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INTRODUCTION

One major challenge in robotics is creating robots capable of performing tasks without human supervision. Acquiring information about the true state of the robot in its environment is essential to carry out autonomous missions. This necessity gives rise to a class of localisation problems that is characterized by the use of sensor information to estimate the robot's position in its environment. The different kinds of localisation problems can be separated into global and local localisation. [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series), Intelligent robotics and autonomous agents[END_REF] In local localisation, also known as position tracking, the initial robot position is assumed to be known. The uncertainties associated with the tracking process are local and restricted to the region near to the true robot position. In global localisation, on the other hand, the robot is placed somewhere in its environment before being put to operation and needs to localize itself based on the sensor readings, which forms a more difficult problem than tracking as boundedness of the position error cannot be assumed.

A yet more difficult scenario is described by the kidnapped robot problem, which forms a subclass of global localisation problems [START_REF] Zhang | Self-adaptive Markov Localization for Single-Robot and Multi-Robot Systems[END_REF] and describes a situation where a well-localised mobile robot is moved to an arbitrary location without being told. That is, the robot strongly believes itself to be somewhere else at the time of the kidnapping. Kidnapping may arise from external, environment influences such as drift, water flow, or earthquake. [START_REF] Stephant | Virtual sensor: application to vehicle sideslip angle and transversal forces[END_REF][START_REF] Stephant | Evaluation of a sliding mode observer for vehicle sideslip angle[END_REF] During the localisation process the robot senses its environment to extract relevant information for self-localisation. Various different kinds of sensors, such as cameras, laser-based, or sonars can be used for this purpose. The output signals of all these sensors, however, are subject to noise and possibly contain outliers, [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF] where the latter is not accounted for in the robot model.

Diverse interval or probabilistic methods are commonly used to solve the localisation problem given noisy sensor data. Also, attempts to fuse both interval techniques and probabilistic filters are found in the literature. [START_REF] Abdallah | Box particle filtering for nonlinear state estimation using interval analysis[END_REF][START_REF] Ashokaraj | Sensor based robot localisation and navigation: using interval analysis and extended kalman filter[END_REF][START_REF] Ashokaraj | A fuzzy logic approach in feature based robot navigation using interval analysis and ukf[END_REF][START_REF] Ashokaraj | Sensor based robot localisation and navigation: using interval analysis and unscented kalman filter[END_REF][START_REF] Ashokaraj | Mobile robot localisation and navigation using multi-sensor fusion via interval analysis and ukf[END_REF][START_REF] Neuland | Improving the precision of auvs localization in a hybrid interval-probabilistic approach using a set-inversion strategy[END_REF][START_REF] Neuland | Hybridization of monte carlo and set-membership methods for the global localization of underwater robots[END_REF] In this paper, we propose a hybrid approach combining a particle filter and a set-membership method which is robust to outliers to solve the kidnapped robot problem. More precisely, the interval approach is used to detect inconsistency, meaning that the robot has been kidnapped. Besides, it is also used to remove a large zone where the robot cannot be helping the particle filter to converge efficiently toward the true location of the robot. It is important to highlight that the proposed method has the ability of dealing with outliers, which are common when using real sensor data. Also, in comparison with other methods, our method has a stronger integration between the interval and probabilistic approaches.This is achieved by considering particles as punctual boxes in the resampling step. Finally, the method is able to solve the most dificult variant of the global localisation problem.

This paper is divided as follows. Section 2 presents the state of the art of localisation techniques, followed by an introduction to the basic concepts of probabilistic filtering and interval analysis applied to self-localisation in Section 3. In Section 4 we explain in detail our proposal and in Section 5 we describe the numerical experiments as well as the results. Finally, in Section 6 we conclude and present possible future work.

RELATED WORK

Current research can be divided into two major areas, that is methods using interval analysis and methods based on Bayesian filtering. Desrochers et al. [START_REF] Desrochers | Set-membership approach to the kidnapped robot problem[END_REF] presented an interval-based algorithm, which exploits geometrical information of the environment in the form of a single image containing depth information, to deal with the kidnapped robot problem. Their technique is suitable to situations where initial models are inaccurate and the number of outliers is large. However, it provides only an initial set of feasible positions and is not able to continuously track a robot's position.

