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Abstract: Linear matrix inequalities (LMIs) have gained much importance in recent years for the
design of robust controllers for linear dynamic systems, for the design of state observers, as well
as for the optimization of both. Typical performance criteria that are considered in these cases are
either H2 or H∞ measures. In addition to bounded parameter uncertainty, included in the LMI-based
design by means of polytopic uncertainty representations, the recent work of the authors showed
that state observers can be optimized with the help of LMIs so that their error dynamics become
insensitive against stochastic noise. However, the joint optimization of the parameters of the output
feedback controllers of a proportional-differentiating type with a simultaneous optimization of
linear output filters for smoothening measurements and for their numeric differentiation has not
yet been considered. This is challenging due to the fact that the joint consideration of both types
of uncertainties, as well as the combined control and filter optimization lead to a problem that is
constrained by nonlinear matrix inequalities. In the current paper, a novel iterative LMI-based
procedure is presented for the solution of this optimization task. Finally, an illustrating example is
presented to compare the new parameterization scheme for the output feedback controller—which
was jointly optimized with a linear derivative estimator—with a heuristically tuned D-type control
law of previous work that was implemented with the help of an optimized full-order state observer.

Keywords: robust linear matrix inequalities; uncertainty descriptions; estimation and filtering;
output feedback control; stochastic optimal control problems; linear control

1. Introduction

One of the most important advantages of the use of LMIs in the design of robust
controllers and state observers is their capability to account for bounded parameter uncer-
tainty by means of suitable (often polytopic) uncertainty models. In such a way, it becomes
possible to include a guaranteed stability proof of the uncertain linear dynamic system
directly in the design stage. Moreover, polytopic uncertainty models can also be employed
to over-bound the influence of nonlinear state dependencies in the system and output equa-
tions if they can be reformulated in terms of a quasi-linear representation. In addition to
the task of system stabilization, further optimizations of the closed-loop dynamics become
possible, which include a reduction of sensitivity against external disturbances (commonly
in an H∞ sense) or the specification of admissible eigenvalue domains (so-called regions of
Γ-stability, which serve among others as a representation for minimum damping ratios or
bandwidth limitations). For general references about the theory and possible applications
of LMIs in the frame of control and observer synthesis, the reader is referred to the works
of [1–8]. In addition, approaches for the assignment of admissible eigenvalue domains,
partially with applications to the control and oscillation attenuation of mechanical systems
with elastic spring elements, were considered recently in [9,10], where a continuous-time
setting was taken into account. For the discrete-time counterpart, cf. [11,12]. In addition
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to continuous-time systems with an integer-order time derivative, LMI techniques have
recently also become an active topic of research if robust controllers and observers are to be
designed for fractional-order systems with uncertainty [13–16].

As far as output feedback control procedures (instead of full state feedback controllers)
are investigated in this framework, especially the work of Chesi [17] should be mentioned.
However, in contrast to our paper, it did not deal with a simultaneous consideration
of bounded parameter uncertainty, on the one hand, and stochastic input, system, and
measurement noise, on the other hand.

Besides the design of controllers with constant, state-independent gains, LMI design
procedures were also developed in recent years to allow for robust gain adaptation schemes.
Moreover, an example, where methods form the field of interval analysis [18,19] were
employed for an underlying reachability analysis, was published in [20]. Note that one
of the attractive properties of LMIs is the existence of powerful software libraries that
can be employed for a large variety of design tasks. In the current paper, the numerical
implementation of the suggested LMI-based solution procedure makes use of YALMIP [21]
as the user interface to MATLAB, while SEDUMI [22] is employed as the underlying solver.

In addition to the aforementioned bounded uncertainties, most practical systems
are also influenced by stochastic actuator, process, and sensor noise. Assuming linear
dynamics, the combination of a linear quadratic regulator design with an optimal state
estimation by means of Kalman filters (for additive Gaussian noise processes) can be
seen as the best solution if a feedback of all state variables is desired. However, classical
formulations for the solution of this design task assume perfectly known system, input,
and output matrices [23–25]. This aspect directly motivates the goal to employ robust
LMI-based design approaches (which are naturally suited for bounded uncertainty) also
in a stochastic setting. An example, where such a kind of approach was developed, was
published recently by [6]. There, the problem of control parameterizations was solved such
that the output and input covariances (i.e., uncertainty on the closed-loop controlled states
and actuator signals) fell below specific threshold values.

A similar idea was used in [26], where LMI formulations were employed, on the one
hand, to characterize the size of the domain around the system’s equilibrium for which no
stability properties in the sense of a guaranteed convergence of trajectories can be made.
This analysis interfaces LMIs with the Itô differential operator [27,28], which provides the
possibility to define time derivatives of Lyapunov function candidates despite stochastic
noise. On the other hand, the work of [26] also introduced an LMI-based numerical
optimization of the gains of a full-scale state observer so that the non-provable stability
domains were minimized. However, in contrast with the current paper, the approach in [26]
did not consider bounded parameter uncertainty during the minimization of the domain
for which stability cannot be proven. In addition, the work [26] also assumed a predefined
control parameterization. Both restrictions are removed in the current paper, so that the
joint optimization of output feedback controllers and linear filters can be carried out. These
linear filters are, on the one hand, employed to reduce the influence of measurement noise
and, on the other hand, to estimate a certain number of time derivatives of selected system
outputs in a model-free way. The filtered outputs are required for the implementation of a
stabilizing output feedback controller, which is optimized by an iterative LMI approach to
become as insensitive as possible against parameter uncertainty and stochastic noise.

