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Robust Subspace Tracking with Missing Data
and Outliers: Novel Algorithm with

Convergence Guarantee
Le Trung Thanh, Nguyen Viet Dung, Member, IEEE, Nguyen Linh Trung, Senior Member, IEEE, and Karim

Abed-Meraim, Fellow, IEEE

Abstract—In this paper, we propose a novel algorithm, namely
PETRELS-ADMM, to deal with subspace tracking in the pres-
ence of outliers and missing data. The proposed approach consists
of two main stages: outlier rejection and subspace estimation.
In the first stage, alternating direction method of multipliers
(ADMM) is effectively exploited to detect outliers affecting the
observed data. In the second stage, we propose an improved
version of the parallel estimation and tracking by recursive least
squares (PETRELS) algorithm to update the underlying subspace
in the missing data context. We then present a theoretical
convergence analysis of PETRELS-ADMM which shows that
it generates a sequence of subspace solutions converging to
the optimum of its batch counterpart. The effectiveness of the
proposed algorithm, as compared to state-of-the-art algorithms,
is illustrated on both simulated and real data.

Index Terms—Robust subspace tracking, online robust PCA,
robust matrix completion, missing data, outliers, alternating
direction method of multipliers (ADMM).

I. INTRODUCTION

Subspace estimation plays an important role in signal pro-
cessing with numerous applications in wireless communica-
tions, radar, navigation, image/video processing, biomedical
imaging, etc. [1], especially processing modern datasets in
today’s big and messy data [2]. It corresponds to estimat-
ing an appropriate r-dimensional subspace U of Rn where
r � n, from a set of m observed data vectors {xi}mi=1, or
equivalently, a measurement data matrix X of size n×m. To
this end, the standard approach is to solve an eigen-problem
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in a batch manner where the underlying subspace can be
obtained from either singular value decomposition of the data
matrix or eigenvalue decomposition of its covariance matrix.
In certain online or large-scale applications, batch algorithms
become inefficient due to their high computational complexity,
O(nmmin(m,n)), and memory cost, O(nm) [3]. Subspace
tracking or adaptive (dynamic) principal component analysis
(PCA) has been an excellent alternative with a much lower
computational complexity as well as memory cost (i.e., linear
to the data vector size n and the subspace dimension r).

In the signal processing literature, several good surveys
of the standard algorithms for subspace tracking can be
found, e.g. [1], [4]. The algorithms can be categorized into
three classes in terms of their computational complexity: high
complexity O(n2r), moderate complexity O(nr2) and low
complexity O(nr). Note that, there usually exists a trade-
off among estimation accuracy, convergence rate and com-
putational complexity. However, the performance of standard
algorithms may be degraded significantly if the measurement
data are corrupted by even a small number of outliers or
missing observations [5]. Recent surveys [6]–[8] show that
missing data and outliers are ubiquitous and more and more
common in the big data regime. This has led to attempts
to define robust variants of subspace learning, namely robust
subspace tracking (RST), or online robust PCA. In this work,
we aim to investigate the RST problem in the presence of both
outliers and missing data.

Our study is also motivated by several emerging applications
in diverse fields. In big data analysis, subspace tracking is
used to monitor dynamic cardiac magnetic resonance imag-
ing (MRI), track network-traffic anomalies [9] or mitigate
radio frequency interference (RFI) in radio astronomy [10].
Moreover, in 5G wireless communication, subspace tracking
have recently been exploited for channel estimation in massive
MIMO [11] and millimeter wave multiuser MIMO [12].

A. Related Works

In the literature, there have been several studies on subspace
tracking in the missing data context. Among them, Grassman-
nian rank-one update subspace estimation (GROUSE) [13]
is an incremental gradient subspace algorithm that performs
the stochastic gradient descent on the Grassmannian mani-
fold of the r-dimensional subspace. It belongs to the class
of low complexity and its convergence has recently been



2

proved in [14]. A robust version of GROUSE for handling
outliers is Grassmannian robust adaptive subspace tracking
(GRASTA) [15]. GRASTA first uses an `1-norm cost function
to reduce the effect of sparse outliers and then performs
the incremental gradient on the Grassmannian manifold of
subspace U in a similar way as in GROUSE. Although
GRASTA is one of the fastest RST algorithms for handling
missing data corrupted by outliers, convergence analysis of
this algorithm is not available.

Parallel estimation and tracking by recursive least squares
(PETRELS) [16] can be considered as an extension of
the well-known projection approximation subspace tracking
(PAST) algorithm [17] in order to handle missing data. Specif-
ically, PETRELS is a recursive least squares-type algorithm
applying the second order stochastic gradient descent to the
cost function. Inspired by PETRELS, several variants have
been proposed to deal with missing data in the same line such
as [9], [18], [19]. The subspace tracking algorithm in [9] is
derived from minimizing the sum of squared residuals, but
adding a regularization of the nuclear norm of subspace U.
Robust online subspace estimation and tracking (ROSETA)
in [18] applies an adaptive step size at the stage of subspace
estimation to enhance the convergence rate. Meanwhile the
main idea of PETRELS-CFAR algorithm [19] is to handle
“outliers-removed” data (i.e., outliers are first removed be-
fore performing subspace tracking) using a constant false
alarm rate (CFAR) detector. However, the convergence of
these PETRELS-based algorithms has not been mathemati-
cally proved yet.

Recursive projected compressive sensing (ReProCS)-based
algorithms [20], [21] are also able to adaptively reconstruct a
subspace from missing observations. They provide not only a
memory-efficient solution, but also a precise subspace estima-
tion as compared to the state-of-the-arts. However, they require
strong assumptions on subspace changes, outlier magnitudes
and accurate initialization.

Other subspace tracking algorithms, able to deal with miss-
ing data, include pROST [22], APSM [23], POPCA [24]
and OVBSL [25]. They either require memorizing previous
observations and good initialization or do not provide a
convergence guarantee.

Among the subspace tracking algorithms reviewed above,
only a few of them are robust in the presence of both outliers
and missing observations, including GRASTA [15], pROST
[22], ROSETA [18], ReProCS-based algorithms [20], [21] and
PETRELS-CFAR [19].

B. Contributions

Adopting the approach of PETRELS-CFAR [19] but aiming
to improve RST performance, we are interested in looking for
a method that can remove outliers more effectively. Following
our preliminary study presented in [26], the main contributions
of the paper are as follows.

First, we propose a novel algorithm, namely PETRELS-
ADMM, for the RST problem to deal with both missing data
and outliers. It includes two main stages: outlier rejection
and subspace estimation and tracking. Outliers residing in the

measurement data are detected and removed by our ADMM
solver in an effective way. Particularly, we design an efficient
augmented Lagrangian alternating direction method for the
`1-regularized loss minimization. Furthermore, we propose
an improved version of PETRELS, namely iPETRELS. It
is observed that PETRELS is ineffective when the fraction
of missing data is too large. We thus add a regularization
of the `2,∞-norm, which aims to control the maximum `2-
norm of rows in U, in the objective function to avoid such
performance loss. In addition, we introduce an adaptive step
size to speed up the convergence rate as well as enhance the
subspace estimation accuracy.