Han et al. [START_REF] Han | Landmark-based particle localization algorithm for mobile robots with a fish-eye vision system[END_REF] proposed a landmark-based particle filter algorithm using a fish-eye system. The algorithm extracts the distance and the angles of a mobile robot with respect to the landmarks. Using this information, the algorithm determines a region including the robot's position, and randomly spreads particles across this region. Their method is able to estimate the robot pose, i.e. its position and orientation, with only two landmarks, but to obtain smoother localisation results, according to Han, odometry information, that is, relative motion measurements such as estimate of distance traveled, should be used as well, which makes the algorithm computationally intense.

The Box Particle Filter developed by Abdallah et al. [START_REF] Abdallah | Box particle filtering for nonlinear state estimation using interval analysis[END_REF] is a hybrid method that uses GPS, a gyrometer, and an odometer to track a land vehicle. Their method combines particle filtering with interval analysis by replacing groups of particles by boxes, called box particles. Interval computation is used to reduce the number of particles without compromising accuracy. Since the box particle filter only requires a small number of particles it shows a reduction in the running time when compared to the traditional particle filter. However, it showed no reduction in the error of the robot pose estimation. Ashokaraj et al. proposed sensor-based robot localisation using an extended Kalman filter 7 as well as an unscented Kalman filter [START_REF] Ashokaraj | Sensor based robot localisation and navigation: using interval analysis and unscented kalman filter[END_REF] in combination with interval analysis to bound the estimation error in the presence of landmarks. If the position estimate of the Kalman filter lies outside of the region it is corrected into the geometrically closest point on the boundary. In 8 multiple interval robot positions are processed using a fuzzy logic weighted average algorithm to obtain a single robot interval position. The error of an unscented Kalman filter position estimate is then bound by the interval robot position as described above. In 10 Ashokaraj et al. used ultrasonic sensor with limited range and SIVIA [START_REF] Jaulin | Set inversion via interval analysis for nonlinear boundederror estimation[END_REF] or IMAGESP. [START_REF] Kieffer | Guaranteed recursive nonlinear state estimation using interval analysis[END_REF] As opposed to the previous methods by the authors, when the point estimate of the Kalman filter lies outside the box, the interval robot position was mapped to a point estimate equal to the center of the box and adopted by the unscented Kalman filter. The corresponding covariance was determined by an ellipse enclosing the box. That is, the major and minor axis radius of the ellipse was used as the covariance matrix values. Their method resulted in a more accurate position estimate.

Neuland et al. proposed a method that combines interval and probabilistic approaches to deal with the global localisation problem. [START_REF] Neuland | Improving the precision of auvs localization in a hybrid interval-probabilistic approach using a set-inversion strategy[END_REF][START_REF] Neuland | Hybridization of monte carlo and set-membership methods for the global localization of underwater robots[END_REF] The strategy identifies regions of high interest through interval analysis to distribute particles accordingly. Thus, the method provides well-defined error boundaries and higher precision results than those obtained by both strategies applied separately. However, the proposed method cannot cope with outliers.

Several others researchers applied hybrid methods to self-localisation, as Kim et al. [START_REF] Kim | Artificial landmark-based underwater localization for auvs using weighted template matching[END_REF] who used a template matching technique and a particle filter to detect artificial landmarks and estimate the pose of a vehicle. Ko et al. [START_REF] Ko | Particle filter approach for localization of an underwater robot using time difference of arrival[END_REF] presented a particle-filter based strategy for localisation of an underwater vehicle using acoustic signals from multiple beacons. Forney et al. [START_REF] Forney | Tracking of a tagged leopard shark with an auv: Sensor calibration and state estimation[END_REF] proposed a particle filter to track 'tagged' agents, e. g., a shark. Meizel et al. [START_REF] Meizel | Initial localization by set inversion[END_REF] applied a set-membership estimation to localize a vehicle using range measurements. Guyonneau et al. [START_REF] Guyonneau | The kidnapping problem of mobile robots: A set membership approach[END_REF] modelled localisation as a constraint satisfaction problem, using an interval combination of bisections and contractions techniques. Some methods were proposed to deal with the kidnapped robot problem. Dobrev et al. [START_REF] Dobrev | Multi-modal sensor fusion for indoor mobile robot pose estimation[END_REF] presented an approach that combined microwave radar and ultrasonic data for an indoor localization method with increased range in comparison to systems based only in ultrasonic sensors. The technique is able to detect kidnapping events due to the radar's absolute position information, but its operation area is limited to that of the auxiliary equipment. Zhen et al. [START_REF] Zhen | Robust localization and localizability estimation with a rotating laser scanner[END_REF] proposed a localization method based on odometry information and a rotating laser for 3D range data in an implementation of the Error State Kalman Filter with an added Gaussian Particle Filter. Their approach using error states manages to resist and operate with small failures, however it is restricted to a limited area around the robot, offering no recovery for larger displacements.

