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Abstract: When modeling real-life applications, uncertainty appears in the form of, for example,
modeling approximations, measurement errors, or simply physical restrictions. Those uncertainties
can either be treated as stochastic or as bounded, with known limits in the form of intervals. The
latter is considered in this paper for a real-life application in the form of an electrical circuit. This
is reasonable because the electrical circuit is subject to uncertainties, mainly due to circuit element
tolerances and variable load conditions. Since conservative worst-case limits for such parameters
are commonly known, interval methods can be applied. The aim of this paper is to demonstrate a
possible overall handling of the given uncertain system. Firstly, this includes a control and a reliable
computation of the states’ interval enclosures. On the one hand, this can be used to predict the
system’s behavior, and on the other hand to verify the control numerically. Here, the implemented
feedback control is based on linear matrix inequalities (LMIs) and the states are predicted using an
interval enclosure technique based on cooperativity. Since the original system is not cooperative, a
transformation is performed. Finally, an observer is implemented as a diagnosis tool regarding faulty
measurements or component failures. Since adding a state-of-the-art observer would destroy this
structure, a cooperativity-preserving method is applied. Overall, this paper combines methods from
robust control design and interval-based evaluations, and presents a suitable observer technique to
show the applicability of the presented methods.

Keywords: control design; cooperativity; cooperativity-preserving observer; electrical circuit; LMIs

MSC: Systems theory; control

1. Introduction

There are different reasons for the occurrence of uncertainty. It may appear due to
model simplifications, the approximation of nonlinearities, imprecise parameter knowledge
and/or order reduction, as well as physical and numerical restrictions of the system itself.
Uncertainty caused by measurement noise and sensor inaccuracies are further examples.
In any case, uncertainties can be treated either stochastically or as bounded quantities
in terms of worst-case scenarios, where the lower and upper bounds are summarized in
scalar or multi-dimensional intervals. The considered application scenario in this paper
is an uncertain passive, second-order electric network as a first glance for these types
of systems. As the reader will see, the presented theoretical aspects seem to be difficult
to apply in real life. However, this paper aims to show their applicability and discuss
their limitations. An extension to the presented methods by introducing strategies for
the multi-sectioning of uncertain parameter domains as well as an application to a step-
down converter can be found in [1]. In the presented electrical system, in preparation
for the extension to a step-down converter, the load resistance can vary in a wide range

Axioms 2021, 10, 88. https://doi.org/10.3390/axioms10020088 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-1160-8623
https://orcid.org/0000-0002-1548-6547
https://orcid.org/0000-0001-7789-5699
https://doi.org/10.3390/axioms10020088
https://doi.org/10.3390/axioms10020088
https://doi.org/10.3390/axioms10020088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10020088
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10020088?type=check_update&version=1


Axioms 2021, 10, 88 2 of 17

and is treated as the main source of uncertainty. However, since the bounds are known,
interval arithmetic is used (see [2]). We will treat the fundamental electrical circuit with
a full control-oriented approach, which generally includes a controller and an observer.
Since our system is uncertain, those steps are not as straightforward as for exactly known
systems. Hence, the first step is to find a suitable controller gain for the uncertain system
with an LMI-based method. To verify the control (i.e., to verify its resulting stable behavior),
we want to predict the resulting state reliably despite the given uncertainties. Normally,
this would be done by a Picard iteration with a subsequent tightening step evaluating a
temporal Taylor series expansion of the initial value problem (IVP) [3,4]. However, this
tends to lead to overestimation [2] due to the so-called wrapping effect. An alternative
solution avoiding this could be to use cooperativity, which has already been investigated
in several papers [5–7]. Its advantage is the simplification of several tasks, that is, the
computation of guaranteed state enclosures as well as forecasting worst-case bounds
for selected system outputs in feedback and predictive control [8], the identification of
unknown parameters [9,10], and state prediction with the aim of fault diagnosis [11]. If
a system is cooperative, the worst-case bounds of the trajectories of the uncertain system
can be computed following the element-wise inequalities (1) as two separate systems
with point-valued parameters and states, while assuring that all possible states lie within
their solutions

fv(v) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = fw(w) with x ∈ [v ; w] . (1)

A system is cooperative (as a sufficient criterion) if for an autonomous dynamic system

ẋ(t) = f(x(t)) , x ∈ Rn , (2)

all off-diagonal elements Ji,j, i, j ∈ {1, . . . , n}, i 6= j, of the corresponding Jacobian

