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For a mobile robot to operate in its environment it is crucial to determine its position

with respect to an external reference frame using noisy sensor readings. A scenario in

which the robot is moved to another position during its operation without being told,

known as the kidnapped robot problem, complicates global localisation. In addition to

that, sensor malfunction and external influences of the environment can cause unexpected

errors, called outliers, that negatively affect the localisation process. This paper proposes

a method based on the fusion of a particle filter with bounded-error localisation, which

is able to deal with outliers in the measurement data. The application of our algorithm

to solve the kidnapped robot problem using simulated data shows an improvement over

conventional probabilistic filtering methods.

Keywords: Bayesian Filter; Interval Analysis; Kidnapped Robot Problem; Mobile

Robotics.

1. INTRODUCTION

One major challenge in robotics is creating robots capable of performing tasks

without human supervision. Acquiring information about the true state of the robot

in its environment is essential to carry out autonomous missions. This necessity gives

rise to a class of localisation problems that is characterized by the use of sensor

information to estimate the robot’s position in its environment. The different kinds

of localisation problems can be separated into global and local localisation.1
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In local localisation, also known as position tracking, the initial robot position

is assumed to be known. The uncertainties associated with the tracking process are

local and restricted to the region near to the true robot position. In global locali-

sation, on the other hand, the robot is placed somewhere in its environment before

being put to operation and needs to localize itself based on the sensor readings,

which forms a more difficult problem than tracking as boundedness of the position

error cannot be assumed.

A yet more difficult scenario is described by the kidnapped robot problem, which

forms a subclass of global localisation problems2 and describes a situation where

a well-localised mobile robot is moved to an arbitrary location without being told.

That is, the robot strongly believes itself to be somewhere else at the time of the

kidnapping. Kidnapping may arise from external, environment influences such as

drift, water flow, or earthquake.3,4

During the localisation process the robot senses its environment to extract rel-

evant information for self-localisation. Various different kinds of sensors, such as

cameras, laser-based, or sonars can be used for this purpose. The output signals of

all these sensors, however, are subject to noise and possibly contain outliers,5 where

the latter is not accounted for in the robot model.

Diverse interval or probabilistic methods are commonly used to solve the lo-

calisation problem given noisy sensor data. Also, attempts to fuse both interval

techniques and probabilistic filters are found in the literature.6–12 In this paper, we

propose a hybrid approach combining a particle filter and a set-membership method

which is robust to outliers to solve the kidnapped robot problem. More precisely,

the interval approach is used to detect inconsistency, meaning that the robot has

been kidnapped. Besides, it is also used to remove a large zone where the robot

cannot be helping the particle filter to converge efficiently toward the true location

of the robot. It is important to highlight that the proposed method has the ability

of dealing with outliers, which are common when using real sensor data. Also, in

comparison with other methods, our method has a stronger integration between

the interval and probabilistic approaches.This is achieved by considering particles

as punctual boxes in the resampling step. Finally, the method is able to solve the

most dificult variant of the global localisation problem.

This paper is divided as follows. Section 2 presents the state of the art of locali-

sation techniques, followed by an introduction to the basic concepts of probabilistic

filtering and interval analysis applied to self-localisation in Section 3. In Section 4

we explain in detail our proposal and in Section 5 we describe the numerical exper-

iments as well as the results. Finally, in Section 6 we conclude and present possible

future work.

2. RELATED WORK

Current research can be divided into two major areas, that is methods using inter-

val analysis and methods based on Bayesian filtering. Desrochers et al.13 presented
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an interval-based algorithm, which exploits geometrical information of the environ-

ment in the form of a single image containing depth information, to deal with the

kidnapped robot problem. Their technique is suitable to situations where initial

models are inaccurate and the number of outliers is large. However, it provides only

an initial set of feasible positions and is not able to continuously track a robot’s

position.