Bukhori et al. [START_REF] Bukhori | Detection strategy for kidnapped robot problem in landmark-based map Monte Carlo Localization[END_REF] proposed a detection strategy for the kidnapped robot problem that adds other metrics in the conventional MCL that commonly only uses a threshold of the particles' maximum weight for such. The algorithm takes in consideration change in weight and change in standard deviation in order to cover kidnapping before and after convergence of the robot's pose and with independence to the success of the recovery. Heilig et al. [START_REF] Heilig | Adaptive particle filter for localization problem in service robotics[END_REF] proposed a statistical approach to the weighting step, taking in consideration present and past standard deviation of the particles, which are also used to detect the kidnapping event, being able to recover with the introduced adaptive resampling, where the number of particles and covariance change depending on the system's confidence about the robot's pose.

In this paper we show that interval-based approach can be combined with a particle filter in a complementary way. The interval approach is used to eliminate parts of the search space that are inconsistent and allows to limit the number of particles. On the other hand, the particle filter focus quickly in consistent region which allows us to choose the right control or to take the right decision. Compared to other methods, our method is capable of dealing with outliers, which are very common in real situations. We also show that the proposed hybrid approach manages to detect the robot kidnapping and recovers from it very fast. The new robot location is found and our method is able to continuously track the robot position.

BACKGROUND

This section briefly introduces the underlying concepts about interval analysis and probabilistic Bayesian filtering necessary for the presentation of our localisation algorithm in Section 4.

Interval Analysis

Interval analysis is based on the idea of enclosing real numbers in intervals and real vectors in boxes so as to perform mathematical operations using these structures. [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF][START_REF] Moore | Interval Analysis[END_REF] A real interval [x] can be defined as a connected subset of R, composed by an upper and a lower bound,

[x]=[x -,x + ]= x ∈ R | x -≤ x ≤ x + . ( 1 
)
Multidimensional data is represented using interval vectors, also referred to as boxes. Ab o x[ x] is a subset of R n defined as the Cartesian product of intervals,

[x]=[x 1 ] × [x 2 ] ו••×[x n ]( 2 
)
where n is the dimension. Basic operations of real computation are naturally extended to intervals. Given the intervals [x], [y]a n dab i n a r yo p e r a t o r⋄∈{ +, -, * ,/}, the corresponding interval operation is given by

[x] ⋄ [y]= x ⋄ y ∈ R | x ∈ [x],y ∈ [y] . (3) 
Interval computations can be applied to arbitrary non-linear problems to generate mathematically guaranteed solutions, 5 while at the same time reducing computational cost [START_REF] Abdallah | Box particle filtering for nonlinear state estimation using interval analysis[END_REF] or increasing the precision of results. [START_REF] Neuland | Hybridization of monte carlo and set-membership methods for the global localization of underwater robots[END_REF] Since interval methods do not discard any feasible solution, when lacking of constraints narrowing the solution set, it may remain large and therefore uninformative. This represents a major limitation of localisation techniques based on interval analysis.

