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Exact bounded-error continuous-time
linear state estimator

Simon Rohoua, Luc Jaulina

aENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

Abstract

This paper proposes an interval-based method for estimating the state of a linear continuous-time dynamical system.
In this work, we assume that the measurements are provided at discrete times and that all errors are bounded. Interval
analysis is used to propagate the interval uncertainties continuously over time. The resulting method is guaranteed to
never lose any feasible solution and provides an optimal polygonal enclosure of the state trajectory. A reproducible
example illustrates the principle of the method.
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1. Introduction

This paper proposes a new state estimator for linear
time-invariant systems described by state equations. The
measurements are collected at discrete times and all er-
rors are assumed to be intervals. The states are known
to belong to some prior sets, possibly infinite if nothing is
known a priori. Using interval analysis, we show that it
is possible to obtain an accurate and guaranteed enclosure
of the state vectors that is consistent with the state equa-
tion, the observations and the related errors. This state
estimator is exact since it does not introduce pessimism
and does not lose any consistent state.

The state estimation of linear systems is usually treated
by a Kalman filter [1, 2]. Since several decades, the
Kalman approach has been adapted to consider bounded-
error systems [3, 4, 5]. This set-membership approach is
interesting when we have few measurements [6] or when
the noise is more properly described by intervals rather
than a probabilistic distribution. For the resolution, dif-
ferent types of wrappers have been used to enclose the
feasible states: ellipsoids [7, 8], intervals [9, 10], zonotopes
[11, 12, 13], parallelotopes [14], or polytopes [15, 16]. All
these contributions consider a discrete time evolution.

The approach proposed in this paper is an extension
of the method introduced in [16], which is dedicated to
discrete time systems. This method has been shown to
be exact and can be written in a recursive form. Now,
the main difficulty is to take into account the continuous
time, the discrete measurements and the accuracy of the
enclosure, in one algorithm.

Dealing with continuous time has already been consid-
ered by several authors such as [17]. Our main contri-
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bution is to propose a state estimator based on interval
analysis that computes exactly the set of all feasible tra-
jectories. To our knowledge, none of the existing state
estimators is able to compute this exact set in the case
of continuous linear systems. They either require the sys-
tem to be discrete in time (see e.g., [16]) or they intro-
duce some conservatism [18]. The overestimation of linear
continuous-time state estimator is mainly due to the fact
that necessary conditions [19] are used, such as positivity,
see e.g. [20], or wrapping effects.

This paper is organized as follows. Section 2 introduces
the exact sequence defining the set of all states consistent
with the errors and the differential equation associated
with the evolution. Section 3 specifies the exact sequence
in the case where the system is linear and time-invariant.
It also proposes a polygonal algorithm for computing an
outer approximation of the exact state trajectory. Finally,
an example related to the localization of a mobile robot is
treated in Section 4, before the conclusion of the paper.

2. Exact sequence

2.1. Tubes

Denote by F (R 7→ Rn) the set of trajectories with values
in Rn. A tube [21] is a set of trajectories X(·) : R 7→ P(Rn)
which satisfies

x(·) ∈ X(·)⇔ ∀t,x(t) ∈ X(t).

This definition shows that any value x(t) is enclosed in a
set. Nevertheless, there is no additional information re-
lated to temporal correlations or derivatives with respect
to t. For instance, the set of trajectories A(·) : t 7→ [−1, 1]
is a tube, and the trajectory a(t) = sin(t) is enclosed in
A(·) since it satisfies a(t) ∈ A(t),∀t. However, the set B(·)

Preprint submitted to Systems & Control Letters April 25, 2021



of all trajectories b(·), such that b(t) ∈ [−1, 1] and ḃ(t) > 0,
is not a tube.

Now, let us define the inclusion between two tubes as

X(·) ⊂ Y(·)⇔ ∀t,X(t) ⊂ Y(t).

The set of tubes equipped with the inclusion is a lattice
[22]. As a consequence, if we define a set of trajectories
B(·), there exists a unique smallest tube that encloses B(·).
For instance, the smallest tube enclosing all trajectories
b(·) defined in t 7→ [−1, 1] such that ḃ(t) > 0 is the tube
A(·) : t 7→ [−1, 1].

These definitions also apply when t is restricted to be
inside an interval [0, t̄], representing a temporal domain.