Han et al.14 proposed a landmark-based particle filter algorithm using a fish-eye

system. The algorithm extracts the distance and the angles of a mobile robot with

respect to the landmarks. Using this information, the algorithm determines a region

including the robot’s position, and randomly spreads particles across this region.

Their method is able to estimate the robot pose, i.e. its position and orientation,

with only two landmarks, but to obtain smoother localisation results, according to

Han, odometry information, that is, relative motion measurements such as estimate

of distance traveled, should be used as well, which makes the algorithm computa-

tionally intense.

The Box Particle Filter developed by Abdallah et al.6 is a hybrid method that

uses GPS, a gyrometer, and an odometer to track a land vehicle. Their method

combines particle filtering with interval analysis by replacing groups of particles by

boxes, called box particles. Interval computation is used to reduce the number of

particles without compromising accuracy. Since the box particle filter only requires

a small number of particles it shows a reduction in the running time when compared

to the traditional particle filter. However, it showed no reduction in the error of the

robot pose estimation.

Ashokaraj et al. proposed sensor-based robot localisation using an extended

Kalman filter7 as well as an unscented Kalman filter9 in combination with interval

analysis to bound the estimation error in the presence of landmarks. If the position

estimate of the Kalman filter lies outside of the region it is corrected into the

geometrically closest point on the boundary. In8 multiple interval robot positions

are processed using a fuzzy logic weighted average algorithm to obtain a single robot

interval position. The error of an unscented Kalman filter position estimate is then

bound by the interval robot position as described above. In10 Ashokaraj et al. used

ultrasonic sensor with limited range and SIVIA15 or IMAGESP.16 As opposed to

the previous methods by the authors, when the point estimate of the Kalman filter

lies outside the box, the interval robot position was mapped to a point estimate

equal to the center of the box and adopted by the unscented Kalman filter. The

corresponding covariance was determined by an ellipse enclosing the box. That is,

the major and minor axis radius of the ellipse was used as the covariance matrix

values. Their method resulted in a more accurate position estimate.

Neuland et al. proposed a method that combines interval and probabilistic ap-

proaches to deal with the global localisation problem.11,12 The strategy identifies

regions of high interest through interval analysis to distribute particles accordingly.

Thus, the method provides well-defined error boundaries and higher precision results

than those obtained by both strategies applied separately. However, the proposed
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method cannot cope with outliers.

Several others researchers applied hybrid methods to self-localisation, as Kim et

al.17 who used a template matching technique and a particle filter to detect artificial

landmarks and estimate the pose of a vehicle. Ko et al.18 presented a particle-filter

based strategy for localisation of an underwater vehicle using acoustic signals from

multiple beacons. Forney et al.19 proposed a particle filter to track ‘tagged’ agents,

e. g., a shark. Meizel et al.20 applied a set-membership estimation to localize a

vehicle using range measurements. Guyonneau et al.21 modelled localisation as a

constraint satisfaction problem, using an interval combination of bisections and

contractions techniques.

Some methods were proposed to deal with the kidnapped robot problem. Dobrev

et al.22 presented an approach that combined microwave radar and ultrasonic data

for an indoor localization method with increased range in comparison to systems

based only in ultrasonic sensors. The technique is able to detect kidnapping events

due to the radar’s absolute position information, but its operation area is limited

to that of the auxiliary equipment. Zhen et al.23 proposed a localization method

based on odometry information and a rotating laser for 3D range data in an imple-

mentation of the Error State Kalman Filter with an added Gaussian Particle Filter.

Their approach using error states manages to resist and operate with small failures,

however it is restricted to a limited area around the robot, offering no recovery for

larger displacements.