In Section 2 of this paper, the problem formulation is given. In addition, the results
from [26] are briefly summarized and extended towards a combined optimization of the
gains of output feedback controllers and underlying linear filters. Simulation results for
a prototypical benchmark application from the area of oscillation attenuation for spring-
mass-damper systems are presented in Section 3 before conclusions and an outlook for
future work are given in Section 4.
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2. LMI-Based Control and Filter Optimization

In this paper, dynamic system models are considered, which are given by the stochastic
differential equations

dx(t) = A(p) · x(t)dt + B(p) · (u(t)dt + Gu(p) · dwu) + Gp(p) · dwp (1)

with the state vector x := x(t) ∈ Rnx and the input vector u := u(t) ∈ Rnu ; A(p) and
B(p) are the system and input matrices, where p ∈ Rnp is a vector of either constant or
time-varying bounded parameters. Alternatively, this vector represents the dependencies
of all system matrices on the state variables x; cf. [20]. For the sake of compactness, we
assume that all entries of p are mutually independent and that they influence the matrices
A and B in an affine manner. Moreover, wu ∈ Rmu and wp ∈ Rmp are stochastically
independent standard normally distributed Brownian motions of the actuator and process
noise, so that Gu(p) and Gp(p) define the respective noise standard deviations in terms of
element-wise non-negative matrix entries.

In addition, the measured system output is given by

ym(t) = Cmx(t) + Gmwm , (2)

where the output matrix Cm ∈ Rny×nx is assumed to be exactly known; wm is the standard
normally distributed measurement noise, while Gm is the corresponding weighting matrix
denoting the actual standard deviation of the output disturbance.

For the sake of completeness, we summarize three different control scenarios in the
following, where Cases 1 and 2 are based on the implementation of state observers, while
Case 3 is the linear filter-based output feedback control investigated in this paper. Note
that the Cases 1 and 2 were studied in [29].

Case 1: The control signal is defined as

u = uff −K · x̂ , (3)

where uff is a feedforward signal and x̂ is the state estimate determined by the robust
observer

˙̂x = Anom · x̂ + Bnom · u + H · (ym − ŷ) (4)

that makes use of the nominal system and input matrices Anom and Bnom; see [30].

Case 2: The control signal is defined as

u = uff −Ko ·C · x̂ , (5)

with the same observer as in (4).

Case 3: The control signal is given by

u = uff −Ky ·Cy · ŷf , (6)

where ŷf is a vector consisting of filtered system outputs and estimated output
derivatives, where the filter input corresponds to the measured system outputs
ym according to (2). Here, the negative sign in front to the controller gain matrix
Ky is introduced to make the equations structurally equivalent to the classical full-
state feedback control synthesis in [29]. Moreover, without loss of generality, we
assume uff = 0, which corresponds to the origin of the state space as the desired
operating point.

For what follows, we assume further that the filtered system outputs are related to
selected components of an estimated state vector x̂ by the algebraic relation

C̄ · x̂ = Cy · ŷf . (7)
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The introduction of this constraint allows us to formulate stability requirements for
an output feedback control—that is based on an ideal filtering—(i.e., the algebraic
relation (7) holds) in terms of matrix inequalities, which can be cast into LMIs by
a suitable change of coordinates; see Section 2.2. Errors, which inevitably result
from the non-negligible filter dynamics, are later on taken into consideration in
Sections 2.3 and 2.4, especially in Equations (28) and (29).

If the matrix Cy (which extracts certain state variables or their linear combinations
from the linear filter’s state vectors) has full row rank, (7) can be reformulated
according to

ŷf = C · x̂ with C = C+
y · C̄ , (8)

where
C+

y =
(

CT
y Cy

)−1
CT

y (9)

is the matrix pseudo inverse. Under the assumption of the aforementioned stationary,
i.e., purely algebraic, relation, the matrix C provides the possibility to express the
filter outputs ŷf in terms of the internal states of the plant (1).

For further details concerning the structured, LMI-based output feedback control
design in Case 2, the reader is also referred to [31]. Figures 1 and 2 give a summary of the
three different types of control structures described above, where the last one is the focus
of this paper.

To guarantee the solvability of the control design task, it is assumed that the system (1)
is stabilizable using either of the inputs (3), (5), or (6). In addition, the pair (A(p), C) needs
to be robustly observable (or at least detectable) in Cases 1 and 2; cf. [29].

wu wp wm

Gu Gp Gy

Cm

Cm

KoC

H

resp., K

ŷ(t)x̂(t)

−

−

uff(t) x(t) ym(t)∫
(·)dt

∫
(·)dt

A(p) · x(t) + B(p) · u′(t)

. . . + H · ∆y(t)

Anom · x̂(t) + Bnom · u(t) + . . .