2.2. The input u(·) is known

Consider the linear time-invariant dynamical system

ẋ = Ax + Bu. (1)

Because the system is linear, an analytical expression for
the flow is given by

Φ
u(·)
t1,t2(x) = eA(t2−t1)x +

∫ t2

t1

eA(t2−τ)Bu(τ)dτ. (2)

Assume that for t ∈ [0, t̄], the state trajectory x(·) is
known to be inside the prior tube X̌(·). We want to com-
pute recursively the smallest tube X(·) for x(·) consistent
with both the prior tube X̌(·) and the state equation. This
sequence can be interpreted as an extension to continuous
time systems of the state estimator proposed in [23] or
[24].

For a given initial vector x1 defined at t1, the state at
time t2 is expressed by

x2 = Φ
u(·)
t1,t2(x1),

where Φt1,t2 is the flow of the dynamical system according
to its input u(·). The flow can be extended to sets [25] as
follows:

Φ
u(·)
t1,t2(X1) =

{
x2 | ∃x1 ∈ X1, x2 = Φ

u(·)
t1,t2(x1)

}
. (3)

The dot notation (·) is used in this paper for representing
the independent variable. Also, note that for ease of read-
ing, the notation u(·) is used in the above equation instead
of u[t1,t2](·), as there is no dependency with the values of
u(·) outside the interval [t1, t2].

The following two corollaries will be used thereafter for
the proof of Theorem 3.

Corollary 1. Given a set X1, three time instants t1, t2,
t3, and an input u(·), we have the Chasles property:

Φ
u(·)
t1,t3(X1) = Φ

u(·)
t2,t3 ◦Φ

u(·)
t1,t2(X1) . (4)

Proof. From Equation (3), we have:

Φ
u(·)
t2,t3 ◦Φ

u(·)
t1,t2(X1)

=
{

x3 | ∃x2 ∈ Φ
u(·)
t1,t2(X1),x3 = Φ

u(·)
t2,t3(x2)

}
=

{
x3 | ∃x1 ∈ X1,x2 = Φ

u(·)
t1,t2(x1),x3 = Φ

u(·)
t2,t3(x2)

}
=

{
x3 | ∃x1 ∈ X1,x3 = Φ

u(·)
t2,t3 ◦Φ

u(·)
t1,t2(x1)

}
=

{
x3 | ∃x1 ∈ X1,x3 = Φ

u(·)
t1,t3(x1)

}
= Φ

u(·)
t1,t3(X1)

Corollary 2. Given two sets Xa1 ,Xb1, two time instants t1,
t2, and an input u(·), we have the automorphism property:

Φ
u(·)
t1,t2(Xa1 ∩ Xb1) = Φ

u(·)
t1,t2(Xa1) ∩Φ

u(·)
t1,t2(Xb1). (5)

Proof. From Equation (3), we have:

Φ
u(·)
t1,t2(Xa1 ∩ Xb1)

=
{

x2 | ∃x1 ∈ Xa1 ∩ Xb1, x2 = Φ
u(·)
t1,t2(x1)

}
=

{
x2 | ∃x1a ∈ Xa1 , x2 = Φ

u(·)
t1,t2(x1a)

∧ ∃x1b ∈ Xb1, x2 = Φ
u(·)
t1,t2(x1b)

}
=

{
x2 | ∃x1a ∈ Xa1 , x2 = Φ

u(·)
t1,t2(x1a)

}
∩
{

x2 | ∃x1b ∈ Xb1, x2 = Φ
u(·)
t1,t2(x1b)

}
= Φ

u(·)
t1,t2(Xa1) ∩Φ

u(·)
t1,t2(Xb1)

We define the posterior state tube as the smallest tube
X̂(·) for x(·) consistent with the prior tube X̌(·), the input
u(·) and the state equation ẋ = f(x,u). We have

X̂t =
⋂

τ∈[0,t̄]

Φ
u(·)
τ,t (X̌τ ), (6)

as illustrated by Figure 1.
We now define the set

−→
X t =

⋂
τ∈[0,t]

Φ
u(·)
τ,t (X̌τ ) (7)

that corresponds to the set of all x(t) consistent with the
past (before t) and

←−
X t =

⋂
τ∈[t,t̄]

Φ
u(·)
τ,t (X̌τ ) (8)

the set of all x(t) consistent with the future (after t). We
have

X̂t =
−→
X t ∩

←−
X t. (9)