Bukhori et al.24 proposed a detection strategy for the kidnapped robot problem

that adds other metrics in the conventional MCL that commonly only uses a thresh-

old of the particles’ maximum weight for such. The algorithm takes in consideration

change in weight and change in standard deviation in order to cover kidnapping be-

fore and after convergence of the robot’s pose and with independence to the success

of the recovery. Heilig et al.25 proposed a statistical approach to the weighting step,

taking in consideration present and past standard deviation of the particles, which

are also used to detect the kidnapping event, being able to recover with the intro-

duced adaptive resampling, where the number of particles and covariance change

depending on the system’s confidence about the robot’s pose.

In this paper we show that interval-based approach can be combined with a

particle filter in a complementary way. The interval approach is used to eliminate

parts of the search space that are inconsistent and allows to limit the number of

particles. On the other hand, the particle filter focus quickly in consistent region

which allows us to choose the right control or to take the right decision. Compared

to other methods, our method is capable of dealing with outliers, which are very

common in real situations. We also show that the proposed hybrid approach man-

ages to detect the robot kidnapping and recovers from it very fast. The new robot

location is found and our method is able to continuously track the robot position.
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3. BACKGROUND

This section briefly introduces the underlying concepts about interval analysis and

probabilistic Bayesian filtering necessary for the presentation of our localisation

algorithm in Section 4.

3.1. Interval Analysis

Interval analysis is based on the idea of enclosing real numbers in intervals and real

vectors in boxes so as to perform mathematical operations using these structures.5,26

A real interval [x] can be defined as a connected subset of R, composed by an upper

and a lower bound,

[x] = [x−, x+] =
{

x ∈ R |x− ≤ x ≤ x+
}

. (1)

Multidimensional data is represented using interval vectors, also referred to as boxes.

A box [x] is a subset of Rn defined as the Cartesian product of intervals,

[x] = [x1]× [x2]× · · · × [xn] (2)

where n is the dimension.

Basic operations of real computation are naturally extended to intervals. Given

the intervals [x], [y] and a binary operator ⋄ ∈ {+,−, ∗, /}, the corresponding

interval operation is given by

[x] ⋄ [y] =
{

x ⋄ y ∈ R |x ∈ [x], y ∈ [y]
}

. (3)

Interval computations can be applied to arbitrary non-linear problems to gener-

ate mathematically guaranteed solutions,5 while at the same time reducing compu-

tational cost6 or increasing the precision of results.12 Since interval methods do not

discard any feasible solution, when lacking of constraints narrowing the solution set,

it may remain large and therefore uninformative. This represents a major limitation

of localisation techniques based on interval analysis.

Through interval operations it is possible to treat different problems in robotics.

For instance, the localisation problem can be modeled as a set inversion problem

described by

X = f−1(Y) = {x ∈ R
n | f(x) ∈ Y} (4)

where X is the preimage of Y under the function f . In the localisation context, the

set X represents all the feasible positions of the robot given a set of observations

Y. The observations may be distance measurements between the robot and a set of

landmarks, in which case f is the euclidean distance function

√

(x− xi)2 + (y − yi)2 + (z − zi)2 = di (5)
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where the triple (xi, yi, zi) denotes the position of the i-th landmark.

Each observation is transformed into an interval to include sensor uncertainties

in the model. This can be done by inflating the measurement vector d with the

sensor error,

[d] = [d− 3σ,d+ 3σ], (6)

where σ denotes the standard deviation of the sensor. An error boundary at a dis-

tance of 3σ with respect to the measurement ensures that 99.73% of the measure-

ments lie inside the box. Then, we want to compute the following set of i ∈ {1, . . . , n}

constraints where each constraint Si is defined by

Si = [x]× [y]× [z] ∩ f−1([di]) (7)

where

f(x, y, z) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (8)

This constraint satisfaction problem can be solved using the SIVIA-algorithm

(Set Inversion Via Interval Analysis), a non-linear bounded-error estimator intro-

duced by Jaulin and Walter.15 Its main idea is bisecting and testing the search

space narrowing down the set of all feasible solutions. Given an initial search space

modeled as a box [x] the SIVIA algorithm works as follows:

• If [f ]([x]) does not intersect with Y, [x] is discarded.