Second, we provide a convergence analysis of the proposed
algorithm where we show that the solutions {Ut}∞t=1 gener-
ated by PETRELS-ADMM converge to a stationary point of
the expected loss function f(U) asymptotically. To the best of
our knowledge, this is a pioneer analysis for RST algorithm’s
convergence in the presence of both outliers and missing data,
under mild conditions.

Finally, we provide extensive experiments on both simulated
and real data to illustrate the effectiveness of PETRELS-
ADMM in three application contexts: robust subspace
tracking, robust matrix completion and video background-
foreground separation.

There are several differences between PETRELS-ADMM
and the state-of-the-art RST algorithms. In particular, our
mechanism for outlier rejection can facilitate the subspace
estimation ability of RST algorithms where “clean” data
involve the process only, thus improving overall performance.
Excepting PETRELS-CFAR, the common principle of the
state-of-the-art algorithms is “outlier-resistant” (i.e., to have
a “right” direction toward the true subspace). The algorithms
thus require robust cost functions as well as additional adaptive
parameter selection. For examples, GRASTA and ROSETA
use the `1-norm robust estimator to reduce the effect of outliers
while pROST applies the `0-norm one instead. However,
there is no guarantee that the `p-norm robust estimator (i.e.,
p ∈ [0, 1]) can provide an optimal solution because of non-
convexity. Accordingly, the effect of outliers can not be com-
pletely removed in tracking. This is why the algorithms can fail
in the appearance of a large fractions of outliers or significant
subspace changes in practice. By contrast, ‘detect and skip’
approach like PETRELS-CFAR can utilize advantage (i.e.,
competitive performance) of the original PETRELS in missing
observations and then treat outliers as missing data to facilitate
the subspace tracking.

Compared to PETRELS-CFAR, our ADMM solver may be
efficient than CFAR in terms of memory cost and flexibility.
The constant false alarm rate method (CFAR) [27] uses a
moving window to detect outliers (i.e., using both old and
new observations at each time instant). By contrast, our
ADMM solver exploits only a new incoming data vector,
hence requiring a lower storage complexity. Moreover, the
performance of CFAR depends on predefined parameters such
as the probability of false alarm and the size of the reference
window [19]. Our ADMM solver does not involve such
parameters and hence it is more efficient. Third, PETRELS-
CFAR may provide an unstable solution in the presence of a
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high corruption fraction due to lack of regularization (i.e., in
the similar way as PETRELS).

Moreover, PETRELS-ADMM can be classified to a class
of provable ST algorithms [20], [21] where a performance
guarantee is provided. Our proposed algorithm takes both
advantages of streaming solution (need only single-pass of
data) and preserved convergence.

The structure of the paper is organized as follows. Sec-
tion II formulate the RST problem. Section III establishes our
PETRELS-ADMM algorithm for RST and Section IV gives
its theoretical convergence analysis. Section V presents exten-
sive experiments to illustrate the effectiveness of PETRELS-
ADMM as compared to the state-of-the-art algorithms. Sec-
tion VI concludes the paper.

C. Notations

We use lowercase (e.g. a), boldface lowercase (e.g. a),
capital boldface (e.g. A) and calligraphic letters (e.g. A)
letters to denote scalars, vectors, matrices and sets respectively.
The i-th entry of a vector a is denoted by a(i). For a
matrix A, (i, j)-th entry is denoted by A(i, j); A:,k and Al,:

are k-th column and l-th row of A respectively. Operators
(.)>, (.)#,E[.], tr(. ) denote the transportation, pseudo-inverse,
expectation and trace operator respectively. For 1 ≤ p < ∞,
`p-norm of a vector a ∈ Rn×1 is ‖a‖p

∆
=
(∑n

i=1 |a(i)|p
)1/p

;

`0-norm is ‖a‖0
∆
= limp→0(

∑n
i=1 |a(i)|p); `∞-norm is

‖a‖∞
∆
= maxi |a(i)|. The `2,∞-norm of A is defined as

the maximum `2-norm of all rows in A, i.e., ‖A‖2,∞ =
maxl ‖Al,:‖2. The Frobenius norm of a matrix A ∈ Rn×m

is ‖A‖F
∆
=
(∑n

i=1

∑m
j=1 A(i, j)

2)1/2
=
√

tr(A>A). The
condition number of matrix A is κ(A) =

σmax(A)

σmin(A)
, where

σmax(A) and σmin(A) are maximal and minimal singular
values of A respectively.

II. PROBLEM FORMULATION

A. Robust Subspace Tracking

Assume that at each time instant t, we observe a signal
xt ∈ Rn satisfying the following model:

xt = Pt(`t + nt + st), (1)

where `t ∈ Rn is the true signal that lies in a low dimensional
subspace1 of U ∈ Rn×r (i.e., `t = Uwt, where wt is a weight
vector and r � n), nt ∈ Rn is the noise vector, st ∈ Rn is the
sparse outlier vector, while the diagonal matrix Pt ∈ Rn×n is
the observation mask indicating whether the k-th entry of xt
is observed (i.e., Pt(k, k) = 1) or not (i.e., Pt(k, k) = 0). For
the sake of convenience, let Ωt be the set of observed entries
at time t.

Before introducing the RST formulation, we first define a
loss function `(.) that remains convex while still promoting
sparsity: For a fixed subspace U ∈ Rn×r and a signal x ∈ Rn
under an observation mask P, the loss function `(U,P,x)

1In an adaptive scheme, this subspace might be slowly time-varying, i.e.,
U = Ut, and hence the adaptive RST algorithm introduced next would not
only estimate U but also track its variations along the iterations.

with respect to U and {P,x} is derived from minimizing the
projection residual on the observed entries and accounting for
outliers as

`(U,P,x)
∆
= min

s,w
˜̀(U,P,x,w, s) (2)

with ˜̀(U,P,x,w, s) =
∥∥P(Uw + s− x)

∥∥2

2
+ ρ ‖s‖1 , (3)

where we here use the `1 regularization to promote entry-wise
sparsity on s and ρ > 0 is a regularization parameter to control
the degree of the sparsity.2

Now, given a streaming set of observed signals, X =
{xi}ti=1 in (1), we wish to estimate a rank-r matrix Ut ∈
Rn×r such that it can cover the span of the complete-data
noiseless signal `t.

RST can be achieved via the following minimization
problem:

Ut = argmin
U∈Rn×r

[
ft(U)

∆
=

1

t

t∑
i=1

λt−ii `(U,Pi,xi)

]
, (4)

where the forgetting factor λi ∈ (0, 1] is to discount the effect
of past observations. For the convergence analysis, we will
consider the expected cost f(U) on signals distributed by the
true data-generating distribution Pdata, instead of the empirical
cost ft(U). Thanks to the law of large numbers, expectation
of the observations without discounting (i.e., λ = 1) converges
to the true value when t tends to infinity,

Û = argmin
U∈Rn×r

f(U) (5)

with f(U)
∆
= E

x
i.i.d∼Pdata

[`(U,P,x)] = lim
t→∞

ft(U). (6)

From the past estimations {si,wi}ti=1, instead of minimiz-
ing the empirical cost function ft(U) in (4), we propose to
optimize the surrogate gt(U) of ft(U), which is defined as

gt(U) =
1

t

t∑
i=1

λt−ii

(∥∥Pi(Uwi + si − xi)
∥∥2

2
+ ρ ‖si‖1

)
, (7)

where {si,wi}ti=1 are considered as constants. Note that,
the surrogate function provides an upper bound on ft(U).
In our convergence analysis, we will prove that ft(Ut) and
gt(Ut) converge almost surely to the same limit. As a result,
the solution Ut obtained by minimizing gt(U) is exactly the
solution of ft(U) when t tends to infinity.

