of the
profile. For example, B&BR-HOM requires 6.7 times more time than the best algorithm for
solving 90% of the problems, whereas MIPCplex requires 12.5 times more time (see the hor-
izontal lines in Figure 3). Similarly, in 5 times the best algorithm time, B&BR-HOM solves
86% of problems, whereas MIPCplex only solves 76% of them (see the vertical line in Fig-
ure 3).

4.2. Simulated Subset selection problems

We now study algorithmic performance on artificial subset selection problems with random entries
(see [2, 32] for similar simulations). We consider a dictionary A ∈ Rm×n, with n = 2×m, com-
posed of independent and identically distributed random entries, which are drawn from a centered,
unit-variance, normal distribution (columns have been normalized). Sparse vectors are generated
with random non-zero positions, and corresponding amplitudes are drawn as u+ sgn(u), where u
follows a centered, unit variance, Gaussian distribution. Noise is added such that SNR = 10 dB.
The problem cardinality varies from K = 5 to K = 15. Parameters M and formulation-specific
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parameters K, ε and µ are tuned similarly as in § 4.1. Note that the random nature of the dictionary
makes problems easier to solve, which allows us to increase the problem dimension: we consider
here n = 500 and n = 1000. Indeed, the compressed sensing theory (see for example [14]) shows
that, if the correlation between columns in A is sufficiently low, then, with high probability, the
`1-norm relaxation may solve the original `0-norm problem.

Computational results are reported in Table 4. As in § 4.1, B&BR-HOM and B&BR-Cplex explore
the same number of nodes. However, B&BR-HOM requires significantly less execution time: about a
factor of 10 to 100 for P2/0 and P2+0, and about a factor of 100 to 230 for P0/2. It also successfully
solves more instances in less than 1 000s.

Problem Branch-and-bound MIP solver CPLEX

B&BR-HOM B&BR-Cplex CPLEX 12.8

Time Nodes F Time Nodes F Time Nodes F

(s) (103) (s) (103) (s) (103)

K = 5 1.1 0.03 0 23.5 0.03 0 16.8 0.04 0

(P2/0) K = 10 16.2 0.26 0 249.4 0.26 12 107.0 0.51 5

K = 15 39.5 0.59 38 538.7 0.59 48 161.4 1.09 45

50
0 K = 5 2.2 0.14 0 203.6 0.12 1 19.8 0.15 0

n
=

(P2+0) K = 10 10.7 0.33 0 460.1 0.29 21 68.8 0.90 3

K = 15 23.2 0.63 40 626.9 0.63 49 179.4 3.28 47

K = 5 0.8 0.03 2 184.9 0.03 7 177.5 4.10 17

(P0/2) K = 10 3.7 0.13 6 533.7 0.13 46 - - 50

K = 15 482.7 8.71 44 - - 50 - - 50

K = 5 2.9 0.02 0 109.2 0.02 0 70.7 0.03 0

(P2/0) K = 10 18.2 0.06 0 437.7 0.06 13 371.7 0.31 5

K = 15 117.6 0.38 15 - - 50 665.3 0.72 42

10
00 K = 5 2.6 0.08 0 275.9 0.06 10 130.1 0.19 0

n
=

(P2+0) K = 10 13.8 0.20 0 601.9 0.13 32 247.9 0.60 3

K = 15 81.8 0.52 17 - - 50 665.3 2.15 40

K = 5 1.3 0.01 0 159.5 0.01 4 360.9 0.28 28

(P0/2) K = 10 7.8 0.05 2 695.9 0.05 40 - - 50

K = 15 442.3 2.58 30 - - 50 - - 50
Table 4. Computational results for Simulated Subset selection problems. 30 instances of each problem were considered. Averages are
performed only over instances which could be solved in less than 1000 s.

Compared to MIPCplex, B&BR-HOM performs better on most problems in terms of execution time:
it runs generally more than 10 times faster (up to 276 times on the most difficult problemsP0/2 with
K = 5 and n = 1000). For all problems, both the number of nodes and the continuous relaxation
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efficiency (computing time per node) are favorable to B&BR-HOM.
We also remark that the CPLEX MIP solver performs very badly on most P0/2 instances. In

particular, the number of explored nodes in MIPCplex is much bigger than with the proposed branch-
and-bound strategy. The computing time per node with MIPCplex is also much higher than with
B&BR-HOM, confirming the improvement brought by the homotopy-based relaxation computations.

Performance profiles obtained over the 900 considered instances (50 instances for each of the 18
problems defined in Table 3) are shown in right part of Figure 3, from which we have the following
conclusions:

• The three algorithms generally solve more instances in 1000 s for (m,n) = (500, 1000) than
for (m,n) = (250, 500). This somehow counterintuitive result can still be explained by the
compressed sensing theory [14]: as the dimension increases, the columns of A, composed
of random numbers, become less correlated, making the problems easier.

• The B&BR-HOM algorithm clearly outperforms B&BR-Cplex and MIPCplex. It is the fastest and
most efficient in all solved problems.

5. Conclusion

We have investigated exact optimization algorithms for least squares problems with sparsity con-
straint. By studying the problem properties, we proposed a dedicated branch-and-bound procedure,
which binary variables that are usually used for MIP reformulation. In particular, an algorithm was
built for solving the continuous relaxation problems involved at any node of the search tree, which
were recast as continuous non-smooth optimization problems, involving the `1 norm. Inspired by
the homotopy principle, this algorithm can be applied with similar efficiency for the three addressed
formulations (cardinality-constrained and cardinality-penalized least-squares, and cardinality min-
imization under quadratic constraints). In particular, the resulting strategy was shown to efficiently
solve the quadratically constrained formulation, which is of major interest in many applications,
whereas the CPLEX MIP solver resulted to be much less efficient.

The method is even more efficient as the solution searched is sparse. The computational burden
of the homotopy algorithm increases almost linearly with the cardinality of the relaxed solutions.
In cases where the cardinality increases, other `1-norm-based methods may be investigated, which
could benefit from warm starting when evaluating the continuous relaxation at two close nodes.
Lagrangian relaxation was also shown to achieve tighter relaxation than the continuous one, for
such problems where the Gram matrix ATA admits a specific decomposition. Studying dedicated
algorithms in this case, in particular for the two less familiar formulations P0/2 and P2+0, would
also deserve further works. Finally, the three formulations could be tackled jointly from a multi-
objective optimization perspective, involving dedicated branch-and-bound techniques [12].
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