• If [f ]([x]) is contained in Y, [x] is considered part of the solution.

• If [f ]([x]) intersects with Y, but is not contained in Y, [x] is bisected given

the width of its largest component is bigger than a predefined limit ε. If

not, [x] is considered as part of the solution.

Where [f ] is a inclusion function as presented in.5 Considering a function f :

R
n → R

m, an interval function [f ] : IRn → IR
m is accepted as an inclusion function

of f if

∀[x] ∈ IR
n, f([x]) ⊂ [f ]([x]).

In real world problems, observations often contain outliers, that is the observa-

tion exceeds the predetermined maximum range given by Equation 6. In such a case

the constraints should be relaxed, i.e., a box can be considered part of the solution

even if it violates a certain number of constraints.

Fig. 1. Robot measurements in an unidimensional environment.
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A possible scenario corrupted by an outlier is presented in Fig. 1, where the

robot observes four markers at the same time in an unidimensional environment.

Table 1 shows the marker positions and the measured distance between the robot

and each of the markers, respectively, while the bold measurement in the last row

shall be the outlier. Note how the measurement is already inflated to an interval.

Table 1. Markers position and observation

Marker Position
Measured

distance (m)

Robot position

in m constraints

m1 10 [30, 50] [40, 60]

m2 100 [40, 60] [40, 60]

m3 110 [55, 75] [35, 55]

m4 120 [25,35] [85, 95]

Based on the respective measurement interval, the robot can determine an interval

position, given in the last column of Table 1. The solution set is then computed as

the intersection of all four intervals in the last column. If we disregard the possibility

of outliers the solution set is the empty set and therefore the constrained satisfaction

problem does not have a solution. However, if we allow one outlier, a solution exists

and is defined by the intersection m1 ∩m2 ∩m3 = [40, 55], i.e. the robot position is

enclosed by the interval [40, 55].

The SIVIA algorithm was extended to the RSIVIA algorithm (Relaxed SIVIA)

by27 to handle this new scenario. The difference of RSIVIA is that [x] will be part

of the solution if f([x]) intersects with at least k intervals of the set Y, where k is

the number of measurements minus the number of outliers.

3.2. Probabilistic Bayesian Filtering

As opposed to the interval methods presented above, in probabilistic bayesian fil-

tering uncertainty is represented by probability distributions over the space of hy-

potheses. Therefore, instead of simply including or excluding points of the state

space in the solution set, the degree of uncertainty is captured. Problems involving

perception and action in the real world are some of the applications of probabilistic

algorithms, since the methods are scalable to complex and unstructured environ-

ments, and usually robust in the face of sensor limitations and environment dy-

namics. However, computational inefficiency is one of the disadvantages frequently

associated with probabilistic methods.1

One of the most popular methods in the context of self-localisation is Monte

Carlo Localisation (MCL) proposed by Dellaert et al.28 MCL has mainly gained its

popularity due to the fact that it works well with different localisation problems, it

is able to represent multi-modal distributions, and it is easy to implement.1,14
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MCL uses a set of M particles, each of which representing the possible robot

posistion at time step t,

X t = {x
[1]
t ,x

[2]
t , . . . ,x

[M ]
t }. (9)

An important concept of probabilistic estimation is the belief. The belief bel(xt)

represents the internal knowledge of the robot in relation to the state of the envi-

ronment and is an abbreviation of the Bayes filter posterior

bel(xt) = p(xt | z1:t, u1:t, ). (10)

where z1:t and u1:t denotes the sequence of all measurements and control inputs

up to and including time t, respectively. It can be constructed recursively from the

predicted belief

bel(xt) = p(xt | z1:t−1, u1:t, ). (11)

This probability distribution describes the state xt, conditioned to the current robot

controls u1:t and the measurements up to the previous time step, denoted by z1:t−1.