∆y(t)

Figure 1. Observer-based state and output feedback control structure according to Case 1 with the
gain matrix K and Case 2 with the structured gain KoC.
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wu wp wm

KyCy

Gu Gp Gy

Cm

−

uff(t) x(t) ym(t)∫
(·)dt

ŷf(t)

A(p) · x(t) + B(p) · u′(t)

output filter (15), (21)

Figure 2. Filter-based output feedback control structure according to Case 3.

2.1. Polytopic Uncertainty Modeling

As shown in [4,32], it is possible to describe the influence of uncertainty in many
practical applications by bounded domains D of the polytope type. For that purpose, it is
necessary that all system matrices in (1) belong to a convex combination of extremal vertex
matrices in the form

D =
{[

A, B, Gu, Gp
]∣∣∣[A(ξ), B(ξ), Gu(ξ), Gp(ξ)

]
=

nv

∑
v=1

ξv ·
[
Av, Bv, Gu,v, Gp,v

]
;

nv

∑
v=1

ξv = 1; ξv ≥ 0
}

,
(10)

where nv denotes the number of independent extremal realizations for the union of all four
matrices included in (10).

2.2. Robust Output Feedback Control for Case 3

LMI-based design approaches can be employed for the design of output feedback
controllers that are restricted in their parameterization according to Case 3. Here, the
system’s measured outputs and selected time derivatives of these signals are fed back after
a suitable low-pass filtering, parameterized according to the following subsections.

In the case of an ideal (error-free) filtering, the closed-loop dynamics are guaranteed
to be robustly stable if the controller gains Ky satisfy the following theorem representing a
bilinear matrix inequality.

Theorem 1. (Sufficient stability condition for robust output feedback control) Robust asymptotic
stability of the closed-loop control system according to Case 3 is ensured for an error-free output
feedback (i.e., x ≡ x̂) if the gain matrix Ky satisfies the bilinear matrix inequalities(

Av − BvKyC+
y C̄
)T

P + P ·
(

Av − BvKyC+
y C̄
)
≺ 0 , (11)

P = PT � 0, for all vertices v ∈ {1, . . . , nv} in (10).

Proof. The proof of Theorem 1 is a direct consequence of setting up sufficient stability con-
ditions for each vertex system of a linear model with polytopic uncertainty representation.
In this way, Equation (11) represents the Lyapunov inequalities to be satisfied for each
vertex system according to [8,33].

Note, the matrix inequality (11) is bilinear due to multiplicative couplings between
the yet unknown matrices Ky and P. The following corollary provides a possibility to
transfer these stability requirements into computationally feasible LMIs including a linear
equality constraint.
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Corollary 1. An LMI formulation of Theorem 1 is obtained by introducing a linearizing change of
variables with the positive definite, symmetric unknown matrix Q = QT = P−1 � 0, as well as
the equality constraints

MC+
y C̄ = C+

y C̄Q and N = KyM , (12)

for which C+
y · C̄ was assumed to be precisely known, i.e., a point matrix, according to its definition

in Equations (6) and (7). Substituting the relations (12) into (11) and multiplying the matrix
inequality form the left and right by Q yield the LMIs

AvQ + QAv
T − BvNC+

y C̄−
(

C+
y C̄
)T

NTBv
T ≺ 0 (13)

to be jointly satisfied for each vertex system v ∈ {1, . . . , nv}.
If the matrix C has full row rank, the algebraic constraint in (12) ensures that M has full rank

and that it is therefore invertible. Then, the resulting controller gain is given by [33]:

Ky = NM−1 . (14)

2.3. Linear Output Filtering

As shown in [26], a linear low-pass output filtering, as well as the derivative estimation
of the scalar measured variables ym,i, i ∈ {1, . . . , ny}, can be described in terms of the input-
output representation

ξi

∑
k=0

αk,i ·
dkyf,i

dtk = α0,i · ym,i . (15)

The linear differential Equation (15) has the order ξi and contains the k-th order time

derivatives y(k)f,i := dkyf,i
dtk that represent the filtered quantities that can be utilized in the

controller according to Case 3, Equation (6). In this subsection, we present an LMI-based
design of these filters as a systematic generalization of the pole (respectively, time constant)
assignment that was performed in [26].

When additionally accounting for the influence of stochastic noise with quasi-continuous
measurements, Equation (15) turns into the state-space representation

dyf,i =
((

Af,i − bf,ik
T
f,i

)
· yf,i +

(
bf,ie

T
1 kf,i

)
· y′m,i

)
dt +

((
bf,ie

T
1 kf,i

)
· gm,i

)
dwm,i (16)

of a stochastic differential equation with the state vector

yf,i =
[
yf,i . . . y(ξi−1)

f,i

]T
, (17)

in which the superscript index denotes the corresponding temporal derivative order, the
coefficient matrices

Af,i =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ∈ Rξi×ξi , bf,i =


0
0
...
1

 ∈ Rξi , (18)

the first unit vector e1 =
[
1 0 . . . 0

]T ∈ Rξi , and the yet unknown filter gain vector

kf,i =
[
α0,i . . . αξi−1,i

]T (19)

with αξi ,i ≡ 1. This simplification results from a normalization of both sides of (15) under
the restriction of steady-state accuracy due to which the derivatives of order zero on both
sides of (15) have identical coefficients. For the sake of compactness, it is assumed that the
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matrix Gy in (2) is purely diagonal. This corresponds to vanishing correlations between
the noise of all scalar measurements in (2) with ym,i = y′m,i + gm,iwm,i.