Through interval operations it is possible to treat different problems in robotics. For instance, the localisation problem can be modeled as a set inversion problem described by

X = f -1 (Y)={x ∈ R n | f (x) ∈ Y} ( 4 
)
where X is the preimage of Y under the function f . In the localisation context, the set X represents all the feasible positions of the robot given a set of observations Y. The observations may be distance measurements between the robot and a set of landmarks, in which case f is the euclidean distance function

(x -x i ) 2 +(y -y i ) 2 +(z -z i ) 2 = d i (5) 
where the triple (x i ,y i ,z i ) denotes the position of the i-th landmark. Each observation is transformed into an interval to include sensor uncertainties in the model. This can be done by inflating the measurement vector d with the sensor error,

[d]=[d -3σ, d +3σ], (6) 
where σ denotes the standard deviation of the sensor. An error boundary at a distance of 3σ with respect to the measurement ensures that 99.73% of the measurements lie inside the box. Then, we want to compute the following set of i ∈{1,...,n} constraints where each constraint S i is defined by

S i =[x] × [y] × [z] ∩ f -1 ([d i ]) (7) 
where

f (x, y, z)= (x -x i ) 2 +(y -y i ) 2 +(z -z i ) 2 (8) 
This constraint satisfaction problem can be solved using the SIVIA-algorithm (Set Inversion Via Interval Analysis), a non-linear bounded-error estimator introduced by Jaulin and Walter. [START_REF] Jaulin | Set inversion via interval analysis for nonlinear boundederror estimation[END_REF] Its main idea is bisecting and testing the search space narrowing down the set of all feasible solutions. Given an initial search space modeled as a box [x] the SIVIA algorithm works as follows:

• If [f ]([x]) does not intersect with Y,[ x] is discarded. • If [f ]([x]) is contained in Y,[ x] is considered part of the solution. • If [f ]([x]) intersects with Y, but is not contained in Y,[ x] is bisected given
the width of its largest component is bigger than a predefined limit .I f not, [x] is considered as part of the solution.

Where [f ] is a inclusion function as presented in. [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF] Considering a function f :

R n → R m , an interval function [f ]:IR n → IR m is accepted as an inclusion function of f if ∀[x] ∈ IR n ,f ([x]) ⊂ [f ]([x]).
In real world problems, observations often contain outliers, that is the observation exceeds the predetermined maximum range given by Equation 6. In such a case the constraints should be relaxed, i.e., a box can be considered part of the solution even if it violates a certain number of constraints. A possible scenario corrupted by an outlier is presented in Fig. 1, where the robot observes four markers at the same time in an unidimensional environment. Table 1 shows the marker positions and the measured distance between the robot and each of the markers, respectively, while the bold measurement in the last row shall be the outlier. Note how the measurement is already inflated to an interval. The SIVIA algorithm was extended to the RSIVIA algorithm (Relaxed SIVIA) by [START_REF] Jaulin | Robust set-membership state estimation; application to underwater robotics[END_REF] to handle this new scenario. The difference of RSIVIA is that [x] will be part of the solution if f ([x]) intersects with at least k intervals of the set Y,w h e r ek is the number of measurements minus the number of outliers.

Probabilistic Bayesian Filtering

As opposed to the interval methods presented above, in probabilistic bayesian filtering uncertainty is represented by probability distributions over the space of hypotheses. Therefore, instead of simply including or excluding points of the state space in the solution set, the degree of uncertainty is captured. Problems involving perception and action in the real world are some of the applications of probabilistic algorithms, since the methods are scalable to complex and unstructured environments, and usually robust in the face of sensor limitations and environment dynamics. However, computational inefficiency is one of the disadvantages frequently associated with probabilistic methods. [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series), Intelligent robotics and autonomous agents[END_REF] One of the most popular methods in the context of self-localisation is Monte Carlo Localisation (MCL) proposed by Dellaert et al. [START_REF] Dellaert | Monte carlo localization for mobile robots[END_REF] MCL has mainly gained its popularity due to the fact that it works well with different localisation problems, it is able to represent multi-modal distributions, and it is easy to implement. [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series), Intelligent robotics and autonomous agents[END_REF][START_REF] Han | Landmark-based particle localization algorithm for mobile robots with a fish-eye vision system[END_REF] MCL uses a set of M particles, each of which representing the possible robot posistion at time step t,

X t = {x [1] t , x [2] t ,...,x [M ] t }. (9) 
An important concept of probabilistic estimation is the belief. The belief bel(x t ) represents the internal knowledge of the robot in relation to the state of the environment and is an abbreviation of the Bayes filter posterior bel(x t )=p(x t | z 1:t ,u 1:t , ).