The following theorem will allow us to implement the
exact sequence to compute the tube X̂(·).
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x2(t1)

x1(t1)
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u(·)
t3,t2(X̌t3)

t
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Φ
u(·)
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X̂t2

t2 t3t1

Figure 1: Illustration of one slice of a posterior tube X̂(·) at time t2 (red hatched part). This slice is defined as the intersection set

X̂t2 = Φ
u(·)
t1,t2

(X̌t1 ) ∩Φ
u(·)
t3,t2

(X̌t3 ), with X̌t1 and X̌t3 prior states. The flow function Φ
u(·)
t,t2

transports the prior sets from t to t2, according to

the input u(·) over [t, t2]. The result of each transportation, from t1 and from t3, is depicted in blue at time t2.

Theorem 3. Given the sampling times of measurements1

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

and a prior tube X̌(·) containing the actual state trajectory

x(·). The posterior tube X̂(·) can be defined recursively by

−→
X tk = Φ

u(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

←−
X tk = Φ

u(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ )

X̂tk =
−→
X tk ∩

←−
X tk

(10)

with
−→
X t0 = X̌(t0) and

←−
X tk̄ = X̌(tk̄). Moreover, when t

is not consistent with the sampling times ( i.e. for t ∈
[tk, tk+1]\T =]tk, tk+1[), then we directly have

X̂t = Φ
u(·)
tk,t

(X̂tk).

Proof. We have the decomposition:

−→
X tk

(7)
=

⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk

(X̌τ ) ∩ ⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ ) .

(11)
Now,⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk

(X̌τ )
(4)
=

⋂
τ∈[0,tk−1]

Φ
u(·)
tk−1,tk

◦Φ
u(·)
τ,tk−1

(X̌τ )

(5)
= Φ

u(·)
tk−1,tk

( ⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk−1

(X̌τ )

)
(7)
= Φ

u(·)
tk−1,tk

(
−→
X tk−1

).

(12)
Combined with Equation (11), we obtain the first part of
Equations (10).

1Here, δ is the time spacing between measurements and it is as-
sumed to be constant for ease of reading, without loss of generality.

Then, for the second part, we have

←−
X tk

(8)
=

⋂
τ∈[tk+1,t̄]

Φ
u(·)
τ,tk

(X̌τ ) ∩ ⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ ) .

(13)
Now,⋂
τ∈[tk+1,t̄]

Φ
u(·)
τ,tk

(X̌τ )
(4)
=

⋂
τ∈[tk+1,t̄]

Φ
u(·)
tk+1,tk

◦Φ
u(·)
τ,tk+1

(X̌τ )

(5)
= Φ

u(·)
tk+1,tk

( ⋂
τ∈[tk+1,t̄]

Φ
u(·)
τ,tk+1

(X̌τ )

)
(8)
= Φ

u(·)
tk+1,tk

(
←−
X tk+1

),

which leads to the second part of Equations (10) if com-
bined with Equation (13).

Moreover,

X̂tk
(9)
=
−→
X tk ∩

←−
X tk ,

which corresponds to the last part of Equations (10).
Finally

X̂t
(6)
=

⋂
τ∈[0,t̄] Φ

u(·)
τ,t (X̌τ )

(4)
=

⋂
τ∈[0,t̄] Φ

u(·)
tk,t
◦Φ

u(·)
τ,tk

(X̌τ )
(5)
= Φ

u(·)
tk,t

(⋂
τ∈[0,t̄] Φ

u(·)
τ,tk

(X̌τ )
)

= Φ
u(·)
tk,t

(X̂tk)

,

which concludes the proof.

2.3. The input u(·) is uncertain

The previous results can be extended to the case where
u(·) is uncertain but known to be inside a tube U(·). This
allows to consider bounded errors on the system input. In
this case, the set flow given by Equation (3) becomes:

Φ
U(·)
t1,t2(X1) =

⋃
u(·)∈U(·)

Φ
u(·)
t1,t2(X1).

3



Furthermore, from Equation (6), the smallest tube X̂(·)
for x(·) consistent with the prior tube X̌(·), the input tube
U(·) and the state equation ẋ = f(x,u) is

X̂t =
⋃

u(·)∈U(·)

⋂
τ∈[0,t̄]

Φ
u(·)
τ,t (X̌τ ). (14)

Remark 4. Note that for a collection of sets Aij, we have⋃
i

⋂
j

Aij ⊂
⋂
j

⋃
i

Aij .