Hence, the low-pass filtered derivative of the order j, j ∈ {0, . . . , ξi}, for the i-th
measured output is related to the state vector yf,i of the stochastic differential equation
model (16) by

ŷ(j)
f,i =

eT
j+1yf,i + 0 · ym,i for j ∈ {0, . . . , ξi − 1}

eT
ξi

Afi
yf,i + α0,i ·

(
y′m,i + gm,iwm,i

)
for j = ξi ,

(20)

with ej ∈ Rξi denoting the j-th unit vector. In the equations above, the subscript m denotes
the measured data, the prime symbol (·)′ the ideal noise-free outputs, the subscript f the
filtered data, and ˆ(·) the estimates used by the controller.

A compact notation of the filtered output vector

ŷf =
[
ŷT

f,1 . . . ŷT
f,ny

]T
(21)

in Equation (6) is obtained by collecting all outputs from (20) that are actually relevant for
the output feedback design according to

ŷf,i = Cf,i · yf,i + Df,i ·
(
y′m,i + gm,iwm,i

)
. (22)

Here, Cf,i represents the dependence of the filter outputs ŷf,i on the filters’ state
variables yf,i and contains the coefficients of the first summand of both rows in (20). The
factor Df,i is only non-zero if the filter has a direct measurement feedthrough (and, thus,
also a noise feedthrough) because the approximate of the derivative of the order ξi is
expressed in terms of the last vector component of the dynamic model (16).

The asymptotic stability of the filter dynamics with purely real eigenvalues is ensured
by the following theorem.

Theorem 2. (Asymptotically stable, non-oscillatory filter dynamics) The filter dynamics (20) are
guaranteed to be asymptotically stable with purely real eigenvalues of the deterministic part of the
stochastic differential Equation (16), if the gain vectors kf,i satisfy the matrix inequalities

D0 ⊗ Pf,i + D1 ⊗
((

Af,i − bf,ik
T
f,i

)
· Pf,i

)
+ DT

1 ⊗
((

Af,i − bf,ik
T
f,i

)
· Pf,i

)T
� 0 (23)

with some Pf,i = PT
f,i � 0 for all i ∈ {1, . . . , ny}, where

D0 =


2γ 0 0 0
0 −2δ 0 0
0 0 0 0
0 0 0 0

 , D1 =


1 0 0 0
0 −1 0 0
0 0 sin θ cos θ
0 0 − cos θ sin θ

 (24)

with 0 ≤ θ < π
2 ; ⊗ is the matrix Kronecker product of the respective arguments; γ > 0 and δ > γ

represent bounds on the real parts of the eigenvalues si so that −δ ≤ <{si} ≤ −γ holds. To obtain
purely real eigenvalues, θ = 0 is chosen.

A graphical representation of the stability domain represented by (23) with (24) is
given in Figure 3.

Proof. Theorem 2 is a direct consequence of formulating a bounded interval [−δ; −γ] on
the negative real axis of the complex s plane (with s̄ being the conjugate complex of s) as
the desired Γ-stability domain

FΓ(s) := D0 + s ·D1 + s̄ ·DT
1 � 0 (25)
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according to [3,5,7]. For a detailed derivation of the coefficient matrices D0 and D1, see
Appendix A. A reformulation of this Γ-stability domain into a gain-dependent matrix
inequality according to ([20], Equation (11)) completes the proof.

={s}

−δ <{s}

θ

−γ

Figure 3. Domain of the eigenvalues compatible with the constraints (23) and (24), where θ = 0 is
desired to guarantee non-oscillatory dynamics.

Remark 1. The specification of Γ-stability domains is analogously possible for the output feedback
parameterization. For a corresponding generalized formulation, see Appendix B. From a practical
point of view, enforcing purely real eigenvalues with θ = 0 in the filter parameterization is often
not necessary. Commonly, it is sufficient to specify large enough damping ratios, for example from
the sector 0 ≤ θ < π

4 , where the upper bound of this interval would correspond to the value 1
2

√
2

for Lehr’s damping coefficient in a second-order differential equation.

Corollary 2. Following the linearizing change of variables

Pf,i = Q−1
f,i and kT

f,i = φT
f,iPf,i (26)

and multiplying (23) from the left and right with the matrix I⊗Qf,i, I ∈ R4×4, Qf,i = QT
f,i � 0

lead to the equivalent LMIs

D0 ⊗Qf,i + D1 ⊗
(

Qf,iA
T
f,i −φf,ib

T
f,i

)
+ DT

1 ⊗
(

Af,iQf,i − bf,iφ
T
f,i

)
≺ 0 . (27)

2.4. Optimal Output Feedback Control

Under the consideration of the structure of the control law of Case 3, the stochastic
differential Equation (1) for the controlled polytopic system model turns into

dxv =
((

Av − BvKyC+
y C̄
)

xv + BvKyCyef

)
dt +

[
BvGu,v Gp,v

]
·
[

dwu
dwp

]
. (28)