To construct the belief from its prediction, the weight w
[m]
t of each particle x

[m]
t

is evaluated, given by

w
[m]
t = p(zt |x

[m]
t ). (12)

In the following we sum up the individual steps of the MCL method:

• Create a set of particles distributed over the whole search space.

• Move each particle according to the control ut.

• Weight each particle according to the measurements zt.

• Resample the current set of particles.

Traditional MCL as presented may suffer from particle deprivation1 which is the

lack of particles in relevant regions of the search space. When the robot is kidnapped

and brought to a region without particles, it cannot determine its position and

therefore MCL is not able to recover from the failure of localisation. To mitigate

this shortcoming,1 proposed the use of a simple heuristic which adds new random

particles in the whole search space. However, it is desirable to merely add these

random particles in regions of high likelihood.

4. PROPOSED ROBUST HYBRIDIZATION

We propose a robust hybrid interval-probabilistic approach for the kidnapped robot

problem which is based on the method proposed in11,12 that combines the MCL

and the SIVIA algorithm in order to achieve improved self-localisation. The main

contributions of this work are:
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• Dealing with kidnapped robot problems: The problem addressed by this re-

search is a more difficult variant of the global localisation problem. During

its operation the robot may believe to be in a position that does not coin-

cide with the true position. Then, the robot needs to detect this and the

method needs to recover from the global localisation failure.

• Dealing with outliers: Our method is suitable to deal with datasets con-

taining outliers, which are unavoidable when using real sensor data.

• Strong integration of the approaches during the resampling step: The resam-

pling step is necessary to define the particles that will survive to compose

the new set of particles. In our approach we consider particles as punctual

boxes and use the current constraints based on interval analysis to identify

the particles that will survive to next generation.

The key idea of our method is to only perform MCL over a limited region of

the search space obtained by interval analysis. Thus, the particles cover only high

probability regions and no particles will be wasted in areas that are not feasible.

Algorithm 1 presents how the regions of interest are obtained. It computes the

region of interest based on the search space [x] and the set of m measurements [z],

where the initial dimensions of [x] represent the same dimensions of the environment

and each element of [z] represents an interval measurement observed by the robot.

The algorithm returns a set of boxes, S, that cover the space of feasible solutions.

First, we initialize the number of outliers q to be zero (line 3), since we hope

to find a solution with the lowest possible number of outliers. We also define the

solution set S as empty (line 4). The core of the Algorithm is a loop (lines 5 to

8) that is executed until the solution set is non-empty. At each execution of the

loop, S is sought by RSIVIA method using q to relax the constraints, as shown in

the example (Table 1) of Section 3.1. While S is empty, the RSIVIA algorithm is

executed once again considering q + 1 outliers.

Algorithm 1 setRegion

1: Data: [x], [z]

2: Result: S

3: q = 0

4: S = ∅

5: while S == ∅ and q < m do

6: S = rsivia([x], [z], q)

7: q = q + 1;

8: end while

9: return S

The solution set S represents all the feasible robot positions, while all positions

in S are equiprobable, independent of its size. Then, we use MCL to obtain a more
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precise estimation of the robot position. Particles are only spread within the boxes

in S, which bounds the error of the probabilistic position estimate. The modified

MCL Algorithm is depicted in Algorithm 2. It starts with information about the

initial search space modeled by a box [x] (line 1). So, the current robot observations

z1 are collected and transformed into intervals [z1] (line 2), as given by Equation 6.