J =
∂f(x)

∂x
(3)

are non-negative according to

Ji,j ≥ 0 , i, j ∈ {1, . . . , n} , i 6= j . (4)

Matrices with this structure are also called Metzler. For those, state trajectories x(t)
starting in the positive orthant

Rn
+ = {x ∈ Rn | xi ≥ 0, ∀i ∈ {1, . . . , n}} (5)

are guaranteed to stay in this positive orthant for all t ≥ 0 because

ẋi(t) = fi(x1, . . . , xi−1, 0, xi+1, . . . xn) ≥ 0 (6)

holds for all components i ∈ {1, . . . , n} of the state vector as soon as the state variable
xi reaches the value xi = 0. This property is often referred to as positivity of the system
model (2) [12]. There are system models that are naturally cooperative, like in the fields
of biological, chemical, and medical applications (e.g., compartmental models in epidemi-
ology). However, the presented application scenario does not show this property when
derived by first-principles techniques. To use the advantages of the decoupled bounding
systems in (1) regardless, a transformation into cooperative form is employed based on the
findings in [6]. Note that the transformation approach used is only suitable for systems
with purely real eigenvalues, which has to be considered especially when deriving the
control. A combination of the methods with the sequence of application and their relations
is shown in Figure 1.
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Figure 1. Outline of the presented method.

Firstly, a control design is applied to the uncertain system. The resulting model
is then transformed into a cooperative state-space representation with which verified
interval enclosures can be computed. These can be used to tune the control design, further
optimizing the robust control approach. Finally, a cooperativity-ensuring observer design
can be applied as a form of fault diagnosis tool, further securing the overall system
dynamics to follow the requirements set by the user. Note that throughout this paper, the
general method is applied step by step (following Figure 1) to the electrical circuit for a
better understanding. For this purpose, Section 2 derives the model of the fundamental
electrical network by first-principles techniques. Section 3 first presents a general control
design including uncertainties and using LMIs and then shows the results of applying
this design to the electrical circuit. A transformation into cooperative form follows in
Section 4, with the same order of first giving the theory and presenting numerical results
as a conclusion. The simulation results of the presented methods can be found in Section 5.
An observer is added as a tool for, for example, fault diagnosis of the measurements used
in the control. However, a cooperativity-preserving approach is applied in Section 6 to
maintain the structure from before. Note that a further paper [13] presents the possibility
of including a cooperativity-preserving controller, which could be applied to the given
example in rearranging the order of implementation into transformation, control, and
observer. Finally, Section 7 gives a conclusion and an outlook on future work.

Note that throughout this paper, intervals are denoted by square brackets, such as

x ∈ [x] = [ x ; x] , (7)

where, for example, x is a point-valued state vector and [x] its interval-valued enclosure
with x and x as the lower and upper bounds, respectively. Matrices and scalars in interval
notation are given accordingly.

2. Modeling of an Electrical Circuit

To model the system’s dynamical behavior mathematically, the simplified RLC model
shown in Figure 2 is used, including the parasitic inner resistances RL and RC for the
inductivity and the capacity, respectively.

Figure 2. Simplified model of an electrical circuit.
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Here, ŘL = R0 + RL combines a limiting resistance R0 and the inner resistance RL
of the inductivity. Furthermore, RS = R̃S + ∆RS is a summed-up variable load, where
∆RS is implemented as a series connection of various resistances that can be activated and
deactivated by semiconductive switches while R̃S is always present to avoid a short circuit
at the system’s output terminals. Two voltage loops are described by the mesh equations

uE = uŘL
+ uL + uRC + uC (8)

and
uC + uRC = uRS , (9)

and the Kirchhoff’s node equation gives

iRS + iC = iL . (10)

All ohmic resistances are governed by the component equations

uRi = Ri · iRi (11)

with i ∈ {L, S, C}, while the inductivity and capacity are represented by

uL = L · d
dt

iL (12)

and
iC = C · d

dt
uC , (13)

respectively. Variations of the magnetic field energy are characterized by the first-order
ordinary differential equation

d
dt

iL =
1
L

[
−
(

ŘL +
RSRC

RS + RC

)
· iL −

(
1− RC

(RS + RC)

)
· uC + uE

]
(14)

and changes of the electric field energy by

d
dt

uC =
RS

C(RS + RC)
· iL −

1
C(RS + RC)

· uC . (15)