In addition, the ideal filtering process (assuming a noise-free setting, where the
following equation turns exactly into a disturbance-free ordinary differential equation
representation in which ȳf,i represents the state vector after removing the noise term
from (16)) is described by

dȳf,i =
((

Af,i − bf,ik
T
f,i

)
· ȳf,i +

(
bf,ie

T
1 kf,i

)
· y′m,i

)
dt . (29)

After introducing the vectors of output estimation errors

ef,i = ȳf,i − yf,i , i ∈ {1, . . . , ny} , (30)

and a stacked vector notation ef according to (21), the error dynamics of the linear filters
are given by
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def,i =
((

Af,i − bf,ik
T
f,i

)
· ef,i

)
dt−

((
bf,ie

T
1 kf,i

)
· gm,i

)
dwm,i . (31)

Now, introduce the stacked vector

zv =
[
xT

v eT
f,i . . . eT

f,ny

]T
(32)

consisting of system states and noise-induced filter errors. The stochastic differential
equations corresponding to (32) are given by

dzv = Av · zv dt + Gv ·

dwu
dwp
dwm

 (33)

with the system matrix

Av =

[
Av − BvKyC+

y C̄ BvKyCy

0 Av,2,2

]
, (34)

in which its lower right sub-block has the block diagonal structure

Av,2,2 = blkdiag
((

Af,1 − bf,1kT
f,1

)
, . . . ,

(
Af,ny − bf,nykT

f,ny

))
(35)

and the matrix of standard deviations

Gv =

[
BvGu,v Gp,v 0

0 0 Gv,2,3

]
, (36)

with the block diagonal sub-matrix

Gv,2,3 = −blkdiag
((

bf,1eT
1 kf,i

)
· gm,1, . . . ,

(
bf,ny eT

1 kf,ny

)
· gm,ny

)
. (37)

Theorem 3. (Optimal control and filter gains) The controller and filter gains from Corollary 1
in Section 2.2 and Corollary 2 in Section 2.3 are jointly optimal if they are chosen so that the
cost function

J =
nv

∑
v=1

 trace{N v}
det
(
− ˇ̄Av

) · 1

det
(
Q̌
)
·

ny

∏
i=1

det
(
Q̌f,i
)
 (38)

is minimized, where the abbreviation ˇ̄Av = ǍT
v P +PǍv ≺ 0 is defined and N v = N T

v � 0
is a free matrix variable. Here, the matrices Ǎv are defined for the vertices of the polytope (10)
according to

Ǎv =

[
Av − BvǨyC+

y C̄ BvǨyCy

0 Ǎv,2,2

]
(39)

with
Ǎv,2,2 = blkdiag

((
Af,1 − bf,1ǩT

f,1

)
, . . . ,

(
Af,ny − bf,ny ǩT

f,ny

))
. (40)

In addition, the definiteness constraintN v ǦT
v

Ǧv

[
Q 0
0 blkdiag

(
Qf,1, . . . , Qf,ny

)]
 � 0 (41)

with

Ǧv =

[
BvGu,v Gp,v 0

0 0 Ǧv,2,3

]
(42)
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and
Ǧv,2,3 = −blkdiag

((
bf,1eT

1 ǩf,i

)
· gm,1, . . . ,

(
bf,ny eT

1 ǩf,ny

)
· gm,ny

)
(43)

must be satisfied; ˇ(·) symbols indicate an iterative evaluation, where all such values are replaced by
the outcome of the previous iteration stage.

Proof. Define a positive definite Lyapunov function candidate

V(zv) =
1
2

(
zT

v Pzv

)
(44)

with the block diagonal matrix

P = blkdiag
(

P, Pf,1, . . . , Pf,ny

)
. (45)

By applying the Itô differential operator [27], its time derivative is obtained as

L(V) =
1
2

(
zT

v

(
AT

v P +PAv

)
zv + trace

{
GT

v PGv

})
. (46)

Following the reasoning in [26], the interior of the ellipsoid

zT
v M−1

v zv − 1 = 0 , (47)

where

M−1
v =

 −Āv

trace
{
GT

v PGv

}
 (48)

and
Āv := AT

v P +PAv ≺ 0 (49)

hold, is the domain for which no stability properties can be verified. Its volume is propor-
tional to √

det(Mv) =

√√√√ trace
{
GT

v PGv

}
det
(
−Āv

) . (50)

Generalizing the statements from [26], the minimization of the ellipsoid volume—with
a simultaneous maximization of the error domain for which the linear feedback signals are
bounded by some positive constant according to [34] after introducing the denominator
terms depending on Q and Qf,i—leads to the cost

Jv =
trace

{
GT

v PGv

}
det
(
−Āv

) · 1

det(Q) ·
ny

∏
i=1

det(Qf,i)

(51)

to be minimized for each vertex v. Nonlinearities in the argument GT
v PGv of the trace

in (51) are removed by a relaxation into the matrix inequality

N v � GT
v PGv corresponding to: N v − GT

v PGv � 0 (52)

with N v = N T
v � 0, which finally leads toN v GT

v

Gv

[
Q 0
0 blkdiag

(
Qf,1, . . . , Qf,ny

)]
 � 0 (53)
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by applying the Schur complement formula. Summing up the expressions (51) for all
v ∈ {1, . . . , ny}, as well as replacing the denominator terms depending on the gain values
in (34) by their result from the previous iteration step and doing the same with the gains
in (53) complete the proof.