(

) 10 
where z 1:t and u 1:t denotes the sequence of all measurements and control inputs up to and including time t, respectively. It can be constructed recursively from the predicted belief

bel(x t )=p(x t | z 1:t-1 ,u 1:t , ). (11) 
This probability distribution describes the state x t , conditioned to the current robot controls u 1:t and the measurements up to the previous time step, denoted by z 1:t-1 .

To construct the belief from its prediction, the weight w

[m] t of each particle x [m] t is evaluated, given by w [m] t = p(z t | x [m] t ). ( 12 
)
In the following we sum up the individual steps of the MCL method:

• Create a set of particles distributed over the whole search space.

• Move each particle according to the control u t .

• Weight each particle according to the measurements z t .

• Resample the current set of particles.

Traditional MCL as presented may suffer from particle deprivation 1 which is the lack of particles in relevant regions of the search space. When the robot is kidnapped and brought to a region without particles, it cannot determine its position and therefore MCL is not able to recover from the failure of localisation. To mitigate this shortcoming, 1 proposed the use of a simple heuristic which adds new random particles in the whole search space. However, it is desirable to merely add these random particles in regions of high likelihood.

PROPOSED ROBUST HYBRIDIZATION

We propose a robust hybrid interval-probabilistic approach for the kidnapped robot problem which is based on the method proposed in [START_REF] Neuland | Improving the precision of auvs localization in a hybrid interval-probabilistic approach using a set-inversion strategy[END_REF][START_REF] Neuland | Hybridization of monte carlo and set-membership methods for the global localization of underwater robots[END_REF] that combines the MCL and the SIVIA algorithm in order to achieve improved self-localisation. The main contributions of this work are:

• Dealing with kidnapped robot problems: The problem addressed by this research is a more difficult variant of the global localisation problem. During its operation the robot may believe to be in a position that does not coincide with the true position. Then, the robot needs to detect this and the method needs to recover from the global localisation failure. • Dealing with outliers: Our method is suitable to deal with datasets containing outliers, which are unavoidable when using real sensor data. • Strong integration of the approaches during the resampling step: The resampling step is necessary to define the particles that will survive to compose the new set of particles. In our approach we consider particles as punctual boxes and use the current constraints based on interval analysis to identify the particles that will survive to next generation.

The key idea of our method is to only perform MCL over a limited region of the search space obtained by interval analysis. Thus, the particles cover only high probability regions and no particles will be wasted in areas that are not feasible.

Algorithm 1 presents how the regions of interest are obtained. It computes the region of interest based on the search space [x] and the set of m measurements [z], where the initial dimensions of [x] represent the same dimensions of the environment and each element of [z] represents an interval measurement observed by the robot. The algorithm returns a set of boxes, S, that cover the space of feasible solutions.

First, we initialize the number of outliers q t ob ez e r o( l i n e3 ) ,s i n c ew eh o p e to find a solution with the lowest possible number of outliers. We also define the solution set S as empty (line 4). The core of the Algorithm is a loop (lines 5 to 8) that is executed until the solution set is non-empty. At each execution of the loop, S is sought by RSIVIA method using q to relax the constraints, as shown in the example (Table 1) of Section 3.1. While S is empty, the RSIVIA algorithm is executed once again considering q + 1 outliers. 

S = rsivia([x], [z],q) 7:
q = q +1; 8: end while 9: return S The solution set S represents all the feasible robot positions, while all positions in S are equiprobable, independent of its size. Then, we use MCL to obtain a more precise estimation of the robot position. Particles are only spread within the boxes in S, which bounds the error of the probabilistic position estimate. The modified MCL Algorithm is depicted in Algorithm 2. It starts with information about the initial search space modeled by a box [x] (line 1). So, the current robot observations z 1 are collected and transformed into intervals [z 1 ] (line 2), as given by Equation 6. After that, a region containing all feasible robot positions is represented by the set S 0 (line 3), which was generated from the interval approach described in Algorithm 1. Now, we spread particles uniformly over the space confined by S 0 (line 4). [u t ]=toInterval(u t );

7:

[z t ]=toInterval(z t ); 8: [s t ]=moveRegion(S t-1 , [u t ]); 9:
moveP articles(X t-1 , u t );

10:

S t = setRegion([s t ], [z t ]); 11:
weighting(X t , z t ); resampling(X t , S t );