After that, a region containing all feasible robot positions is represented by the set

S0 (line 3), which was generated from the interval approach described in Algorithm

1. Now, we spread particles uniformly over the space confined by S0 (line 4).

Algorithm 2 Proposed robust method

1: Data: [x]

2: [z1] = toInterval(z1);

3: S0 = setRegion([x0], [z1]);

4: X 0 = initializeParticles(S0);

5: for t = 1 : n do

6: [ut] = toInterval(ut);

7: [zt] = toInterval(zt);

8: [st] = moveRegion(St−1, [ut]);

9: moveParticles(X t−1,ut);

10: St = setRegion([st], [zt]);

11: weighting(X t, zt);

12: resampling(X t, St);

13: showLocalisation(X t);

14: end for

The algorithm has a loop (lines 5 to 14) to be run at each new robot motion

or sensing. Inside the loop (lines 6 and 7) the sensing information is obtained and

modeled as intervals. We compute the robot motion first by moving St−1 (line 8).

To simplify the motion of St−1, the set is converted into a single box [st−1], by the

interval hull operator

[st−1] = hull(St−1), (13)

and then moved according to the robot controls [ut] generating [st]. Then we move

the set of particles X t−1 accordingly to ut (line 9). The current region defined by

St is updated (line 10) using the measurement [zt]. The next step is the evaluation

of the particle weight (line 11).

During the resampling process (line 12), particles outside St are discarded. In

the case all particles are outside the set St, all will be discarded and it means that a

localization failure or a kidnap happened. Treating each particle as a punctual box,

allows to use simple operations of set theory to determine if a particle is inside St.
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Fig. 2. Defining particles survival according to interval constraints.

For instance, as shown in Fig. 2, the robot observes a marker m (represented by

*) in a distance of [1, 3] meters. We need to define if a particle p1 (represented by

⋄) and p2 (represented by ◦) are in the set S. Information about the position of the

environment objects are given by Table 2.

Table 2. Objects position of Fig. 2

Represented by
Position

(x, y)

m ∗ (0, 0)

p1 ⋄ (1, 2)

p2 ◦ (4, 0)

The computation can be done as follows:

d =
√

(px −mx)2 + (py −my)2

d =
√

(1− 0)2 + (2− 0)2

d = 2.236

d ∈ [1, 3]

where d is the distance between the particle and the mark. We have a constraint

d ∈ [1, 3] in accordance with the robot measurement. p1 does not violate the con-

straint, thus, p1 is kept. Now, considering a particle p2, we have d = 4 so d /∈ [1, 3],

consequently, p2 is discarded.

Since the number of particles does not change over time, each discarded particle

in the resampling process is randomly repositioned over the set St to keep the

same initial size of X 0. Spreading particles randomly in the feasible region is a

known technique to recover from failures that can cause a wrong convergence of
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the particle set, as mentioned in section 3.2. Then, the roulette wheel method is

applied on the current set of particles as in traditional MCL. The roulette wheel

algorithm creates a new set of particles from the old one, by drawing particles

based on their weights (allowing repetitions). The selection process is similar to a

Roulette wheel in a casino. Each particle occupies a section of an imaginary wheel

from which a random element will be selected. The likelihood of selecting a specific

particle is proportional to the size of the corresponding section. However, different

from real-world roulette wheels, the section sizes vary and are proportional to the

weight of the particles. Thus the higher the weight of a particle, more likely it will

be selected.29

Finally, we show the robot pose given by the average of the particles of X t (line

13). We validate our method applied to kidnapped robot problem performing some

numerical experiments presented in the next section.

5. NUMERICAL EXPERIMENTS AND RESULTS

This section presents numerical experiments and results obtained using the pro-

posed approach. It is organized as follows: Section 5.1 presents the experiments

setup. Section 5.2 and 5.3 present the results obtained in comparison with the con-

ventional Monte Carlo Localisation varying the number of particles and landmarks,

respectively. Section 5.4 shows the evolution of the error obtained at each time step

by both methods. Finally, section 5.5 discusses the increase in the computation time

of the proposed approach in comparison with the execution time by MCL.