Indeed,
a ∈ ⋃

i

⋂
j

Aij ⇔ ∃i,∀j, a ∈ Aij

⇒ ∀j,∃i, a ∈ Aij
⇔ a ∈ ⋂

j

⋃
i

Aij .

As a consequence, we obtain the following inclusion for
expressing Equation (14) (but not an equality):

X̂t =
⋃

u(·)∈U(·)

⋂
τ∈[0,t̄]

Φ
u(·)
τ,t (X̌τ )

⊂ ⋂
τ∈[0,t̄]

⋃
u(·)∈U(·)

Φ
u(·)
τ,t (X̌τ )

=
⋂

τ∈[0,t̄]

Φ
U(·)
τ,t (X̌τ ).

Define the set

−→
X t =

⋃
u(·)∈U(·)

⋂
τ∈[0,t]

Φ
u(·)
τ,t (X̌τ ) (15)

that corresponds to the set of all x(t) consistent with the
past (before t) and

←−
X t =

⋃
u(·)∈U(·)

⋂
τ∈[t,t̄]

Φ
u(·)
τ,t (X̌τ ) (16)

the set of all x(t) consistent with the future (after t). The
exact sequence Theorem extends as follows.

Theorem 5. Given the sampling times of measurements

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

a prior tube X̌(·) containing the state trajectory x(·), and

a tube U(·) for the input. The posterior tube X̂(·) can be
defined recursively by

−→
X tk = Φ

U(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋃
u(·)∈U(·)

⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

←−
X tk = Φ

U(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋃
u(·)∈U(·)

⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ )

X̂tk =
−→
X tk ∩

←−
X tk

(17)

with
−→
X t0 = X̌(t0) and

←−
X tk̄ = X̌(tk̄). Moreover, for t ∈

[tk, tk+1]\T, we have:

X̂t = Φ
U(·)
tk,t

(X̂tk).

Proof. From Equation (15), we have

−→
X tk

(15)
=

⋃
u(·)∈U(·)

⋂
τ∈[0,tk]

Φ
u(·)
τ,tk

(X̌τ )

=
⋃

u(·)∈U(·)

( ⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk

(X̌τ )

∩ ⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

)
=

( ⋃
u(·)∈U(·)

⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk

(X̌τ )

)

∩
( ⋃

u(·)∈U(·)

⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

)
.

(18)
The distribution of the union operator is allowed here since
different instants are involved. Indeed, recall that for two
sets A and B, we cannot state that⋃

u∈U

(
A(u) ∩ B(u)

)
=
⋃
u∈U

A(u) ∩
⋃
u∈U

B(u).

However, this is allowed when we have independence be-
tween the components. For instance, if U is a box of Rn,
the above expression is allowed when A depends on some
components of U and B of some other components of U.

Now,⋃
u(·)∈U(·)

⋂
τ∈[0,tk−1]

Φ
u(·)
τ,tk

(X̌τ )
(12)
=

⋃
u(·)∈U(·)

Φ
u(·)
tk−1,tk

(
−→
X tk−1

)

= Φ
U(·)
tk−1,tk

(
−→
X tk−1

).

Combined with Equation (18), we obtain the first part
of Equations (17). A similar reasoning applies to get the

sequence for
←−
X tk and the expression for X̂t.

3. State estimator

The exact sequence suggested by Theorem 3 is valid
even if the system is non-linear. Nevertheless, it can be
implemented exactly on a computer only in the linear case.
This is due to the fact that we do have an expression for the
flow. This section shows how an accurate approximation
of the exact sequence can be implemented.

3.1. Principle

To use Equation (2) in the case where interval uncertain-
ties exist for time t, we need to introduce the concept of
exponential for an interval matrix [A] which has to be un-
derstood with a set-theoretical meaning [26]. It is defined
as the smallest interval matrix which encloses all feasible
exponentials of A, assuming that A ∈ [A], i.e.,

e[A] =
[{

B | ∃A ∈ [A],B = eA
}]
.

Moreover, given an interval matrix [A] and a set of vec-
tors X, we define the product [A] · X as the smallest box

4



enclosing all feasible products A · x assuming that x ∈ X
and A ∈ [A], i.e.,

[A] · X = [{y | ∃A ∈ [A], ∃x ∈ X, y = A · x}] .

The following theorem corresponds to an implementa-
tion of the exact sequence provided by Theorem 3.