Since the applied theories in this paper are based on the state-space representation,
the modeling is finalized by deriving it. Both types of energy in the derivation of (14) and
(15) represent the physical storage expressed by the state variables x1 = iL and x2 = uC.
The resulting state-space representation becomes

ẋ =

−
1
L

(
ŘL +

RSRC

RS + RC

)
1
L

(
RC

RS + RC
− 1
)

RS

C(RS + RC)
− 1

C(RS + RC)

 · x +
 1

L

0

 · uE (16)

with the output equation

y = uRC + uC =

[
RSRC

RS + RC
1− RC

RS + RC

]
· x (17)

according to Figure 2. This output is a reasonable way to determine the power transported
to the consumer RS and is given here to complete the state-space representation. However,
it is not used explicitly in the applied theory because the state variables are assumed to be
measurable. Table 1 outlines the chosen parameters, including the uncertain resistances of
RS and RC.
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Table 1. Parameters of the low-power electrical circuit.

Variable Unit/Value Meaning

L 1 H Inductance
C 2 mF Capacity
RS [0.1 ; 3]Ω Ohmic resistance of the load
RC [0.1 ; 0.6]Ω Ohmic resistance of the capacity

ŘL 100 Ω Overall ohmic resistance of the inner resistance of the
inductivity and a constant limiting resistance

Here, the inductance is implemented with the help of a gyrator circuit that turns
capacitors into virtual inductors with non-zero internal resistances [14], which is a common
approach to apply such large inductance values in a low-power network. Note further
that the ohmic resistances are given in interval representation because of their uncertainty,
which is due to their variability. The resulting eigenvalues of the system matrix,which
appears in Equation (16), are given in Figure 3 with respect to the variable load resistance.
For the presented example, the system was evaluated for both RC = 0.1 Ω (blue line) and
RC = 0.6 Ω (black line), resulting in purely real eigenvalues, which is to be kept for the
controlled system in order to successfully apply the transformation into cooperativity
later on. All values of RC between the two limits would lie in this range, and are thus
not visualized.

Figure 3. Variability of the purely real eigenvalues in dependence of the load resistance.

3. Robust State-Feedback Control

Assuming that all the state variables can be measured, a control is designed to stabilize
the system with a vanishing reference signal. In general, a linear state feedback controller
for a point-valued system is derived according to

u = −Kx (18)

with a constant gain K. Then, the closed loop system can be described by

ẋ = Ax + Bu = Ax− BKx = ACx , (19)

where
AC = (A− BK) (20)

holds. For a robust stabilization of the system dynamics despite the given uncertainties, the
given intervals have to be taken into account. For this, linear matrix inequality techniques
are well suited. Here, we make use of a polytopic uncertainty representation [15], with a
parameter-dependent system matrix A(p) which overapproximates the system model (16)
to achieve robustness of the control design. This results in the convex combination of
extremal system realizations of
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D =
{
[A(ξ), B(ξ)]

∣∣∣[A(ξ), B(ξ)]

=
nν

∑
ν=1

ξv · [Aν, Bν];
nν

∑
ν=1

ξν = 1; ξν ≥ 0
}

,
(21)

where the vertex matrices are denoted by Aν = Aν(p) as well as Bν = Bν(p), with each
of them depending on the vector of independent parameters p ∈ Rnp in an affine manner.
Those independent parameters are contained in the interval box [p] =

[
p ; p

]
with the

component-wise defined bounds p
i
≤ pi ≤ pi, i ∈ {1, . . . , np}. In general, the evaluation

of A(p) and B(p) is performed for each of the vertices

P =




p

1
p

2
...

p
np

,


p1
p

2
...

p
np

, . . . ,


p1
p2
...

pnp


 =

{
p〈1〉, . . . , p〈nν〉

}
. (22)

For the presented model with the two uncertain parameters RS and RC, the domain
D according to (21) can be parameterized by nν = 4 extremal realizations that need to be
considered for the robust control design. Another advantage—in addition to the inclusion
of the uncertainty of the LMI-based approach—is the inclusion of a so-called Γ-region
of desired eigenvalue locations as well as optimality criteria such as robust H2 and H∞
tasks [16]. In the presented case, we will make use of the former to enhance the closed-
loop performance with feasible eigenvalue regions defined by domains of strict negative
definiteness of

FΓ(s) = D0 + sD1 + s̄DT
1 ≺ 0 , (23)

see [15]. Note that in general all LMIs have to be strictly positive or negative in order to
compute them properly [17]. Here, the Laplace variable s ∈ C corresponds to the set of all
eigenvalues if (23) is applied to the linear system model (16), and its conjugate complex s̄.
This must hold for all eigenvalues of the closed-loop system.