13:

showLocalisation(X t ); 14: end for

The algorithm has a loop (lines 5 to 14) to be run at each new robot motion or sensing. Inside the loop (lines 6 and 7) the sensing information is obtained and modeled as intervals. We compute the robot motion first by moving S t-1 (line 8). To simplify the motion of S t-1 , the set is converted into a single box [s t-1 ], by the interval hull operator

[s t-1 ]=hull(S t-1 ), ( 13 
)
and then moved according to the robot controls [u t ]g e n e r a t i n g[ s t ]. Then we move the set of particles X t-1 accordingly to u t (line 9). The current region defined by S t is updated (line 10) using the measurement [z t ] .T h en e x ts t e pi st h ee v a l u a t i o n of the particle weight (line 11).

During the resampling process (line 12), particles outside S t are discarded. In the case all particles are outside the set S t , all will be discarded and it means that a localization failure or a kidnap happened. Treating each particle as a punctual box, allows to use simple operations of set theory to determine if a particle is inside S t . For instance, as shown in Fig. 2, the robot observes a marker m (represented by *) in a distance of [1, 3] meters. We need to define if a particle p 1 (represented by ⋄)a n dp 2 (represented by •) are in the set S. Information about the position of the environment objects are given by Table 2.

Table 2. Objects position of Fig. 2 Represented by Position (x, y) m * (0, 0)

p 1 ⋄ (1, 2) p 2 • (4, 0)
The computation can be done as follows:

d = (p x -m x ) 2 +(p y -m y ) 2 d = (1 -0) 2 +(2-0) 2 d =2.236 d ∈ [1, 3]
where d is the distance between the particle and the mark. We have a constraint d ∈ [1, 3] in accordance with the robot measurement. p 1 does not violate the constraint, thus, p 1 is kept. Now, considering a particle p 2 ,w eh a v ed =4sod/ ∈ [1, 3], consequently, p 2 is discarded. Since the number of particles does not change over time, each discarded particle in the resampling process is randomly repositioned over the set S t to keep the same initial size of X 0 . Spreading particles randomly in the feasible region is a known technique to recover from failures that can cause a wrong convergence of the particle set, as mentioned in section 3.2. Then, the roulette wheel method is applied on the current set of particles as in traditional MCL. The roulette wheel algorithm creates a new set of particles from the old one, by drawing particles based on their weights (allowing repetitions). The selection process is similar to a Roulette wheel in a casino. Each particle occupies a section of an imaginary wheel from which a random element will be selected. The likelihood of selecting a specific particle is proportional to the size of the corresponding section. However, different from real-world roulette wheels, the section sizes vary and are proportional to the weight of the particles. Thus the higher the weight of a particle, more likely it will be selected. [START_REF] Doucet | Sequential Monte Carlo methods in practice[END_REF] Finally, we show the robot pose given by the average of the particles of X t (line 13). We validate our method applied to kidnapped robot problem performing some numerical experiments presented in the next section.

NUMERICAL EXPERIMENTS AND RESULTS

This section presents numerical experiments and results obtained using the proposed approach. It is organized as follows: Section 5.1 presents the experiments setup. Section 5.2 and 5.3 present the results obtained in comparison with the conventional Monte Carlo Localisation varying the number of particles and landmarks, respectively. Section 5.4 shows the evolution of the error obtained at each time step by both methods. Finally, section 5.5 discusses the increase in the computation time of the proposed approach in comparison with the execution time by MCL.

Experiments Setup

All experiments use data simulated with the MORSE simulator. [START_REF] Echeverria | Modular open robots simulation engine: Morse[END_REF] The robot was equipped with a three-dimensional linear velocity sensor with a standard deviation of 0.05 meters and performed global localisation measuring its distance to multiple distinguishable markers. The markers were spread randomly in the environment and their positions are known a priori. The maximum measurable distance for each sensor was 100 meters, so that it was possible that the robot did not see all markers all the time. The orientation angles obtained from the three-dimensional gyroscope have a standard deviation of 0.005 rad. Since the farther the marker is located from the robot the noisier the measurement will be, we assumed an increase in standard deviation of 0.05 m per meter increase in distance. Besides, the measurements are corrupted by outliers, too. We assumed that in 30% of the sensing 0% to 20% of the measurements of that sensing are outliers.