Theorem 6. Given the sampling times of measurements

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

a prior tube X̌(·) containing the state trajectory x(·), and
a piecewise constant tube

U(·) = {u(·) | ∀k, ∀t ∈ [kδ, (k + 1)δ], u(t) ∈ [u]k}

containing u(·), where [u]k, k ∈ {0, . . . , k̄ − 1} is a slice of
the tube U(·) as illustrated by Figure 2. We have

−→
X tk ⊂ X̌tk ∩

{
eAδ · −→X tk−1

+ δeA·[0,δ]B[u]k−1

}
←−
X tk ⊂ X̌tk ∩

{
e−Aδ · ←−X tk+1

−δe−A·[0,δ]B[u]k

}
X̂tk =

−→
X tk ∩

←−
X tk

(19)

with
−→
X t0 = X̌t0 and

←−
X tk̄ = X̌tk̄ .

Moreover for t ∈ [tk, tk+1]\T, we have

X̂t =
{
eA(t−tk) · −→X tk + (t− tk)eA·[0,t−tk]B[u]k

}
.

δ[u]2

·

U(·)

t

t1 t3
0

u(·)

Figure 2: Illustration of a tube U(·) made of slices. This representa-
tion can be used in order to reliably enclose sets of trajectories. For
instance, the thick blue box depicts the [u]k=2 slice containing the
feasible values for u(t), t ∈ [t2, t3].

Remark 7. The expressions used in the previous formula
have to be understood with a set-theoretical meaning. For
instance

eA[δ] · X =
{
y | ∃x ∈ X,∃δ ∈ [δ], y = eAδ · x

}
.

Proof. We first show the inclusion for
−→
X tk . We have

−→
X tk

(17)
= Φ

U(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋃
U(·)

⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

(Remark 4)
⊂ Φ

U(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋂
τ∈[tk−1,tk]

Φ
U(·)
τ,tk

(X̌τ )

⊂ Φ
U(·)
tk−1,tk

(
−→
X tk−1

) ∩ Φ
U(·)
tk,tk

(X̌tk)

= X̌tk ∩Φ
U(·)
tk−1,tk

(
−→
X tk−1

)

= X̌tk ∩
{
eAδ · −→X tk−1

+
∫ tk
tk−1

eA(tk−τ)BU(τ)dτ

}
.

Now, because U(·) is piecewise constant,∫ tk
tk−1

eA(tk−τ)BU(τ)dτ =
∫ tk
tk−1

eA(tk−τ)B[u]k−1dτ

⊂
∫ tk
tk−1

eA(tk−[tk−1,tk])B[u]k−1dτ

=
∫ tk
tk−1

eA·[0,δ]B[u]k−1dτ

=
(∫ tk

tk−1
eA·[0,δ]Bdτ

)
[u]k−1

= δeA·[0,δ]B[u]k−1.
(20)

Therefore,

−→
X tk ⊂ X̌tk ∩

{
eAδ · −→X tk−1

+ δeA·[0,δ]B[u]k−1

}
which corresponds to the first part of Equations (19).

We now show the inclusion for
←−
X tk . We have

←−
X tk

(17)
= Φ

U(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋃
U(·)

⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ )

(Rem. 4)
⊂ Φ

U(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋂
τ∈[tk,tk+1]

Φ
U(·)
τ,tk

(X̌τ )

⊂ Φ
U(·)
tk+1,tk

(
←−
X tk+1

) ∩ Φ
U(·)
tk,tk

(X̌tk)

= X̌tk ∩Φ
U(·)
tk+1,tk

(
←−
X tk+1

)
(2)
= X̌tk ∩

{
e−Aδ · ←−X tk+1

+
∫ tk
tk+1

eA(tk−τ)BU(τ)dτ

}
.

Now, using Equation (20), we obtain∫ tk
tk+1

eA(tk−τ)BU(τ)dτ ⊂ −δe−A·[0,δ]B[u]k.

Therefore,

←−
X tk ⊂ X̌tk ∩

{
e−Aδ · ←−X tk+1

− δe−A·[0,δ]B[u]k

}
.

which corresponds to the second part of Equations (19).
The last part is already known from Equations (17).

3.2. Example: the triple integrator

Before going into the implementation algorithm, we pro-
pose the following example for illustrating the method.