Figure 4 provides a structure diagram of the complete iteration process for the param-
eterization of the filter-based control law of Case 3. There, the precision parameters ε1 > 0
and ε2 > 0 need to be chosen so that they are much smaller than the norms of the gains Ky
and kf,i resulting from the initialization phase that is carried out prior to the while-loop,
for example ε1 = 10−6 ·

∥∥Ky
∥∥

2 and ε2 = 10−6 ·
∥∥kf,i

∥∥
2.

Generate the polytopic uncertainty model (10) for the open-loop system in terms of the list of nv vertex
matrices Av, Bv, Gu,v, Gp,v

Set up the LMI constraint (13) for each vertex v of the polytopic uncertainty model (stability of the control law)
together with the equality constraint (12) for the output feedback gain

Set up the LMI constraint (27) for each system output ym,i (stability and eigenvalue constraints of the output
filters)

Solve all LMIs above in an initialization stage and revert the linearizing changes of coordinates according to
(14) and (26) to obtain the controller gains Ky from Corollary 1 and the filter gains kf,i from Corollary 2

Store the matrices and gains Q̌ = Q, Q̌f,i = Qf,i , Ǩy = Ky, and ǩf,i = kf,i

Specify the desired precision parameters ε1 > 0 and ε2 > 0

Compute J̌ as the function value of (38) in dependence of the data stored before

Set ∆Ky = ∞ and ∆Kf,i = ∞

While ∆Ky > ε1 or ∆Kf,i > ε2

Set up the LMI constraint (13) for each vertex v of the polytopic uncertainty model (stability of the control
law) together with the equality constraint (12) for the output feedback gain

Set up the LMI constraint (27) for each system output ym,i (stability and eigenvalue constraints of the
output filters)

Set up all LMI constraints (41) as functions of the previous filter gains ǩf,i

Specify the cost function J in (38), where all variables marked by ˇ(·) symbols correspond to the previously
computed results Q̌, Q̌f,i , Ǩy, and ǩf,i , and add the penalty term α · ‖J − J̌‖2, α > 0, to the cost function to
prevent excessive gain variations between two subsequent iteration steps

Solve all LMIs above, and revert the linearizing changes of the coordinates according to (14) and (26) to
obtain the controller gains Ky from Corollary 1 and the filter gains kf,i from Corollary 2

Determine the variations ∆Ky =
∥∥Ky − Ǩy

∥∥
2 and ∆Kf,i =

∥∥Kf,i − Ǩf,i
∥∥

2

Store the matrices and gains Q̌ = Q, Q̌f,i = Qf,i , Ǩy = Ky, and ǩf,i = kf,i

Compute J̌ as the function value of (38) in dependence of the data stored before

Figure 4. Structure diagram of the iteration procedure for the proposed filter-based control parame-
terization.
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Remark 2. For the examples considered in the following section, the while-loop typically terminated
after no more than 30 iterations, where each iteration step took less than a second on a standard
notebook computer.

3. Simulation Results

To demonstrate the suggested solution procedure, the oscillation attenuation of a
spring-mass-damper system with the position variable x1, the velocity x2, and the actuating
force x3 is considered. It is described by the state equations

dx =

 0 1 0
a21 a22 a23
0 0 a33

x +

 0
0
b3

u

dt + gp dwp (54)

with the nominal system parameters a21 = a21,nom = −200, a22 = a22,nom = −15, a23 =

a23,nom = −400, a33 = a33,nom = −200, b3 = b3,nom = 10, and gp =
[
0 0.1 0

]T .
Stochastic input disturbances gu are neglected in this example. The third state equation

in (54) describes the input force x3 that is generated from the control signal u by a first-order
lag element with the time constant |a33|−1.

Noisy measurements of the position are available according to

ym = x1 + gm wm (55)

with the standard deviation gm = 0.5.

3.1. Control Design for the Nominal System Model with Precisely Known Parameters

To perform the oscillation attenuation, a differentiating control law is implemented in
terms of a feedback of an approximation of the velocity x2 by means of u = −KD x̂2 with a
suitably chosen, stabilizing gain value KD ∈ R.

Setting
γ = 2.5 and δ = 50 (56)

for the range of admissible eigenvalues in Theorem 2, the gain

KD ≈ −0.386 (57)

with
kT

f ≈
[
578.4 356.2 53.7

]
(58)

is obtained with ξ = 3 if the algorithm summarized in Figure 4 is applied. Corresponding
simulation results for the controlled position x1 and the system input u are shown in
Figure 5a,b. These graphs further contain a comparison with the simulation results for the
control and filter optimization when the polytopic system model described in the following
subsection is considered.

3.2. Control Design for a Polytopic System Model

If it is assumed in a robust control design that a21 and a22 can vary independently
in the intervals a21 ∈ a21,nom · [0.5; 1.5] and a22 ∈ a22,nom · [0.5; 1.5], while all remaining
parameters are set equal to the previous point values, the control and filter gains obtained
from the the algorithm in Figure 4 change to

KD ≈ −1.56 (59)

with
kT

f ≈
[
589.9 357.9 52.4

]
. (60)

Also in this case (Figure 5a,b), an efficient oscillation attenuation is obtained, where
the simulation was carried out for the nominal system parameters. In addition, Figure 6
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provides a comparison of the true and estimated states x1 and x2 for the model-free filter
technique that was optimized by means of the proposed LMI-based procedure. On the one
hand, it can be seen that the resulting parameterization is capable of effectively suppressing
the stochastic measurement noise. However, in contrast to the observer discussed in the
following subsection, the price to pay for this noise suppression is a non-negligible delay
in the reconstruction of both x1 and x2.