B. Assumptions

We make the following assumptions for convenience of con-
vergence analysis as well as helping deploy our optimization
algorithm:
(A-1): The data-generation distribution Pdata has a compact
support, x i.i.d∼ Pdata. Indeed, real data are often bounded such
as audio, image and video, hence this assumption naturally
holds in many situations.

2 The most direct way of enforcing sparsity constraints is to control the `0-
norm of the solution which counts the number of non-zero entries. Following
this way, the problem of (2) is well specified but computationally intractable.
Interestingly, the `1 relaxation can recover the original sparse solution of the
`0 problem while still preserving convexity [28].
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(A-2): U is constrained to the set U ∆
= {U ∈ Rn×r,

‖U:,k‖2 ≤ 1, 1 ≤ κ(U) ≤ α} with a constant α. The first
constraint ‖U:,k‖2 ≤ 1 is not restrictive as it is considered to
bound the scale of basis vectors in U and hence prevents the
arbitrarily very large values of U. While the low condition
number of the subspace κ(U) is to prevent the ill-conditioned
computation.
(A-3): Coefficients w are constrained to the set W = {w ∈
Rr, ω1 ≤ |w(i)| ≤ ω2, i = 1, 2, . . . , r} with two constants ω1

and ω2, 0 ≤ ω1 < ω2. Since the data x and subspace U are
assumed to be bounded, it is natural that the subspace weight
vector w is bounded too.
(A-4): The subspace changes at two successive time instances
is small, i.e., the largest principal angle between Ut and Ut−1

is 0 ≤ θmax � π/2, or the distance between the two subspaces,
d(Ut,Ut−1) = sin(θmax), satisfies 0 ≤ d(Ut,Ut−1)� 1.

III. PROPOSED PETRELS-ADMM ALGORITHM

In this section, we present a novel algorithm, namely
PETRELS-ADMM, for RST to handle missing data in the
presence of outliers. The main idea is to minimize the em-
pirical cost function gt in (7) by updating outliers st, weight
vector wt and subspace Ut alternatively.

Under the assumption (A-2) that the underlying subspace
U changes slowly, we can detect outliers in st by projecting
the new observation xt into the space spanned by the formerly
estimated subspace Ut−1 in the previous phase. Specifically,
we solve the following minimization problem:

{st,wt}
∆
= argmin

s,w

˜̀(Ut−1,Pt,xt,w, s) with (8)

˜̀(Ut−1,Pt,xt,w, s) =
∥∥Pt(Ut−1w + s− xt)

∥∥2

2
+ ρ ‖s‖1 .

In the second phase, the subspace Ut can be estimated by
minimizing the sum of squared residuals:

argmin
U

1

t

t∑
i=1

λt−i
tr(P̃i)

n

∥∥P̃i(Uwi − xi)
∥∥2

2
+
α

2t
‖U‖22,∞,

(9)
where the regularization

α

2t
‖U‖22,∞ is to bound the scale of

vectors in U while the outliers st has been disregarded and
the new observation P̃i are determined by the following rule:{

P̃i(k, k) = Pi(k, k), if si(k) = 0,

P̃i(k, k) = 0, otherwise,
(10)

which we aim to skip the corrupted entries of xi.
Our algorithm first applies the ADMM framework in [29],

which has been widely used in previous works for solv-
ing (8), and then propose a modification of PETRELS [16]
to handle (9). In the outlier rejection stage, we emphasize
here that we propose to focus on augmenting s (as shown
in (12)) to further annihilate outlier effect, unlike GRASTA
and ROSETA which focus on augmenting the residual error
only3. Meanwhile, we modify the subspace update step in

3In GRASTA [15] and ROSETA [18], both the authors aimed to detect
outliers s by solving the augmented Lagrangian of (8) as follows

L(s,y,w) = ‖s‖1 + y>(Pt(Ut−1w + s− xt))

+
ρ

2
‖Pt(Ut−1w + s− xt)‖22 .

Algorithm 1: Proposed PETRELS-ADMM
Input: A set of observed signals {xi}ti=1,xi ∈ Rn×1, observation

masks {Pi}ti=1,Pi ∈ Rn×n, true rank r.
Output: Ut

Procedure:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
for i = 1 to t do
// Estimate outliers si and coefficient wi using Algorithm 2:
{si,wi} = argmin

s,w

∥∥Pi(Ui−1w + s− xi)
∥∥2
2

+ ρ ‖s‖1 .

// New observation P̃i:{
P̃i(k, k) = Pi(k, k), if si(k) = 0,

P̃i(k, k) = 0, otherwise.
// Estimate subspace Ui using Algorithm 3:

Ui = argmin
U

1

i

i∑
j=1

λi−j
tr(P̃j)

n

∥∥P̃j(xj −Uw)
∥∥2
2

+
α

2i
‖U‖22,∞.

end for

Algorithm 2: Outlier Detection
Input: Observed signal xt ∈ Rn×1, observation mask
Pt ∈ Rn×n, the previous estimate Ut−1 ∈ Rn×r , maximum
iteration K, penalty parameters ρ1, ρ2, absolute and relative
tolerances εabs and εrel.

Output: s,w
Initialization:
• Choose {u0, s0,w0, z0, e0} randomly.
• {r0, e0} ← 0n

Procedure:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
for k = 0 to K do Cost
// Update w

wk+1 = (PtUi−1)#Pt(xt − sk + ek) 2Ωtr2 + Ωtr
zk+1 = Pt(Ut−1wk+1 + sk − xt) Ωtr
ek+1 = ρ2

1+ρ2
zk+1 + 1

1+ρ2
S1+ 1

ρ2

(zk+1) Ωt

// Update s
uk+1 = 1

1+ρ1

(
Pt(xt −Ut−1wk+1)− ρ1(sk − rk)

)
Ωtr

sk+1 = Sρ/ρ1 (uk+1 + rk) Ωt
rk+1 = rk + uk+1 − sk+1 Ωt

// Stopping criteria
if
∥∥sk+1 − sk

∥∥
2
<
√
nεabs + εrel

∥∥ρ1rk+1
∥∥
2

break; Ωt
end if

end for

PETRELS by adding an adaptive step size ηt ∈ (0, 1] at
each time instant t, instead of a constant one as in the
original version. The modification can be interpreted as an
approximation of Newton method. The proposed method is
summarized in Algorithm 1.