In (23), the real-valued parameter matrices D0 = DT
0 and D1 provide a certain flexibil-

ity to define Γ-stability regions such as ellipses, hyperbolas, parabolas, cones, and strips in
the complex plane [18]. For a direct implementation into the computation of the controller
gain, we envisage a computationally tractable solution. Therefore, the inequality FΓ ≺ 0 is
generally reformulated into an equivalent LMI

D0 ⊗ P + D1 ⊗ (AP) + DT
1 ⊗ (AP)T ≺ 0 , (24)

where ⊗ denotes the Kronecker product, applying a Lyapunov design according to [15]
for any point-valued system matrix A. If all eigenvalues of a real-valued system matrix
A lie within the interior of the region (23), a positive definite matrix P = PT � 0 exists
that fulfills the matrix inequality [15]. Here, P is a matrix that defines a Lyapunov function
V(x) = 1

2 xTPx > 0 for x 6= xs = 0, where xs represents a stationary state, with which
the stability of the dynamic system ẋ = Ax can be proven. Now, D0 = DT

0 and D1 can
be used to specify the users’ needs concerning different stability regions as mentioned
above. Pure Hurwitz stability can be included by setting γ = 0 in FΓ = 2γ + s + s̄ ≺ 0,
which corresponds to real-valued scalars D0 = 2γ and D1 = 1 due to its simplicity. Note
that an absolute stability margin can be guaranteed by choosing γ > 0, which leads to
<{s} < −γ [16]. In the presented application, the eigenvalues shall be forced to stay purely
real as a requirement for the transformation procedure. Hence, a sufficiently large damping
ratio is introduced by setting
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D0 = 0 and D1 =

[
sin(θ) cos(θ)
− cos(θ) sin(θ)

]
(25)

with a successive, automatic minimization of θ up to θ =
π

8
. In the sequel, it is shown

that the resulting eigenvalues of the considered system are purely real. Now, a state-
of-the-art Lyapunov approach is applied directly for the control design of the uncertain
system in the form of a sufficient condition. Here, the system matrix in Equation (24) is
replaced by the expression for a controlled system matrix from Equation (20), which under
consideration of the convexity of the domain (21) leads to a reformulation of Equation (24)
in the design LMIs

D0 ⊗Q + D1 ⊗ (QAT
ν − YTBT

ν ) + DT
1 ⊗ (AνQ− BνY) ≺ 0 . (26)

Note that this final control design formulation does include all extremal realizations
with ν ∈ {1, . . . , 2np}. This means that robust stability for the uncertainty representation
(21) and (22) with eigenvalues that are compatible with the domain FΓ ≺ 0 defined in (23)
is achieved as soon as a joint solution Q � 0, Y of the LMI (26) has been found that is
valid for each of the vertices of index ν. The linearizing change of variables is reverted by
P = Q−1 and, generally, K = YP, which becomes kT = yTP in the given single-input case.
The controller gains

kT =
[
1.211 0.291

]
× 104 (27)

are obtained by numerically solving the problem using well-known LMI toolboxes like
the semidefinite programming solver SEDUMI [19] in combination with the modeling
and optimization toolbox YALMIP [17] for MATLAB. The controlled system matrix is
enclosed by

[A]C =

[
[−1.223 ; −1.221] [−0.291 ; −0.290]
[0.001 ; 0.751] [−0.251 ; −0.013]

]
× 104 (28)

with the resulting eigenvalue locations shown in Figure 4, which were calculated by
gridding RS and RC. Here, one can clearly see distinct eigenvalue regions for the two
eigenvalues of the considered system as well as the fact that they stay purely real.

Figure 4. Distribution of eigenvalues for the controlled system.