(a) (b)

Figure 5. Control performance of the proposed iterative LMI-based optimization technique. (a) Position
x1 for the spring-mass-damper system. (b) Control signal u for the spring-mass-damper system.

(a) (b)

(c) (d)

Figure 6. Reconstruction of the states x1 and x2 for the proposed iterative LMI-based filter and control
optimization. (a) Reconstruction of the position x1 in comparison with the noisy measurement and the
true state evolution (setting from Section 3.1). (b) Reconstruction of the position x1 in comparison with
the noisy measurement and the true state evolution (setting from Section 3.2). (c) Reconstruction of the
velocity x2 in comparison with the true state evolution (setting from Section 3.1). (d) Reconstruction
of the velocity x2 in comparison with the true state evolution (setting from Section 3.2).
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3.3. Comparison with a Heuristic D-Type Control Parameterization

For the sake of comparison, Figures 7 and 8 contain the results of the heuristically
tuned control approach from [26], where a root locus analysis of the plant was employed
to set the controller gain to KD = −0.8 to obtain purely negative real eigenvalues. If the
low-pass filtered velocity estimate is determined by a second-order transfer function with
the time constants T1 = (2π · 32)−1 and T2 = 0.5T1, excessively large control inputs can
be observed, which are more or less useless in practice due to extreme actuator wear and
energy consumption.

Although this was not discussed explicitly in this paper, it is easily possible to extend
the newly derived design LMIs of the output feedback according to Corollary 1 by further
requirements. Especially, Γ-stability domains can be introduced not only to enforce real
filter eigenvalues, but also to guarantee desired transition times and bandwidth limitations
of the controller itself. The required steps are summarized in Appendix B.

(a) Position x1 (comparison of heuristic D-type
control with an optimized observer).

(b) Velocity x2 (comparison of heuristic D-type
control with an optimized observer).

(c) Control signal u (heuristic D-type control). (d) Control signal u (optimized observer).

Figure 7. Comparison of a heuristic D-type control approach with an optimized observer from the
previous work [26].

For a second comparison with [26], Figures 7 and 8 also contain a further velocity
estimation approach. There, the same (heuristically chosen) gain KD = −0.8 was used for
the controller parameterization; however, an LMI-based observer tuning was performed
on the basis of a nominal system model. The corresponding results are well comparable
with the more simple filter-based output feedback from this paper with respect to noise
suppression and transient behavior of the controlled system. Obviously, however, the
use of a full-scale state observer leads to a suppression of undershooting the desired
target position x1 = 0 due to the fact that the velocity estimates are less affected by
the lag behavior that occurs inevitably in the case of a model-free linear filter approach
for derivative estimation. This becomes obvious if the Figures 6c,d are compared with
Figure 8b. However, the heuristically parameterized second-order filter-based velocity
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estimate in Figure 8d is by far worse than the optimized filter in the Figures 6c,d and the
model-based observer in Figure 8b.

Therefore, it should be pointed out that using the joint optimization of filter-based
derivative estimators and output feedback controller gains is especially promising in
practice if either a purely proportional feedback is implemented or if the use of no more
than two time derivatives of the measured signals is required. In other scenarios, the
Cases 1 and 2 sketched in this paper (cf. [29] for further details) are superior in transient
operating conditions due to the capability of a full-scale state observer to reduce not only
the effect of stochastic noise, but also to avoid large undesired lag phenomena.

(a) Reconstruction of the position x1 using an
optimized observer.

(b) Reconstruction of the velocity x2 using an
optimized observer.

(c) Reconstruction of the position x1 using a
heuristically tuned filter.

(d) Reconstruction of the velocity x2 using a
heuristically tuned filter.

Figure 8. Comparison of a heuristic D-type control approach with an optimized observer from the
previous work [26] (cont’d).

4. Conclusions and Outlook on Future Work

In this paper, a novel approach for the combined optimization of output feedback
controller gains and linear filter transfer functions was proposed for linear continuous-time
dynamic systems. This approach took into account stochastic disturbances in both the
system dynamics and measurement model and aimed at finding parameterizations with
which the domains around the system’s equilibrium, for which stability cannot be proven
in a stochastic sense, are minimized. Due to the use of an LMI-based formulation of the
optimization task, it is easily applicable to systems with bounded parameter uncertainty.