A. Online ADMM for Outlier Detection

We show in the following how to solve (8) step-by-step:
Update st: To estimate outlier st given w, we exploit the

fact that (8) can be cast into the ADMM form as follows:

min
u,s

h(u) + q(s), subject to u− s = 0, (11)

where u is the additional decision variable, h(u) =
1
2 ||Pt(Ut−1w + u − xt)||22 and q(s) = ρ‖s‖1. The corre-
sponding augmented Lagrangian with the dual variable vector
β is thus given by

L(s,u,β) = q(s) + h(u) + β>(u− s) +
ρ1

2
‖u− s‖22, (12)
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where ρ1 > 0 is the regularization parameter4. Let r = β/ρ1

be the scaled dual variable, we can rewrite the Lagrangian (12)
as follows:

L(s,u, r) = q(s) + h(u) + ρ1r
>(u− s) +

ρ1

2
‖u− s‖22. (13)

The optimization of (13) is achieved iteratively where we have
the following update rule using the scaled dual variable at the
k-th iteration,

uk+1 = argmin
u

(
h(u) + ρ1(rk)>(u− sk) +

ρ1

2

∥∥u− sk
∥∥2

2

)
, (14)

sk+1 = argmin
s

(
q(s)− ρ1(rk)>s +

ρ1

2

∥∥uk+1 − s
∥∥2

2

)
, (15)

rk+1 = rk + uk+1 − sk+1. (16)

In particular, we first exploit that the minimization (14) can
be formulated as a convex quadratic form:

uk+1 = argmin
u

(
1 + ρ1

2
‖u‖22−[

Pt(xt −Ut−1w)− ρ1(sk − rk)
]>

u

)
=

1

1 + ρ1

(
Pt(xt −Ut−1w)− ρ1(sk − rk)

)
. (17)

Meanwhile, the problem (15) is a standard proximal minimiza-
tion with the `1-norm [33] as

sk+1 = argmin
s

(
ρ ‖s‖1 +

ρ1

2

∥∥s− (uk+1 + rk)
∥∥2

2

)
= Sρ/ρ1(uk+1 + rk), (18)

where Sa(x) is a thresholding operator applied element-
wise and defined as

Sa(x) =


0, if |x| ≤ a,
x− a, if x > a,

x+ a, if x < −a,

which is a proximity operator of the `1-norm.
Finally, a simple update rule for the scaled dual variable r

can be given by the dual ascent, as

rk+1 = rk + βk∇L(rk),

where the gradient ∇L(rk) is computed by ∇L(rk) =
ρ1(uk+1 − sk+1) and βk > 0 is the step size controlling
the convergence rate. For ADMM methods, the regularization
parameter is often used as the the step size for updating dual
variables [29]. Due to the scaled version r of the dual variable
β, the step size βk is here set to be βk = 1/ρ1 at the k-th
iteration.

Update wt: To estimate wt given s, (8) can be recast into
the following ADMM form:

min
w∈W,e∈Rn×1

1

2

∥∥Pt(Ut−1w + s− xt)
∥∥2

2
+ y(e)

subject to Pt(Ut−1w + s− xt) = e

(19)

where y(e) is a convex regularizer function for the noise e,
(e.g. y(e) = σ

2 ‖e‖
2
2, with σ−1 can be chosen as the signal

4It is referred to as the penalty parameter. Although the convergence rate of
the proposed algorithm depends on a specific chosen value, our convergence
analysis indicates that the ADMM solver can converge for any positive fixed
penalty parameters. However, varying penalty parameters can give superior
convergence in practice [29]–[32].

to noise ratio, SNR). The minimization (19) is equal to the
following optimization:

min
w∈W,e∈Rn×1

‖e‖22

subject to Pt(Ut−1w + s− xt) = e.
(20)

However, the noise e is still affected by outliers because s
may not be completely rejected in each iteration. Therefore,
(20) can be cast further into the ADMM form such that
it can lie between least squares (LS) and least absolute
deviations to reduce the impact of outliers. The Huber fitting
can bring transition between the quadratic and absolute terms
of Lw,e(w, e)5, as

Lw,e(w, e) = fHub(e) +
ρ2

2

∥∥Pt(Ut−1w + s− xt)− e
∥∥2

2
, (21)

where ρ2 > 0 is the penalty parameter whose characteristics
are similar to that of ρ1 and the Huber function is given by [29]

fHub(x) =

{
x2/2, |x| ≤ 1,

|x| − 1/2, |x| > 1.

As a result, e-updates for estimating w involves the prox-
imity operator of the Huber function, that is,

ek+1 =
ρ2

1 + ρ2
Pt(Ut−1w

k+1 + s− xt)

+
1

1 + ρ2
S1+ 1

ρ2

(Pt(Ut−1w
k+1 + s− xt)).

Hence, at the (k+1)-th iteration, wk+1 can be updated using
the following closed-form solution of the convex quadratic
function:

wk+1 = (PtUt−1)#Pt(xt − s + ek).

To sum up, the rule for updating wt can be given by

wk+1 = (PtUt−1)#Pt(xt − s + ek), (22)

zk+1 = Pt(Ut−1w
k+1 + s− xt), (23)

ek+1 =
ρ2

1 + ρ2
zk+1 +

1

1 + ρ2
S1+ 1

ρ2

(zk+1). (24)

We note that, by using the Huber fitting operator, our
algorithm is better in reducing the impact of outliers than
GRASTA and ROSETA which use `2-norm regularization.

The procedure is stopped when the number of iterations
reaches the maximum or the accuracy tolerance for the primal
residual and dual norm has been met, i.e.,∥∥sk+1 − sk

∥∥
2
<
√
nεabs + εrel

∥∥ρ1r
k+1
∥∥

2
,

where εabs > 0 and εrel > 0 are predefined tolerances for abso-
lute and relative part respectively. A reasonable range for the
absolute tolerance may be [10−6, 10−3], while [10−4, 10−2] is
good for the relative tolerance, see [29] for further details of
the stopping criterion. The main steps of the outlier detection
are summarized as Algorithm 2.
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Algorithm 3: Improved PETRELS for updating Ut

Input: Observed signals {xi}ti=1, observation mask P̃t, the
previous estimate Ut−1, forgetting factor λ, regularization
parameter α, the step size η, the previous matrix Ht−1.

Output: Ut

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Procedure: Cost

xt =
‖P̃txt − P̃tUt−1wt‖2

‖wt‖2
Ωtr

ηt =
xt√
x2t + 1

O(1)

if ηt > η then ηt = 1 end if O(1)
for m = 1 to n do

Rm
t = λtRm

t−1 + P̃t(m,m)wtw>t r2

Hm
t = Rm

t + α
2
I r

at = (Hm
t )−1wt O(r2)

umt = umt−1 + ηtβtP̃t(m,m)(xre
t (m)−w>t umt−1)at r

end for

B. Improved PETRELS for Subspace Estimation

Having estimated st, we optimize the following minimiza-
tion

Ut := argmin g̃t(U) with (25)

g̃t(U) =
1

t

t∑
i=1

λt−i
tr(P̃i)

n

∥∥P̃i(xi −Uwi)
∥∥2

2
+
α

2t
‖U‖22,∞,

where the observation mask P̃i is computed by (10).
Thanks to the parallel scheme of PETRELS [16], the opti-

mal solution of the problem (25) can be obtained by solving
its subproblems at each row um of U, m = 1, 2, . . . , n, that
is,

min
um

1

t

t∑
i=1

λt−iβiP̃i(m,m)
(
xi(m)−w>i u

m
)2

+
α

2t
‖um‖22,

where βi = tr(P̃i)
n . In this way, we can speed up the subspace

update by ignoring the um if the m-th entry of xt is labeled
as missing observation or outlier.