For a matrix to be Metzler, all off-diagonal entries need to be non-negative; thus,
the presented system matrix is obviously not Metzler because it has a strictly negative
off-diagonal entry. Hence, a transformation into cooperative form is performed in the
following to validate the control design in the time domain.
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4. Transformation into a Cooperative Form

A generalized method to transform time-varying systems and systems with uncertain-
ties containing purely real eigenvalues into cooperative form was presented in [5]. This
was redesigned into an optimization task to solve it computationally in [6]. As we ensured
that our system would keep purely real eigenvalues, this transformation is used. A short
summary of the method is given here, followed by the numerical results for our given
system. Firstly, the requirements published in [5] are given. It is assumed that the uncertain
system matrix can be expressed by the element-wise defined inequality

Za − ∆ ≤ Z := AC ≤ Za + ∆ . (29)

Here, ∆ consists of the (symmetric) worst-case bounds of all entries in the interval-
valued matrix [A]C, which results in a symmetric midpoint matrix Za = ZT

a in (29). Now,
we need to search for a Metzler matrix R = µEn − Γ, which has the same eigenvalues
as Za, with a constant µ ∈ R and a diagonal matrix Γ ∈ Rn×n; En ∈ Rn×n is a matrix
with all elements equal to 1 and the identity matrix I is of order n. According to [5], if
eig(R) = eig(Za), there exists an orthogonal matrix S ∈ Rn×n such that STZS is Metzler
provided that µ > n||∆||max, where ||∆||max denotes the maximum, element-wise, absolute
value of ∆.

The next part sums up the findings of [6] and its general formulation of the computa-
tionally feasible optimization problem formulated with LMI constraints. To find Za and ∆,
two cases are distinguished. If the system matrix is diagonally dominant, Za is chosen to
represent the diagonal entries of the original system matrix. On the other hand, if the sys-
tem matrix is not diagonally dominant initially (as is the case for the presented application
scenario), the element-wise defined interval midpoint matrix mid{[A]C} is transformed
into a diagonal structure (except for numerical round-off errors) by determining a new
system matrix

ÂC = V−1ACV . (30)

Here, V is defined by the floating-point approximation of the n linearly independent
real-valued eigenvectors of the matrix mid{[A]C} and Za is set to be a diagonal matrix with
the asymptotically stable, real eigenvalues of mid{[A]C}. Note that interval arithmetic
software libraries such as INTLAB are used to handle round-off errors in the matrix
inversion in (30) [20]. The required worst-case bounds in ∆ are chosen as

δ = max(|[A]C − Za|) or δ = max
(
|[Â]C − Za|

)
, (31)

respectively, with ∆ = δ · En and a maximization that is carried out over all matrix entries
after determining their absolute values in an element-by-element manner. From [5], it is
known that µ? = n||∆||max marks the lower bound for µ. From [5] and the short summary
above, it follows that R = STZaS holds. Furthermore, STS = I needs to be fulfilled to
ensure the orthogonality of the transformation matrix. To include both conditions into the
optimization problem of finding a suitable matrix S, LMIs [15,21] are introduced. For this,
the requirements are reformulated into the positive definite matrix inequalities

−R + STZaS � 0 and I− STS � 0 , (32)

whose iterative solution in combination with the following cost function (36) leads—in
the limit case—to the same results as the direct solution of the equality problem. Due to
opposite signs of the quadratic terms in S, the norm of S is bounded both from below and
above, resulting in the chosen signs of the inequalities. In the next step, these quadratic
matrix inequalities are converted into linear ones by applying the Schur complement
formula according to [

−R ST

S −Z−1
a

]
� 0 and

[
I ST

S I

]
� 0 , (33)
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respectively. Obviously, R is again defined as

R = µ̄En − Γ , µ̄ > µ , (34)

where the LMI constraints

Γ � 0 and RTQ + QR ≺ 0 (35)

with Q � 0, here chosen as Q = I, represents the fact that the midpoint matrix to be
transformed is assumed to be asymptotically stable. This is guaranteed by the control
designed before the transformation. To find a unique solution for the transformation
matrix S fulfilling all requirements, the LMIs (33)–(35) are solved not only for S, but for the
diagonal matrix Γ (which is not restricted to identical entries for all diagonal elements), as
well as for the scalar µ̄ together with a minimization of the cost function

J = tr(Γ) + tr(ZaS− S̆R)− κ · tr(S̆TS− I) (36)

with the problem-dependent parameter κ > 0. As this parameter serves as a tool to prevent
the trivial solution S = I, it has to be chosen large enough to fulfill this, but small enough
not to dominate (36). Therefore, we start with a large value, and reduce it if no solution
can be found. The optimization task, which includes only point-valued matrices, is solved
in an iterative manner, where S̆ denotes the solution of the last successful evaluation of
the LMI-constrained optimization task to render this cost function linear in S. Algorithm 1
gives an overview of the solution procedure.