The number of markers and the number of particles vary among the tests. We simulated scenarios with 12, 20, and 40 markers in the 2D environment, while in the 3D environment we simulated scenarios with 20 and 40 markers. Experiments in each scenario were carried out using 2000, 8000 and 10000 particles. The duration of one trajectory was 83 min in 2D and 33 min in 3D, containing one kidnap event each.

Number of particles

The first test aims to show the impact in the results of increasing the number of particles. Figure 3 depicts a boxplot of the localisation error of the 3D trajectory using 40 markers, where A, C, and E are MCL results and B, D, and F are results of our approach. A and B performed localisation using 2000 particles, C and D used 8000 particles and E and F used 10000. Considering the median error of localisation using 2000, 8000 and 10000 particles, MCL errors are 179.01, 175.54 and 177.25 meters, while our method's errors are 2.72, 1.72 and 1.51 meters, respectively. 

Number of markers

This experiment aims to show that even varying the number of markers available, the results obtained by the proposed method is much better than the one obtained by MCL. It is clear that the more markers available, the better the results will be. However, the results using MCL are still much worse than the one achieved by the proposed method.

Figure 4 shows a boxplot of the localisation error for the experiments in a 2D trajectory using 10000 particles in the environments with 12, 20 and 40 markers.

In this graphic we can see the effects of increasing the number of markers in the localisation result. A, C and E show the errors of MCL and B, D and F show the errors of our method. The mean error in meters to 12, 20 and 40 markers are 179.54, 170.37 and 168.48 for MCL and 19.82, 3.10 and 1.38 for our approach, respectively. When more information is available to be used during the localisation process, the results are better.

Localization error evolution

This test intend to show the evolution of the error obtained at each time step by both methods. This test was performed using 10000 particles in an environment with 40 markers and 2D trajectory. Figure 5 shows the localisation error at each time step. Analyzing the graphic it is easy to identify the moment of the kidnapping at about 4000 sec characterized by the jump in the MCL mean error. The mean error in meters ten interactions before the kidnap is 38.63 with MCL and 1.71 with our method and the mean error in meters ten timesteps after the kidnap is 178.75 with MCL and 0.6 with our method. Using the hybrid approach the robot localisation could quickly recover after the kidnapping thanks to the delimited region obtained by the interval constraints. 

Computational cost

As shown by all graphics presented so far our method obtains more precise results for the robot localisation than MCL. However, the improvement causes an increase in computational cost. Also, the interval part of our hybrid approach creates one constraint based on each observed marker, thus, when the number of markers is increased the computational time required to deal with this information is also increased.

Since the proposed method requires more computation time to achieve more accurate results, one interesting test to be performed would be increase the number of particles of MCL so that both methods takes the same computation time. The hypothesis is that maybe using more particle, the error might be smaller while expending the same computational time as the hybrid approach. With this test we aim to show that even using more particles, and consequently taking approximately the same computation time, MCL still delivers worse results in comparison with our method.

Table 3 shows the total time and standard deviation in seconds consumed by the hybrid approach and the traditional MCL during the tests with 10.000 particles for the 2D trajectory using 12, 20, and 40 markers and varying the number of particles for the 3D trajectory using 40 markers. As expected, the hybrid approach takes more time to execute than traditional MCL with the same number of particles. Table 3 also shows an alternative number of particles to be used in the traditional MCL so that it takes approximately the same time to execute as the hybrid approach. The experiments were performed in an Intel I7 with 16GB RAM.

Table 4 presents the error and standard deviation in meters obtained by the Pro- posed Method and traditional MCL with same number of particles and additional particles. It is possible to see that even increasing the number of particles of the traditional MCL, the error is still much higher than the one achieved by the proposed method. In fact, the error obtained by using additional particles in the traditional MCL delivers very similar results than the one obtained with the same number of particles. This can be explained by the fact that the error does not change because after a certain number of particles, the search space is already sufficiently covered with the particles you have. Then the error becomes more influenced by other issues in the definition of the movement model, the observation model and the weighing of particles, i. e. the results vary because of the randomness of the filter. 