Thanks to Newton’s method, we can update each row of the
subspace by the following rule:

umt = umt−1 −
(
Ht(u

m)
)−1 ∂g̃t(U)

∂um

∣∣∣∣
um=umt−1

, (26)

where the first derivative of g̃t is given by

∂g̃t(U)

∂um
=
−2

t

t∑
i=1

λt−iβiP̃i(m,m)
(
xi(m)−w>i u

m
)
w>i +

α

t
um,

and the second derivative of g̃t, Hessian matrix, is given by

Ht(u
m) =

2

t

t∑
i=1

λt−iβiP̃i(m,m)wiw
>
i +

α

t
I.

5Due to the natural `2-ball behavior of the noise (i.e., normal distributed
vector) and the sparsity of some unremoved parts of outliers, Huber fitting
can be a reasonable choice. The Huber function consists of square and linear
terms, so it is less sensitive to variables which have a strong effect on the
function `2-norm, but also does not encourage the sparsity like `1-norm.

‖et‖2
‖wt‖2

√( ‖et‖2
‖wt‖2

)2
+ 1

1

θt

Fig. 1: Adaptive step size ηt.

Specifically, the partial derivative ∂g̃t(U)
∂um at umt−1 can be

expressed by

∂g̃t(U)

∂um

∣∣∣∣
um=umt−1

=
∂g̃t−1(U)

∂um

∣∣∣∣
um=umt−1

+
α

t

(
umt−1 − umt−2

)
− 2

t
βtP̃t(m,m)

(
xt(m)−w>t u

m
t−1

)
w>t .

Since umt−1 = argmin ∂g̃t−1(U)
∂um and the regularization param-

eter α/t is small, so ∂g̃t−1(U)
∂um

∣∣
um=umt−1

= 0 and then

∂g̃t(U)

∂um

∣∣∣∣
um=umt−1

≈ −2

t
βtP̃t(m,m)(xt(m)−w>t u

m
t−1)w>t .

Let us denote Rm
t =

∑t
i=1 λ

t−i
i βiP̃t(m,m)wiw

>
i , the Hes-

sian matrix can be rewritten by

Ht(u
m
t−1) =

2

t

(
Rm
t +

α

2
I

)
.

Therefore, a relaxed approximation of the recursive update
(26) can be given by

umt ≈ umt−1 + ηtβtP̃t(m,m)
(
xt(m)−w>t u

m
t−1

)
a>t , (27)

where Hm
t = Rm

t + α
2 I

6, at = (Hm
t )−1wt and ηt denotes the

adaptive step size ηt ∈ [0, 1] at each time instant t, instead of a
constant as in the original PETRELS [16]. We here determine
the adaptive step size ηt as follows

ηt =
xt√
x2
t + 1

with xt =
‖et‖2
‖wt‖2

, (28)

where the residual error et is computed by et = P̃txt −
P̃tUt−1wt. Note that, the adaptive step size ηt can be
expressed by ηt = sin(θt), see Fig. 1. The smaller angle θt is,
the closer to the true subspace we are, the smaller step size is
needed. The update is summarized in Algorithm 3.

C. Computational Complexity Analysis

The number of floating-point operations (flop) is used
to measure the computational complexity of the proposed
PETRELS-ADMM. At the k-th iteration in the outlier de-
tection phase, our method requires O(Ωr2) flops where Ω
is average number of observed entries at each time instant
(Ω ≤ n). It is practically stated that the ADMM solver
can converge within a few tens of iterations [29] (also see
Fig. 3). Therefore, the removal of outliers costs the averaged
O(Ωr2). The complexity of the subspace estimation phase

6Hm
t ∈ Rr×r is a matrix of rank-one updates, so its inverse matrix can be

efficiently computed recursively, thanks to Sherman–Morrison formula [34].
Also, the small regularization parameter α > 0 can help the recursive update
having a better numerical stability. The computational complexity is of order
O(r2).
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is also O(Ωr2) as the original PETRELS [16]. The overall
computational complexity of PETRELS-ADMM is of order
O(Ωr2) flops.

IV. PERFORMANCE ANALYSIS

In this section, we provide a convergence analysis for the
proposed PETRELS-ADMM algorithm. Inspired by the results
of convergence of empirical processes for online sparse coding
in [35] and online robust PCA in [36], [37], we derive a
theoretical approach to analyze the convergence of values of
the objective function {ft(Ut)}∞t=1 as well as the solutions
{Ut}∞t=1 generated by PETRELS-ADMM.

Given assumptions defined in Section II-B, our main theo-
retical result can be stated by the following theorem:

Theorem 1. (Convergence of PETRELS-ADMM): In the sta-
tionary context, let {Ut}∞t=1 be the sequence of solutions
generated by PETRELS-ADMM, then the sequence converges
to a stationary point of the expected loss function f(U) when
t→∞.

Proof Sketch. Our proof can be divided into three main stages
as follows: We first prove that the solutions {Ut, st}t≥1 gener-
ated by the PETRELS-ADMM algorithm are optimal w.r.t. the
cost function in (7). We then prove that a nonnegative sequence
{gt(Ut)}∞t=1 converges almost surely where {Ut}∞t=1 is the
sequence of optimal solutions generated by the PETRELS-
ADMM algorithm. After that, we prove that the surrogate
{gt(Ut)}∞t=1 converges almost surely to the empirical loss
function {ft(Ut)}∞t=1 as well as the true loss function, i.e.,
gt(Ut)

a.s.→ ft(Ut)
a.s.→ f(Ut), thanks to the central limit

theorem.
Due to space limitation, we here present key results and

report their proof sketch. The details of their proofs are
provided in our supplemental material.

Lemma 1. (Convergence of Algorithm 2): At each time instant
t, let {sk,uk, rk,wk, ek}∞k=1 be a sequence generated by
Algorithm 2 for outlier detection, there always exists a set
of positive numbers {cu, cs, cr, cw, ce} such that, at each
iteration, the minimizers satisfy

L(sk+1,uk+1, rk+1,wk+1, ek+1)

≤ L(sk,uk, rk,wk, ek)− cu
∥∥uk − uk+1

∥∥2

2
− cs

∥∥sk − sk+1
∥∥2

2

−cr
∥∥rk − rk+1

∥∥2

2
− cw

∥∥wk −wk+1
∥∥2

2
− ce

∥∥ek − ek+1
∥∥2

2
,

where the Lagrangian L(s,u, r,w, e) for updating these vari-
ables is a combination of two functions (13) and (21), as

L(s,u, r,w,e) = q(s) + h(u) + ρ1r
>(u− s) +

ρ1

2
‖u− s‖22

+ fHub(e) +
ρ2

2

∥∥Pt(Ut−1w + s− xt)− e
∥∥2

2
.

The asymptotic variation of sk (i.e., outliers) is then given by

lim
k→∞

∥∥sk+1 − sk
∥∥2

2
= 0.

Proof Sketch. We state the following proposition, which is in
the same line as in previous convergence analysis of ADMM
algorithms [38], [39], used to prove the first part of lemma 1.

Proposition 1. Let {sk,uk, rk,wk, ek}∞k=1 be a sequence
generated by Algorithm 2 and denote qk be one of these
variables, the minimizer qk+1 of (13) satisfies

L(qk+1, .) ≤ L(qk, .)− cq
∥∥qk − qk+1

∥∥2

2
,

where cq is a positive number.

As a result, the cluster {sk,uk, rk,wk, ek} converges to
stationary point of L(s,u, r,w, e) when k → ∞ and it also
implies that the sequence {sk}∞k=0 is convergent, i.e.,

lim
k→∞

∥∥sk+1 − sk
∥∥2

2
= 0.