Algorithm 1: LMI-based computation of the transformation matrix Θ = VS.

Determine the controlled system matrix AC with AC ∈ [A]C

Find initializing eigenvalues and eigenvectors for the midpoint of [A]C and keep them constant for the
whole solution procedure

Determine Za and ∆ to fulfill Equation (29), possibly after transforming [A]C into diagonally dominant form
(transformation matrix V)

Set the initial transformation matrix to S = I, S̆ = I for µ = 0

Initialize µ and S̆ with the result of the last successful solution of the LMIs (33)–(35) in combination with
the cost function (36)

Z
Z
ZZYes

Is there a solution to the LMIs and is J small enough to guarantee the desired
Metzler property?

�
�
��

No

Set µ+ = µ + ∆µ

µ := µ+

Adjust µ and S̆ by small perturbations to
enhance the solution quality

while µ < µ?

Output the complete transformation matrix Θ = VS.

To enhance the numerical convergence, it starts with some µ < µ?, which is gradually
increased with a line-search rule µ+ = µ + ∆µ with ∆µ > 0 until µ becomes equal to (or
larger than) the desired value µ?. This is done because the solution for µ = 0 corresponds
to the known starting point S = I, specifying the initialization S̆ = I. Note that these
randomly chosen initialization values of ∆µ in the line-search may lead to different results.
Therefore, the algorithm is implemented in such a way that the calculation is repeated
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10 times. If the newly calculated intervals are tighter than the ones before, they are added
to the list as a new optimum, if not, the solution is discarded. In the given scenario this
leads to only two entries in Table 2 showing the calculated hulls of the interval enclosures
where the underlined digits from the first execution of the algorithm correspond to the
digits that are identical to those of the tightest solution.

Table 2. Hulls of interval enclosures over the whole time horizon of 3 ms.

Step iL in A iL in A uC in V uC in V

1 −2.879897 2.884897 −0.001743 5.001743
2 −2.879542 2.884542 −0.001731 5.001731

As mentioned, the original system matrix does not have a diagonally dominant form,
which leads to a combined transformation matrix of

Θ = VS =

[
0.7768 −0.5841
−0.9680 −0.2714

]
, (37)

resulting in a system matrix

ÂC =

[
[−0.428 ; −0.260] [0.218 ; 0.286]
[0.540 ; 0.763] [−1.015 ; −0.925]

]
× 104 , (38)

which is Metzler. The simulations are done for a time horizon of 3 ms with the initial states
xT(0) ∈

[[
0 ; 5 × 10−3] [0 ; 5]

]T .

5. Simulation Results

In this section, a simulation of the transformed system, the original model of which
is given in Section 2, is analyzed, including the approach presented in the section before.
This is done to give a more insightful view on the numerical results of Sections 3 and 4. A
state-of-the-art Taylor series expansion [4,22], without preconditioning the state equations
by a QR or similar method, is used to compare the solutions of the presented transformation
method. Here, a Taylor series expansion of order 2 is applied. A further increase of the
order did not yield better results. Note that preconditioning is omitted to show the raw
result of the method. Possibilities to reduce the interval width for enclosures calculated by
a Taylor series expansion are given in [22]. Figure 5 shows the predicted interval enclosure
of the first state iL.

Figure 5. Comparison of the presented method relying on cooperativity in blue and a state-of-the-art
Taylor series prediction in gray for the state variable iL.

Although the lower and upper bounds reach the desired operating point in less than
20 ms, an overapproximation in the starting phase occurs due to the transformation—after
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all, it is transformed in two directions (transforming the system into a cooperative form
and then transferring the computed state enclosures back into the original form to show
the physical states)—when applying the method based on cooperativity. The Taylor series
expansion also suffers from overestimation right from the beginning but is not able to
reduce this afterwards. This is because the overapproximation of one step is mapped onto
the next and so on, increasing the overestimation with each step. For a better comparison,
Figure 6 shows the varying interval width for the cooperativity-based and the Taylor-series-
based methods in logarithmic scale for the y-axis. As a result, an exponential growth for the
Taylor series expansion method becomes visible, while the method based on cooperativity
results in an exponential decrease of the interval width.