5



Consider the linear system

ẋ =

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

x +

 0
0
1


︸ ︷︷ ︸

b

u

equivalent to a triple integrator. We have the flow ex-
pressed as

Φ
u(·)
t1,t2(x)

(2)
= eA(t2−t1)x +

∫ t2

t1

eA(t2−τ)bu(τ)dτ,

with

eAt =

 1 t t2/2
0 1 t
0 0 1

 .

From Theorem 6, we get the following inclusions:

−→
X tk ⊂ X̌tk ∩

eAδ · −→X tk−1
+ δ

 [0,δ]2

2
[0, δ]

1

 [u]k−1

 ,

←−
X tk ⊂ X̌tk ∩

e−Aδ · ←−X tk+1
−δ

 [0,δ]2

2
[−δ, 0]

1

 [u]k

 ,

X̂tk =
−→
X tk ∩

←−
X tk .

Remark 8. Note that since the system is linear and time
invariant ( i.e., A does not change with time), we were able
to provide a closed form expression for the exponential eAt.
This time invariance is needed by our method.

3.3. Implementation

Now that we have defined a reliable enclosure from a
bounded input U(·), that can be numerically represented
and guaranteed to enclose u(·), it remains to reliably com-
pute the sets X. Consider a polygon Pk which contains
X̌tk . We apply the following polygonal sequence:

— first, forward in time, for k ∈ {1, . . . , k̄}:

Pk := Pk ∩
{
eAδ · Pk−1 + δeA·[0,δ]B[u]k−1

}
,

— then, backward in time, for k ∈ {k̄ − 1, . . . , 0}:
Pk := Pk ∩

{
e−Aδ · Pk+1 − δe−A·[0,δ]B[u]k

}
,

— finally, between the sampling times, k ∈ {0, . . . , k̄−1}:

Pk:k+1 =
{
eA[0,δ] · Pk + [0, δ]eA·[0,δ]B[u]k

}
.

From Theorem 6, we know that for all tk ∈ T,{
X̂tk ⊂ Pk,
∀t ∈ [tk, tk+1], X̂t ⊂ Pk:k+1.

An illustration of the polygons Pk, Pk:k+1, Pk+1 imple-
menting a slice of a tube X̂(·) is given by Figure 3.

The implementation is close to the exact sequence given
by Theorem 3. As a consequence, it is not needed in prac-
tice to apply several times the polygonal sequence to ob-
tain an accurate enclosure.

tk

tk+1

δ

Pk Pk:k+1
Pk+1

x2

x1

Figure 3: A polygon-slice enclosing the tube X̂(·) over [tk, tk+1]. The
gates of the slice are the polygons Pk and Pk+1, blue painted.

Remark 9. When the state estimator is numerically im-
plemented, rounding errors occur. Due to the fundamental
theorem of interval analysis [27], an interval implemen-
tation with outward rounding makes it possible to get a
guaranteed approximation of the exact set. However, it
will introduce a small pessimism. The accuracy of the ap-
proximation can be made as small as desired if we use a
multi-precision interval arithmetic library such as MPFI
[28].

3.4. Measurements at uncertain times

In this paper, an observation made at some time t consis-
tent with the sampling times T is processed as a restriction
on the X̌(·) prior sets. However, in practice, the time of
measurement t is not consistent with T. This makes the
problem much more difficult if the guarantee is required
[29, 30]. Interval analysis can help to deal with this type
of estimation [31].

Define as tk the largest tk ∈ T such that tk 6 t. If [y] is
a bounded measurement, with xt ∈ [y], then we have:

xtk ∈ e−A(t−tk) · [y]− (t− tk)e−A·[0,t−tk]B[u]k.

If now, t is uncertain, but known to belong to [tk, tk+1],
then we have t− tk ∈ [0, δ]. Therefore

xtk ∈ e−A[0,δ] · [y]− [0, δ]e−A·[0,δ]B[u]k

where δ = tk+1 − tk.
Finally, if the uncertainty covers several slices, i.e. t ∈

[tka , tkb ], we get

xtk1
∈ e−A[0,δ] · [y]− [0, δ]e−A·[0,δ]B · [u]ka:kb ,

where δ = tkb − tka and [u]ka:kb =
⊔

k∈[ka,kb]

[u]k.

This is similar to the implementation used in [32] for reli-
ably handling time uncertainties.