Proposition 2. (Convexity of the surrogate functions gt(U)):
Given assumptions in Section II-B, the surrogate function
gt(U) defined in Eq. (7) is not only strongly convex, but
also Lipschitz function, i.e., there always exists two positive
numbers m1 and m2 such that

m1 ‖Ut+1 −Ut‖2F ≤ |gt(Ut+1)− gt(Ut)|,
m2 ‖Ut+1 −Ut‖F ≥ |gt(Ut+1)− gt(Ut)|.

Proof Sketch. To prove that gt(U) is strongly convex, we state
the following facts: gt(U) is continuous and differentiable;
its second derivative is a positive semi-definite matrix (i.e.,
∇2

Ugt(U) ≥ mI); and the domain of gt(U) is convex. In
order to satisfy the Lipschitz condition, we show that the first
derivative of gt(U) is bounded.

Lemma 2. (Convergence of Algorithm 3): Given an outlier
vector st generated by Algorithm 2 at each time instant
t, Algorithm 3 can provide a local optimal solution Ut

for minimizing gt(U). Moreover, the asymptotic variation of
estimated subspaces {Ut}t≥1 is given by

‖Ut −Ut+1‖F
a.s.→ O

(
1

t

)
.

Proof. To establish the convergence, we exploit the fact that
our modification can be seen as an approximate of the Newton
method,

Ut
∼= Ut−1 − ηt

[
Ht(Ut−1)

]−1∇g̃t(Ut−1),

where Ht(Ut−1) and ∇g̃t(Ut−1) are the Hessian matrix
and gradient of the function g̃t(U) at Ut−1, as shown in
Section III-B. It implies that the estimated Ut converges to
the stationary point of gt(U).

Furthermore, since gt(U) is strongly convex and Lipschitz
function w.r.t the variable U as shown in Proposition 2, we
have the following inequality

m1 ‖Ut+1 −Ut‖2F ≤ |gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F

⇔ ‖Ut −Ut+1‖F ≤
m2

m1
= O

(
1

t

)
.

Note that the positive number m2 = O(1/t) is already given
in the proof of Proposition 2 in the supplemental material,
while m1 is a constant.

Lemma 3. (Convergence of the surrogate function gt(U)):
Without discounting past observations, let {Ut}∞t=1 be a
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sequence of solutions generated by Algorithm 1 at each time
instant t, the sequence {gt(Ut)}∞t=1 converges almost surely,
i.e.,

∞∑
t=1

∣∣E[gt+1(Ut+1)− gt(Ut)|Ft]
∣∣ < +∞ a.s.,

where {Ft}t>0 is the filtration of the past estimations at time
instant t.

Proof Sketch. Let us define the indicator function δt as follows

δt
∆
=

{
1 if E[gt+1(Ut+1)− gt(Ut)|Ft] > 0,

0 otherwise.

According to the quasi-martingale convergence theorem [40,
Section 4.4], in order to show the convergence of the nonneg-
ative stochastic process {gt(Ut)}∞t=1, we will prove

∞∑
t=0

E
[
δE[gt+1(Ut+1)− gt(Ut)|Ft]

]
<∞.

In particular, we first indicate the following inequality:

gt+1(Ut+1)− gt(Ut) ≤
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1
.

Since E[`(Ut,Pt+1,xt)] = f(Ut), we have a nice property:

E[gt+1(Ut+1)− gt(Ut)|Ft] ≤
E[`(Ut,Pt+1,xt+1)− ft(Ut)|Ft]

t+ 1

=
f(Ut)− ft(Ut)

t+ 1
.

We then have

E
[
δE[gt+1(Ut+1)− gt(Ut)|Ft]

]
≤ E[

√
t(f(Ut)− ft(Ut))]

1√
t(t+ 1)

.

Under the given assumptions, we exploit the fact that the set
of measurable functions {`(Ui,P,x)}i≥1 defined in (2) is P-
Donsker. Therefore, the centered and scaled version of the
empirical function ft(Ut) satisfies the following proposition:

E[
√
t(f(Ut)− ft(Ut))] = O(1),

thanks to Donsker theorem [41, Sec 19.2]. Furthermore, we
also indicate that the sum

∑∞
t=1 1/(

√
t(t+ 1)) converges. The

two facts result in
∞∑
t=0

E
[
δE[gt+1(Ut+1)− gt(Ut)|Ft]

]
<∞.

Since gt(Ut) > 0, we can conclude that {gt(Ut)}t>0 is quasi-
martingale and converges almost surely.

Lemma 4. (Convergence of the empirical loss function
ft(U)): The empirical loss functions ft(Ut) and its surrogate
gt(Ut) converge to the same limit, i.e.,

gt(Ut)
a.s.−→ ft(Ut).

Proof Sketch. We begin the proof with providing the following
inequality:

gt(Ut)− ft(Ut)

t+ 1
≤ ut − ut+1︸ ︷︷ ︸

(S-1)

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

,

where ut
∆
= gt(Ut). We then prove that the two sequences

(S-1)-(S-2) converge almost surely. As a result, the sequence{
(gt(Ut)− ft(Ut))

1
t+1

}
also convergence almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞.

In parallel, we exploit that the real sequence { 1
t+1}t≥0 di-

verges, i.e.,
∑∞
t=1

1
t+1 =∞. It implies that gt(Ut)− ft(Ut)

converges.

Corollary 1. The expected loss function {f(Ut)}∞t=1 con-
verges almost surely when t→∞.

Proof. Since ft(Ut)
a.s.→ f(Ut) and gt(Ut)

a.s.→ ft(Ut), then
gt(Ut)

a.s.→ f(Ut). Since gt(Ut) converges almost surely,
f(Ut) also converges almost surely when t→∞.

Corollary 2. When t→∞, let Ut = argmin
U∈Rn×r

gt(U), we have

ft(Ut) ≤ ft(U) +
L

2
‖U−Ut‖2F ,∀ U ∈ Rn×r,

where L is a positive constant. In other words, Ut is the
minimum point of f(U).

Proof Sketch. Let us denote the error function et(U) =
gt(U)− ft(U).

Due to gt(Ut)
a.s.→ ft(Ut) when t → ∞, we have

∇et(Ut) = 0 and hence the following inequality

‖∇et(U)‖ ≤ L

2
‖U−Ut‖F .

It is therefore that
|et(U)− et(Ut)|
‖U−Ut‖F

≤ L

2
‖U−Ut‖F ,

thanks to the mean value theorem. In other word, we have
|et(U)| ≤ L

2 ‖U−Ut‖2F because of et(Ut)
a.s.→ 0.

In addition, for all U ∈ Rn×r, we always have ft(Ut) ≤
gt(U). Therefore, we can conclude the corollary as follows

ft(Ut) ≤ gt(Ut) = ft(U) + et(U)

≤ ft(U) +
L

2
‖U−Ut‖2F .

It ends the proof.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithm by comparing it to the state-of-the-art in three sce-
narios relative to: robust subspace tracking, robust matrix com-
pletion and video background-foreground separation respec-
tively. In particular, extensive experiments on simulated data
are conducted to demonstrate the convergence and robustness
of our PETRELS-ADMM algorithm for subspace tracking
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and matrix completion. While four real video sequences are
used to illustrate the effectiveness of PETRELS-ADMM for
background-foreground separation.