Figure 6. Interval width resulting from the cooperative approach in blue and from the state-of-the-art
Taylor series prediction in black for the state variable iL.

Here, it becomes clear that the failure of the Taylor series expansion is far more difficult
to handle, as the interval widths widen towards infinite diameters in a very short time if no
countermeasures such as preconditioning of the state equations are performed (Figure 6).
Since this method is based on a discrete second-order Taylor approximation procedure,
discretization errors are captured by further additive interval bounds [23], underlying
the fact of the growing overestimation as mentioned before. If at all, this method is
only possible for the offline prediction of state intervals and fails completely for systems
with fast dynamics, as is the case in the presented real-life application. Nevertheless, a
possible improvement for the starting phase could be achieved by intersecting both solution
techniques. However, concerning the second state uC in Figure 7, this is not necessary, as
the cooperativity-based method does not suffer from higher overestimation of the initial
interval, and hence already presents the better of both solutions directly from the beginning
of the simulation.

In general, the Taylor series approach without preconditioning is not suited for the
given system, especially in later phases. However, the cooperativity-based method shows
that it is not only possible to calculate the verified states but that they also show the stable
behavior of the controlled system. To underline the cooperativity and positivity of the
system, Figures 8 and 9 are included to show the respective states in their transformed
coordinates.
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Figure 7. Comparison of the presented method relying on cooperativity in blue and a state-of-the-art
Taylor series prediction in gray for the state variable uC.

Figure 8. Prediction of the state variable z1 in transformed coordinates.

Figure 9. Prediction of the state variable z2 in transformed coordinates.

6. Observer

In the following, an observer is added to the system. This represents a kind of fault
diagnosis instrument to evaluate the measurements of the states that were so far assumed
to be forthcoming for the controller. In the case that the true system and the observer model
coincide, the interval observer outputs will enclose the true system state. If the real system
violates the observed bounds, a sensor fault is detected. However, additional applications
may be the estimation of the load resistance as well as the detection of component failures.
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Hence, the controller acts on the measurements alone and the observer is purely instated
as a (separate) monitoring system diagnosing the closed-loop system dynamics. However,
adding a state-of-the-art observer would destroy the cooperative structure, so finding a
cooperativity-preserving observer is necessary so that(

ÂC −HCm

)
· v̂(t) + υ = ˙̂v(t) ≤ ˙̂x(t) ≤ ˙̂w(t) =

(
ÂC −HCm

)
· ŵ(t) + ω (39)

holds with

ÂC = inf
(
ÂC([p])

)
ÂC = sup

(
ÂC([p])

) (40)

and

υ = inf(H[ym])

ω = sup(H[ym])
(41)

for including possible worst-case bounds of measurements which lead to the uncertain
measurement vector [ym] = ym + [−∆ym ; ∆ym], cf. [10]. For the considered application
scenario, a method given in [24] was used. Firstly, the system matrix

AO(p) = ÂC(p)−HCm = ÂC(p)−H (42)

has to become asymptotically stable, which can be investigated by

AO(p) · PO + PO ·AT
O(p) ≺ 0 , (43)

where PO again defines a Lyapunov function like before. If (39) holds, an error vector

e =
[
(v̂− v)T (ŵ−w)T]T (44)

considering the difference between estimated and true values for both lower and up-
per state bounds can be obtained. The resulting ODEs

ė =

[
ÂC −HCm 0

0 ÂC −HCm

]
e +

[
H
H

]
ζ (45)

denote the estimation errors in dependence of a measurement tolerance vector ζ. The
augmented system output

y∞ =

[
0 0
−ν · I ν · I

]
e +

[
I
0

]
ζ = C∞e + D∞ζ (46)

accounts for a comparison of the measurement errors ζ and the weighted (ν > 0) state
diameter (ŵ−w)− (v̂− v) [10,13]. A respective H∞-like LMI optimization problem can
be formulated as

L(Θ) :=

 Θ H POCT
∞

HT −I DT
∞,1

C∞PO D∞,1 −γ2
∞I

 ≺ 0 (47)

for both extremal systems Θ ∈ {Θ, Θ} with

Θ := AO · PO + PO ·AT
O

Θ := AO · PO + PO ·A
T
O

(48)
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using the abbreviations

AO = inf(AO([p]))

AO = sup(AO([p])) .
(49)

Note that the suitable Lyapunov function candidate is denoted by a joint—valid for
both Θ and Θ—weighting matrix PO = PT