5.1. Experiments Setup

All experiments use data simulated with the MORSE simulator.30 The robot was

equipped with a three-dimensional linear velocity sensor with a standard deviation

of 0.05 meters and performed global localisation measuring its distance to multiple

distinguishable markers. The markers were spread randomly in the environment

and their positions are known a priori. The maximum measurable distance for each

sensor was 100 meters, so that it was possible that the robot did not see all markers

all the time. The orientation angles obtained from the three-dimensional gyroscope

have a standard deviation of 0.005 rad. Since the farther the marker is located from

the robot the noisier the measurement will be, we assumed an increase in standard

deviation of 0.05 m per meter increase in distance. Besides, the measurements are

corrupted by outliers, too. We assumed that in 30% of the sensing 0% to 20% of

the measurements of that sensing are outliers.

The number of markers and the number of particles vary among the tests. We

simulated scenarios with 12, 20, and 40 markers in the 2D environment, while in the

3D environment we simulated scenarios with 20 and 40 markers. Experiments in

each scenario were carried out using 2000, 8000 and 10000 particles. The duration

of one trajectory was 83min in 2D and 33min in 3D, containing one kidnap event

each.
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5.2. Number of particles

The first test aims to show the impact in the results of increasing the number of

particles. Figure 3 depicts a boxplot of the localisation error of the 3D trajectory

using 40 markers, where A, C, and E are MCL results and B, D, and F are results

of our approach. A and B performed localisation using 2000 particles, C and D used

8000 particles and E and F used 10000. Considering the median error of localisation

using 2000, 8000 and 10000 particles, MCL errors are 179.01, 175.54 and 177.25

meters, while our method’s errors are 2.72, 1.72 and 1.51 meters, respectively.

Fig. 3. Benefits of increasing the number of particles. All data are from 3D trajectory using 40

markers. A (MCL) and B (Our) use 2000 particles. C (MCL) and D (Our) use 8000 particles. A

(MCL) and B (Our) use 10000 particles.

5.3. Number of markers

This experiment aims to show that even varying the number of markers available,

the results obtained by the proposed method is much better than the one obtained

by MCL. It is clear that the more markers available, the better the results will be.

However, the results using MCL are still much worse than the one achieved by the

proposed method.

Figure 4 shows a boxplot of the localisation error for the experiments in a 2D

trajectory using 10000 particles in the environments with 12, 20 and 40 markers.

In this graphic we can see the effects of increasing the number of markers in the

localisation result. A, C and E show the errors of MCL and B, D and F show the
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Fig. 4. Benefits of increasing the number of markers. All data are from 2D and the tests used

10000 particles. A (MCL) and B (Our) use 12 markers. C (MCL) and D (Our) use 20 markers. A

(MCL) and B (Our) use 40 markers.

errors of our method. The mean error in meters to 12, 20 and 40 markers are 179.54,

170.37 and 168.48 for MCL and 19.82, 3.10 and 1.38 for our approach, respectively.

When more information is available to be used during the localisation process, the

results are better.

5.4. Localization error evolution

This test intend to show the evolution of the error obtained at each time step by

both methods. This test was performed using 10000 particles in an environment

with 40 markers and 2D trajectory. Figure 5 shows the localisation error at each

time step. Analyzing the graphic it is easy to identify the moment of the kidnapping

at about 4000 sec characterized by the jump in the MCL mean error. The mean error

in meters ten interactions before the kidnap is 38.63 with MCL and 1.71 with our

method and the mean error in meters ten timesteps after the kidnap is 178.75 with

MCL and 0.6 with our method. Using the hybrid approach the robot localisation

could quickly recover after the kidnapping thanks to the delimited region obtained

by the interval constraints.
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Fig. 5. Mean and standard deviation of the localisation error in the 2D trajectory with 40 markers,

10000 particles are used.

5.5. Computational cost

As shown by all graphics presented so far our method obtains more precise results

for the robot localisation than MCL. However, the improvement causes an increase

in computational cost. Also, the interval part of our hybrid approach creates one

constraint based on each observed marker, thus, when the number of markers is

increased the computational time required to deal with this information is also

increased.