A. Robust Subspace Tracking

In the following experiments, data xt at each time t is
generated randomly using the standard signal model as in (1)

xt = Pt(Uωt + nt + st),

where U ∈ Rn×r denotes a mixing matrix, ωt is a random
vector living on Rr space (i.e., `t = Uωt) and they are Gaus-
sian i.i.d. of pdf N (0, 1); nt represents the white Gaussian
noise N (0, σ2), with SNR = −10 log10(σ2) is the signal-
to-noise ratio to control the impact of noise on algorithm
performance; and st is uniform i.i.d. over [0, fac-outlier] given
the magnitude fac-outlier of outliers that aim to create a space
for outliers. Indices of missing entries and outliers are gener-
ated randomly using the Bernoulli model with the probability
ωmissing and ωoutlier respectively. The two probabilities represent
the density of missing entries and outliers in the data.

In order to evaluate the subspace estimation accuracy, we
use the subspace estimation performance (SEP) [19] metric

SEP =
1

L

L∑
i=1

tr
{
U#

es-i(I−UexU
#
ex)Ues-i

}
tr
{
U#

es-i(UexU
#
ex)Ues-i

} ,

where L is the number of independent runs, Uex and Ues-i
are the true and the estimated subspaces at the i-th run
respectively. Particularly, the denominator measures the sum
of the squares of the cosines of the principal angles between
Ues-i and Uex, while the numerator evaluates the similar sum
but for the two subspaces Ues-i and the orthogonal complement
U⊥ex. Accordingly, the lower SEP is, the better the algorithm
performance is.

State-of-the-art algorithms for comparison are: GRASTA
[15], ROSETA [18] and PETRELS-CFAR [19], ReProCS [20]
and NORST [21]. Throughout our experiments, their algorithm
parameters are set by default as mentioned in the algorithms.
In particular, we set a penalty parameter ρ = 1.8 and a
constant step-size scale C = 2 in GRASTA. An adaptive step
size of ROSETA is initialized at µ0 = C

1+η0
with C = 8

and η0 = 99, while two thresholds for controlling the step
size are set at ηlow = 50 and ηhigh = 100. PETRELS-
CFAR includes a forgetting factor set at λ = 0.999, a
window size Nw = 150 and a false alarm probability Pfa
varied from [0.1, 0.7] depended on the outlier intensity. Both
ReProCS and NORST require several predefined parameters,
including ttrain = 200 data samples, α = 60,K = 33 and
ωeval = 7.8 × 10−4. For our algorithm, we set the penalty
parameters at 1.5, the regularization parameter α = 0.1 and the
step-size threshold η = sin(π/3), while the maximum number
of iterations for outlier detection phase is fixed at K = 50.
Matlab codes are available online7. The experimental results
are averaged over 100 independent runs.

7GRASTA: https://sites.google.com/site/hejunzz/grasta
ROSETA: http://www.merl.com/research/license#ROSETA
ReProCS: https://github.com/praneethmurthy/ReProCS
Our code: https://avitech.uet.vnu.edu.vn/en/petrels-admm
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Fig. 2: Convergence of PETRELS-ADMM in terms of the
variation

∥∥sk+1 − sk
∥∥

2
: n = 50, r = 2, 90% entries observed

and outlier density ωoutlier = 0.1.
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(a) Outlier density ωoutlier = 0.05.
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(b) Outlier density ωoutlier = 0.4.

Fig. 3: Convergence of PETRELS-ADMM in terms of the
variation ‖Ut+1 −Ut‖F : n = 50, r = 2, 90% entries
observed and outlier intensity fac-outlier = 10.

1) Convergence of PETRELS-ADMM: To demonstrate the
convergence of our algorithm, we use a synthetic data whose
number of row n = 50, rank r = 2, and 5000 vector samples
with 90% entries observed on average. Specifically, the outlier
density ωoutlier is varied from 0.05 to 0.4, while the outlier
intensity is set at three values representing a low, medium
and high level (i.e., fac-outlier = 0.1, 1 and 10 respectively).
The penalty parameter ρ varies in the range [0.1, 1.5]. Also,
two noise levels are considered, with SNR ∈ {0, 10} dB. The
results are shown as in Fig. 2 and Fig. 3.

Fig. 2 shows the convergence behavior of PETRELS-
ADMM w.r.t the two variables: fac-outlier and the weight
ρ. We can see that, the variation of {sk}k≥1 always converges
in all testing cases. When the penalty parameter ρ ≥ 0.5,
the convergence rate is fast, i.e. the variation

∥∥sk+1 − sk
∥∥

2
can converge in 50 iterations in both low- and high-noise
cases. The results are practical evidences of Lemma 1. Sim-
ilarly, Fig. 3 shows that the convergence of the variations
of the sequence {Ut}t≥0, generated by PETRELS- ADMM
follows the theoretical behavior proved in Lemma 2, that is,
‖Ut −Ut+1‖F

a.s.→ O( 1
t ) almost surely.

2) Outlier Detection: Following the above experiment,
we next assess the ability of PETRELS-ADMM for outlier
detection against the noise level. The three statistical met-
rics including Sensitivity (SEN) and Specificity (SEP) and
Accuracy (ACC) are used to evaluate its outlier detection
performance [42]. Particularly, SEN measures the percentage
of outliers detected correctly over the total outliers in the
measurement data. SEP is similar to SEN, but for normal
entries and ACC indicates how the estimator makes the
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Fig. 4: Outlier detection accuracy versus the noise level: n =
50, r = 2, 80% entries observed and 20% outliers.

correct detection. We use the same data above, but 20% of
the observations are missing. The outlier density ωoutlier is
set at 0.2, while two intensity levels are considered, with
fac-outlier ∈ {1, 10}.

Fig. 4 illustrates the outlier detection performance of
PETRELS-ADMM versus the noise level SNR. As can be
seen that when we increase the value of SNR from −20 dB to
20 dB, the detection accuracy goes up first and then converges
towards a constant level. At very low SNRs (i.e., < 0 dB),
the proposed algorithm does not work well in which many
normal entries are labeled as outliers, although the number
of correctly detected outliers are high. When SNR > 0 dB,
PETRELS-ADMM achieves a competitive prediction accuracy
with respect to all three evaluation metrics.

Fig. 5 provides more practical evidences to demonstrate the
effectiveness of PETRELS-ADMM for the outlier detection.
Particularly, the locations of outliers st are well detected even
when the measurement data is corrupted by noise with a
moderate SNR value (e.g. 10 dB). Also, amplitude of the
outliers is recovered nearly correctly with a small relative error
(RE = ‖st−s̃t‖2

‖st‖2 ) in both cases (e.g. RE = 0.0616 at the 20 dB
noise level). As a result, the corrupted signals are also well
reconstructed, as illustrated in Fig. 5(b) and (d).