O � 0. With a linearizing change of variables

QO = QT
O = P−1

O � 0 with YT
O = QOH = P−1

O H , (50)

the observer gain H could be calculated. However, to preserve the cooperative structure,
another requirement must be added. An obvious choice to keep all off-diagonal elements
of AO non-negative for all possible parameter combinations is given by

H = (KCm)T with K = diag{κ} , (51)

where
κ =

[
κ1 . . . κm

]
, where κi > 0, i ∈ {1, . . . , m} (52)

hold. Moreover, the matrix Cm includes exactly one entry equal to 1 per row while the rest
equals zero. For AO ∈ Rn×n this results in

H = HCm = CT
mKCm , (53)

where

H =

{
κi for i = j
0 else

(54)

with i ∈ {1, . . . , m} and j ∈ {1, . . . , n} representing the simplest case. Including these
considerations, Equation (47) is rearranged into

N (Ξ) :=

 Ξ Q̌O · (KC)T CT
∞

(KC) · Q̌O −I DT
∞,1

C∞ D∞,1 −µ∞I

 ≺ 0 (55)

with Ξ ∈
{

Ξ, Ξ
}

according to

Ξ := QOÂC − Q̌OCTKC + ÂT
CQO −CTKCQ̌O

Ξ := QOÂC − Q̌OCTKC + Â
T
CQO −CTKCQ̌O .

(56)

To ensure that (56) is linear despite a multiplicative coupling of QO and K, the
solution is determined iteratively. Additionally, setting κ1 = . . . = κm > 0 yields another
simplification. Applying this approach to the given application scenario results in

hc̃T =

[
0.0389 0.1372
0.1372 0.4849

]
, (57)

which is a valid solution despite not complying with Equation (51). This obviously gives an
overall system matrix ÃO = ÂC−hc̃T which is still Metzler. Note that the output vector cT

m
of the assumed measured output uC also needs to be transformed into the new coordinates
by c̃T = cT

m(VS)−1 with cT
m =

[
0 1

]
, as opposed to Equation (17). A possible application

of this observer is shown in Figure 10, where two possible usages came to mind.
On the one hand, a sensor fault could be detected by comparing the output of the

observer [ŷ] with the measured output of the system ym. On the other hand, a system fault
diagnosis could be realized by checking whether xC ∈ [x̂C].
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Figure 10. Use of the cooperativity-preserving observer as a fault diagnosis tool.

In [24], other methods to find cooperativity-preserving observers were presented.
However, for some problems it is not possible to design a cooperativity-preserving observer.
For those, an observer can be implemented using an LMI-based approach like the presented
controller computation of this paper. However, this would raise the need to transform
the resulting system into a cooperative form afterwards. A transformation of an observer
into cooperative form can be found, for example, in [5,25]. In the latter, the system matrix
is given point-wise in contrast to our presented paper. Note further that the presented
methods can also be expanded to fractional-order systems, as mentioned in [26].

7. Conclusions and Future Work

An electrical circuit with uncertain parameters was modeled and a controller design
was presented based on LMIs considering a polytopic overapproximation of the uncertain
system that includes all possible parameter combinations. The system was then trans-
formed into a cooperative form to compute interval enclosures of the predicted states. This
transformation is also LMI-based and was derived from findings in [5] rewritten into a
computationally feasible problem according to [6]. Simulation results show the successful
robust control design of the presented method, which was compared with a Taylor series
expansion design. It was found that the cooperativity-based approach is more suitable
for applications with fast dynamics and wide intervals for uncertain parameters such
as the given electrical network. However, crossovers with the Taylor series expansion,
especially for the starting phase, might help in reducing the still present overestimation.
Another improvement could be provided by applying the findings of [27]. Here, the author
transforms a subsystem model into a cooperative form while the remaining dynamics
are stated in a non-cooperative way. The non-cooperative part needs to be evaluated by
classical interval tools such as the suggested Taylor method and acts on the cooperative
components as an additive bounded disturbance. If this disturbance is sufficiently small,
it becomes possible to reduce the overestimation in comparison to scenarios where the
complete system model is transformed into a new frame of coordinates. The final part of
our paper presents a cooperativity-preserving observer, which can be used to evaluate
measured data as a form of fault diagnosis. Although a simulation with the controlled
system output showed the same results for the state as in the simulation scenarios, the
observer needs to be evaluated with measured data from a test rig in the future.
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