CONCLUSION

In this paper we presented a interval-probabilistic approach robust to outliers to deal with the kidnapped robot problem. Through interval computations the method is able to reduce the search space and spread particles only in regions of high probability. Therefore, we obtain a better probability distribution and consequently more precise results than when using MCL alone. The main contributions of this work are related to the strategy to overcome challenges of the kidnapped robot problem, the robustness against outliers and the integration during the resampling process with interval constraints to decide the particles survival by treating them as punctual boxes.

Although the experiments showed that our approach provides more precise localisation, the hybrid method needs more time to compute a solution than conventional MCL. However, as also shown by the experiments, using the additional computational intensity in MCL, that is increasing the number of particles, is not enough to obtain similar localisation precision.

In the future, we intend to improve the method so that it can be applied to environments with indistinguishable markers as well.
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Fig. 1 .

 1 Fig. 1. Robot measurements in an unidimensional environment.

Algorithm 2

 2 Proposed robust method 1: Data: [x] 2: [z 1 ]=toInterval(z 1 ); 3: S 0 = setRegion([x 0 ], [z 1 ]); 4: X 0 = initializeP articles(S 0 ); 5: for t=1:n do 6:

Fig. 2 .

 2 Fig. 2. Defining particles survival according to interval constraints.

Fig. 3 .

 3 Fig. 3. Benefits of increasing the number of particles. All data are from 3D trajectory using 40 markers. A (MCL) and B (Our) use 2000 particles. C (MCL) and D (Our) use 8000 particles. A (MCL) and B (Our) use 10000 particles.

Fig. 4 .

 4 Fig. 4. Benefits of increasing the number of markers. All data are from 2D and the tests used 10000 particles. A (MCL) and B (Our) use 12 markers. C (MCL) and D (Our) use 20 markers. A (MCL) and B (Our) use 40 markers.

Fig. 5 .

 5 Fig. 5. Mean and standard deviation of the localisation error in the 2D trajectory with 40 markers, 10000 particles are used.

Table 1 .

 1 Markers position and observationBased on the respective measurement interval, the robot can determine an interval position, given in the last column of Table1. The solution set is then computed as the intersection of all four intervals in the last column. If we disregard the possibility of outliers the solution set is the empty set and therefore the constrained satisfaction problem does not have a solution. However, if we allow one outlier, a solution exists and is defined by the intersection m 1 ∩ m 2 ∩ m 3 =[40, 55], i.e. the robot position is enclosed by the interval[40, 55].

	Marker Position	Measured distance (m)	Robot position in m constraints
	m 1	10	[30, 50]	[40, 60]
	m 2	100	[40, 60]	[40, 60]
	m 3	110	[55, 75]	[35, 55]
	m 4	120	[25, 35]	[85, 95]

Table 3 .

 3 Time consumption.

			Proposed Method			Traditional MCL		
	dim. mark.	part.	time(sec) std dev	part.	time(sec) std dev	part.	time(sec) std dev
	2D	12	10000	500.00	4.41	10000	402.23	1.40	11406	521.27	6.71
	2D	20	10000	573.75	2.86	10000	413.20	2.58	11877	573.68	4.62
	2D	40	10000	695.48	4.45	10000	437.30	3.46	12890	698.33	5.49
	3D	40	2000	30.68	0.12	2000	9.59	0.13	4250	29.58	0.47
	3D	40	8000	158.72	0.89	8000	90.92	0.62	10843	158.66	2.05
	3D	40	10000	220.64	1.76	10000	136.38	0.68	13046	221.25	1.63

Table 4 .

 4 Error and standard deviation in meters.

			Proposed Method			Traditional MCL		
	dim mark. particles error(m) std dev particles error (m) std dev particles error (m) std dev
	2D	12	10000	34.12	49.47	10000	162.32	64.52	11406	157.69	63.49
	2D	20	10000	30.54	52.08	10000	152.29	55.78	11877	153.46	60.06
	2D	40	10000	2.18	3.28	10000	159.25	63.52	12890	154.89	62.64
	3D	40	2000	3.54	5.98	2000	167.64	51.58	4250	164.56	51.41
	3D	40	8000	2.88	5.92	8000	165.07	51.93	10843	170.88	50.04
	3D	40	10000	2.92	5.95	10000	164.55	53.13	13046	165.83	53.76