Since the proposed method requires more computation time to achieve more

accurate results, one interesting test to be performed would be increase the number

of particles of MCL so that both methods takes the same computation time. The

hypothesis is that maybe using more particle, the error might be smaller while

expending the same computational time as the hybrid approach. With this test we

aim to show that even using more particles, and consequently taking approximately

the same computation time, MCL still delivers worse results in comparison with

our method.

Table 3 shows the total time and standard deviation in seconds consumed by the

hybrid approach and the traditional MCL during the tests with 10.000 particles for

the 2D trajectory using 12, 20, and 40 markers and varying the number of particles

for the 3D trajectory using 40 markers. As expected, the hybrid approach takes more

time to execute than traditional MCL with the same number of particles. Table 3

also shows an alternative number of particles to be used in the traditional MCL so

that it takes approximately the same time to execute as the hybrid approach. The

experiments were performed in an Intel I7 with 16GB RAM.

Table 4 presents the error and standard deviation in meters obtained by the Pro-
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Table 3. Time consumption.

Proposed Method Traditional MCL

dim. mark. part. time(sec) std dev part. time(sec) std dev part. time(sec) std dev

2D 12 10000 500.00 4.41 10000 402.23 1.40 11406 521.27 6.71

2D 20 10000 573.75 2.86 10000 413.20 2.58 11877 573.68 4.62

2D 40 10000 695.48 4.45 10000 437.30 3.46 12890 698.33 5.49

3D 40 2000 30.68 0.12 2000 9.59 0.13 4250 29.58 0.47

3D 40 8000 158.72 0.89 8000 90.92 0.62 10843 158.66 2.05

3D 40 10000 220.64 1.76 10000 136.38 0.68 13046 221.25 1.63

posed Method and traditional MCL with same number of particles and additional

particles. It is possible to see that even increasing the number of particles of the tra-

ditional MCL, the error is still much higher than the one achieved by the proposed

method. In fact, the error obtained by using additional particles in the traditional

MCL delivers very similar results than the one obtained with the same number of

particles. This can be explained by the fact that the error does not change because

after a certain number of particles, the search space is already sufficiently covered

with the particles you have. Then the error becomes more influenced by other issues

in the definition of the movement model, the observation model and the weighing

of particles, i. e. the results vary because of the randomness of the filter.

Table 4. Error and standard deviation in meters.

Proposed Method Traditional MCL

dim mark. particles error(m) std dev particles error (m) std dev particles error (m) std dev

2D 12 10000 34.12 49.47 10000 162.32 64.52 11406 157.69 63.49

2D 20 10000 30.54 52.08 10000 152.29 55.78 11877 153.46 60.06

2D 40 10000 2.18 3.28 10000 159.25 63.52 12890 154.89 62.64

3D 40 2000 3.54 5.98 2000 167.64 51.58 4250 164.56 51.41

3D 40 8000 2.88 5.92 8000 165.07 51.93 10843 170.88 50.04

3D 40 10000 2.92 5.95 10000 164.55 53.13 13046 165.83 53.76

6. CONCLUSION

In this paper we presented a interval-probabilistic approach robust to outliers to

deal with the kidnapped robot problem. Through interval computations the method

is able to reduce the search space and spread particles only in regions of high

probability. Therefore, we obtain a better probability distribution and consequently

more precise results than when using MCL alone. The main contributions of this

work are related to the strategy to overcome challenges of the kidnapped robot

problem, the robustness against outliers and the integration during the resampling

process with interval constraints to decide the particles survival by treating them

as punctual boxes.

Although the experiments showed that our approach provides more precise local-

isation, the hybrid method needs more time to compute a solution than conventional
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MCL. However, as also shown by the experiments, using the additional computa-

tional intensity in MCL, that is increasing the number of particles, is not enough

to obtain similar localisation precision.

In the future, we intend to improve the method so that it can be applied to

environments with indistinguishable markers as well.
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