Future work will aim at validating the proposed design methodology experimentally
and at interfacing it with LMI-based design approaches for interval observers [35] as
a technique for the state estimation in a bounded-error framework. In addition, also
combinations with sliding mode-type control procedures such as those in [36] can be
investigated. Finally, it should be pointed out that the technique is readily applicable also
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to higher dimensional system models, such as the interconnection of multiple spring-mass-
damper elements in the frame of mechanical vibration control or the interconnection of
RLC networks, which may serve either as a representation of long electric transmission
lines or as a finite-dimensional approximation of volume flow and pressure variations in
fluidic networks [10,37,38]. In all of these applications, efficient output feedback control
procedures are promising for the reduction of undesirable oscillations. However, future
work should not only apply the proposed methodology to systems where the measured
quantities are already predefined. Instead, novel optimization procedures for the most
effective sensor placement should be developed and combined with the approach presented
in this paper.
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Appendix A. Derivation of the Matrices D0 and D1 in (24)

This Appendix A provides an element-by-element derivation of the matrices D0 and
D1 in (24). The first constraint (right bound for the eigenvalues’ real part) on the area of
admissible eigenvalues is given by

<{s} ≤ −γ . (A1)

It is equivalent to

1
2
· (s + s̄) ≤ −γ =⇒ 2γ + s + s̄ ≤ 0 . (A2)

Analogously, the second constraint (left bound for the eigenvalues’ real part) is
given by

<{s} ≥ −δ . (A3)

It is equivalent to

1
2
· (s + s̄) ≥ −δ =⇒ 2δ + s + s̄ ≥ 0 =⇒ −2δ− s− s̄ ≤ 0 . (A4)

Finally, the damping sector with the angle θ, 0 ≤ θ < π
2 , corresponds to the constraint

<{s} · tan θ ≤ −={s} =⇒ <{s} · sin θ ≤ −={s} · cos θ . (A5)

Due to the negativity of both sides, squaring the second inequality in (A5) yields

<2{s} · sin2 θ ≥ =2{s} · cos2 θ with <{s} · sin θ ≤ 0 , (A6)

which is equivalent to(
s + s̄

2

)2
· sin2 θ ≥

(
s− s̄

2

)2
· cos2 θ with

(
s + s̄

2

)
· sin θ ≤ 0 (A7)

with 2 = −1 and, hence, also

(s + s̄)2 · sin2 θ + (s− s̄)2 · cos2 θ ≥ 0 with (s + s̄) · sin θ ≤ 0 . (A8)
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Combining both scalar inequalities into a joint matrix inequality with the constraints
of negative definiteness yields (by accounting for Sylvester’s criterion)[

(s + s̄) · sin θ (s− s̄) · cos θ
−(s− s̄) · cos θ (s + s̄) · sin θ

]
= s ·

[
sin θ cos θ
− cos θ sin θ

]
+ s̄ ·

[
sin θ − cos θ
cos θ sin θ

]
� 0 . (A9)

Now, a combination of all inequalities (A2), (A4), and (A9) in the form
2γ 0 0 0
0 −2δ 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

D0

+s ·


1 0 0 0
0 −1 0 0
0 0 sin θ cos θ
0 0 − cos θ sin θ


︸ ︷︷ ︸

D1

+s̄ ·DT
1 � 0 (A10)

completes the derivation of the matrices listed in (24).

Remark A1. In contrast to the following Appendix B, the inequalities above are formulated as
semi-definiteness constraints to allow for the case θ = 0 considered in the application scenario.

Appendix B. Generalization of (13) toward the Consideration of the Eigenvalue
Region Constraints of the Output Feedback Controller

To account for the consideration of eigenvalue constraints in the form

FΓ,C(s) := D0,C + s ·D1,C + s̄ ·DT
1,C ≺ 0 (A11)

with the given matrices D0,C and D1,C in the sense of a generalization of Corollary 1, the
inequality constraint (11) is first replaced by

D0,C ⊗ P + D1,C ⊗
((

Av − BvKyC+
y C̄
)T
· P
)
+ DT

1,C ⊗
(

P ·
(

Av − BvKyC+
y C̄
))
≺ 0 (A12)

for each polytope vertex v. A multiplication of this inequality from the left and right with
the symmetric block diagonal matrix blkdiag(Q, . . . , Q) := blkdiag

(
P−1, . . . , P−1) � 0 of

appropriate dimension yields

D0,C ⊗Q + D1,C ⊗
(

Q ·
(

Av − BvKyC+
y C̄
)T
)
+ DT

1,C ⊗
((

Av − BvKyC+
y C̄
)
·Q
)
≺ 0 (A13)

and

D0,C ⊗Q + D1,C ⊗
(

QAT
v −Q

(
C+

y C̄
)T

KT
y Bv

T
)
+ DT

1,C ⊗
(

AvQ− BvKyC+
y C̄Q

)
≺ 0 , (A14)

which by applying the variable substitution

NC+
y C̄ = KyMC+

y C̄ = KyC+
y C̄Q , (A15)

resulting from the equality constraint (12) turns into

D0,C⊗Q+D1,C⊗
(

QAT
v −

(
C+

y C̄
)T

NTBv
T
)
+DT

1,C⊗
(

AvQ− BvNC+
y C̄
)
≺ 0 . (A16)

Remark A2. Although (A16) is an obvious substitute for (13), it should be pointed out that the
output feedback approach derived in this paper was designed on the assumption of the stabilizability
of the plant by the considered system outputs; see the discussion of the control law (6) in Case 3.
Imposing the additional constraint (A11) instead of purely demanding <{s} < 0 may make the
design tasks infeasible due to the fact that a fully free, independent eigenvalue placement is typically
impossible by means of a pure output feedback control.
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