4. Test case

In this section, we provide an application of the pro-
posed implementation for state estimation. Let us consider
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a car moving on a line over [0, t] = [0, 10]. The system is
described by {

ẋ1 = x2

ẋ2 = −x1 − x2 + u
,

where x1 corresponds to the position of the car, x2 to
the speed. The initial condition x(0) = 0 is consid-
ered unknown. We assume that the thrust u satisfies
u ∈ cos(t) + sin(t/3) + t/10 + [−0.1, 0.1]. The state es-
timation is performed with a time step δ, which defines
the slicing of the input tube U(·) and the state tube X̂(·).
Measurements of the state vector (ỹ1, ỹ2) are provided at
times ti ∈ [0, t] as given in Table 1. Note that the ti’s
are not necessarily consistent with the sampling times kδ
we use for the computation. The measurement errors are
assumed to be 0.01, i.e., ∀ti,x(ti) ∈ ỹ(ti) + [−0.01, 0.01]2.

Table 1: State observation vectors ỹ(ti).

ti 2/3 1.9 2.99 4.33 6.4 6.5 6.6 9.0

ỹ1 0.188 0.783 0.728 0.380 1.747 1.844 1.937 1.700

ỹ2 0.493 0.261 −0.308 0.009 0.976 0.947 0.909 −1.121

The polygonal enclosure of the state trajectory is com-
puted forward and backward in time, allowing to enclose
the unknown initial condition x(0). Results are illustrated
in Figure 4 for δ = 0.1 and δ = 0.01.

Remark 10. The envelop that is computed for different
values of δ converges towards the exact envelop as shown
by Theorem 3. We observe in Figures 5–6 that no signif-
icant improvement is observed if we decrease the value of
δ, which illustrates a fast convergence with respect to the
sampling time of the tube. The computation time is 0.2
second for δ = 0.1 and 2 seconds for δ = 0.01. Note also
that when we increase the dimension of the state space,
our method requires too much computation if we still keep
a small sampling time δ. However, if we accept some pes-
simism in the approximation, with values for δ not too
small, or if the number of measurements is large enough,
we may still be able to use our approach to get an accurate
and guaranteed approximation of the solution set.

5. Conclusion

In this paper, we have proposed a new state estimator
to approximate the state of a continuous-time linear sys-
tem in a set-membership context, with a set of discrete
measurements. The method is both

— accurate, since it is a direct extension of the exact
polygonal method used for discrete time systems;

— guaranteed, because the propagation of uncertainties
over time is made rigorously by using interval analysis.

0 0.5 1 1.5 2 2.5 3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1

x2

(a) δ = 0.1. Computation time: 0.2s.

0 0.5 1 1.5 2 2.5 3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1

x2

(b) δ = 0.01. Computation time: 2s.

Figure 4: State trajectory, depicted in black, and approximated by
a polygonal sequence. The eight bounded observations [y](ti) are
depicted in red. The figures illustrate two sampling times. The
δ = 0.01 approximation involves more polygons, and thus a more
accurate enclosure of the state trajectory.

If we assume that the sampling time δ is infinitely small
and that the computer computes exactly with real num-
bers instead of floating point numbers, then our method
can be qualified as exact since it does not introduce any
pessimism and does not lose any feasible values.

The proposed combination of a polygonal approach with
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0 2 4 6 8 10

0.01

0.03

0.05

0.07

0.09

t

v(Pk)

δ = 0.1

Figure 5: Area of each 2d polygon Pk computed with several time
steps δ = 0.1 . . . 0.0001. The smallest polygons correspond to the
measurement times given in Table 1. We observe that the polygonal
enclosure rapidly converges towards the exact envelop, corresponding
to an infinitely small time step δ. This is also illustrated by Figure
6.

0

0.2

0.4

0.6

0.8

δ

v(P(·))

0.10.010.0010.0001

Figure 6: Volume of polygonal tubes obtained for several time steps
δ = 0.1 . . . 0.0001 (logarithmic scale).

interval computations is new in this context. We believe
that it is the only way to obtain an estimation that is both
accurate and guaranteed. In addition, the same approach
allows us to handle rigorously time uncertainties outside
the sampling times on which the estimation set is imple-
mented.

It must be underlined that our approach cannot be ex-
tended directly to non-linear dynamical systems. However,
it is often possible to extract linear differential equations
from the dynamics. The method developed here can then
be used to deal with these equations, within a constraint
propagation process. This will be our main objective for
forthcoming work.

Supplementary materials including the sources
of the application are available on http://simon-
rohou.fr/research/linobs/. This work has been imple-
mented in the Codac library [33], that provides tools for
computing sets of trajectories.
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