3) Robustness of PETRELS-ADMM: To investigate the
robustness of PETRELS-ADMM, we vary the outlier intensity,
density and missing density and then measure the SEP metric.
Moreover, we also demonstrate the effectiveness of PETRELS-
ADMM against noisy and time-varying environments.

a) Impact of outlier intensity on algorithm performance:
We fix n = 50, r = 2, 90% entries observed, outlier density
ωoutlier = 0.1, SNR= 20 dB while varying fac-outlier in
the range [0.1, 10]. We can see from Fig. 6 that PETRELS-
ADMM always outperforms other state-of-the-art algorithms
in all testing cases with different fac-outlier values. At low
outlier intensity (i.e., fac-outlier ≤ 1), all algorithms yield
good accuracy with fast convergences, though ROSETA and
ReProCS obtain the higher SEP (i.e., ≈ 10−3) as compared to
that of the four remaining algorithms. In particular, PETRELS-
ADMM provides the best subspace estimation accuracy, i.e.,
SEP ≈ 10−5 in both cases (see Fig. 6(a)-(b)). At a high
intensity level (e.g. fac-outlier = 5 or 10), PETRELS-ADMM
again provides the best performance in terms of both con-
vergence rate and accuracy. GRASTA performs similarly to
ReProCS and slightly worse than PETRELS-CFAR (i.e., their
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Fig. 5: Outlier detection and data reconstruction: n = 50,
r = 2, 90% entries observed, outlier intensity fac-outlier = 1,
and outlier density ωoutlier = 0.1.
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Fig. 6: Impact of outlier intensity on algorithm performance:
n = 50, r = 2, 90% entries observed, outlier density ωoutlier =
0.1 and SNR = 20 dB.

SEP values are around 10−4). While ROSETA and NORST
fail to recover the underlying subspace in the presence of
strong outliers. Note that, in all four experiments above,
PETRELS-ADMM always obtains the best SEP value of
around 10−5 and hence is robust to outlier intensity.

b) Impact of outlier density on algorithm performance:
We fix n = 50, r = 2, 90% entries observed, outlier
intensity fac-outlier = 5, SNR = 20 dB while varying the
outlier density ωoutlier in the range [0.05, 0.4]. The results
are shown as in Fig. 7. PETRELS-ADMM outperforms the



11

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) ωoutlier = 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) ωoutlier = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) ωoutlier = 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) ωoutlier = 0.4.

Fig. 7: Impact of outlier density on algorithm performance:
n = 50, r = 2, 90% entries observed, outlier intensity
fac-outlier = 10 and SNR = 20 dB.

four remaining algorithms in this context. In particular, our
algorithm performs very well even when the fraction of out-
liers is high (e.g. ωoutlier = 0.4). By contrast, four algorithms
including GRASTA, ROSETA, ReProCS and NORST may
fail to track subspace in the case of a high outlier density
(see Fig. 7(d)). The PETRELS-CFAR works well but has a
lower convergence rate and accuracy in terms of SEP metric
as compared to PETRELS-ADMM. When the measurement
data is corrupted by a smaller number of outliers, PETRELS-
ADMM still provides better performance than the others, as
shown in Fig. 7 (a)-(c).

c) Impact of the density of missing entries on algorithm
performance: Following the above experiments, we change
the number of missing entries in the measurement data by
varying the probability ωmissing while fixing the other attributes.
The results are reported in Fig. 8 and Fig. 9. In particular,
the effect of ωmissing on algorithm performance is presented
in Fig. 8. Similarly, PETRELS-ADMM yields the best perfor-
mance in four cases of missing observations. Three algorithms
including PETRELS-CFAR, GRASTA and ReProCS provide
good performance but with slower convergence rate and accu-
racy, while ROSETA and NORST have failed again in this task
due to the high outlier intensity (i.e., fac-outlier = 10). As can
be seen from Fig. 9(a)-(c) that the state-of-the-art algorithms
only perform well when the number of corruptions is smaller
than half the number of entries in the data measurement.
While PETRELS-ADMM still obtains the reasonable subspace
estimation performance in terms of SEP (i.e., ≈ 10−3) in the
case of very high corruptions, see Fig. 9(d).

d) Noisy and Time-Varying Environments: We first inves-
tigate the effect of the noise on the performance of PETRELS-
ADMM in comparison with the state-of-the-art algorithms.
We vary the value of SNR in the range from 0 dB to
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Fig. 8: Impact of the density of missing entries on algorithm
performance: n = 50, r = 2, outlier density ωoutlier = 0.1,
outlier intensity fac-outlier = 10 and SNR = 20 dB.
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Fig. 9: Impact of the corruption fraction by missing data
and outliers on algorithm performance: n = 50, r = 2 and
fac-outlier = 10 and SNR = 20 dB.

20 dB and assess their performance on the same data above.
Experimental results are illustrated in Fig. 10. As can be
seen that the convergence rate of PETRELS-ADMM is not
affected by SNR, but only its estimation accuracy, as shown
in Fig. 10(a). Specifically, when we decrease the value of
SNR, the estimation error between the true subspace and
the estimation increases gradually. At a high SNR level (e.g.
20 dB), previous experiments indicate that PETRELS-ADMM
outperforms state-of-the-art algorithms, see Fig. 6-9. At a low
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Fig. 10: Impact of the additive noise on algorithm perfor-
mance: n = 50, r = 2, 90% entries observed and 10% outliers
with intensity fac-outlier = 10.

SNR level (e.g. 5 dB), PETRELS-ADMM yields the best
estimation accuracy as well as convergence rate again, as
illustrated in Fig. 10(b). Similar outstanding performance of
PETRELS-ADMM were also observed at lower SNR levels
of 10, 5 or 0 dB (please see Figs. 8-10 of the supplementary
material).

The robustness of PETRELS-ADMM is next investigated
against nonstationary and time-varying environments. Particu-
larly, the true subspace U is supposed to be varying with time
under the model Ut = (1−ε)Ut−1 +εNt, where Nt ∈ Rn×r
is a Gaussian noise matrix (zero-mean and unit-variance) and
ε is to control the subspace change which is chosen among
{10−1, 10−2, 10−3}. We use the same signal model as in
the previous tasks and 1000 vector samples. Also, we create
an abrupt change at t = 500 to see how fast the proposed
algorithm can converge. We measure the performance of
PETRELS-ADMM at two noise levels (SNR = 5 and 10
dB) with different corruption fractions. Experimental results
are illustrated in Fig. 11(a)-(d). In the same manner to the
effect of the noise, the time-varying factor ε does not affect the
convergence rate of PETRELS-ADMM, but only its subspace
estimation. Fig. 11 shows that the estimation accuracy of the
proposed algorithm will decrease if the time-varying factor ε
increases. When the underlying subspace varies slowly (e.g.
ε ≤ 10−2), the resulting values of SEP, which always con-
verge towards an error floor, indicate that PETRELS-ADMM
can be robust to slowly time-varying scenarios.

B. Robust Matrix Completion

We compare here the robust matrix completion (RMC)
performance using PETRELS-ADMM with GRASTA [15],
LRGeomGC [43] and RPCA-GD [44].

The measurement data X = P~(UW+S+N) used for this
task corresponds to the rank-2 matrices of size of 400× 400,
where the operator ~ denotes the Hadamard product. Par-
ticularly, we generated the mixing matrix U ∈ R400×2 and
the coefficient matrix W ∈ R2×400 at random. Their entries
were random variables that follow Gaussian distribution with
zero mean and unit variance. The measurement data X was
corrupted by a white Gaussian noise N ∈ R400×400 whose
SNR is fixed at 40 dB. In the literature, the SNR value of
around 40 dB is used for performance evaluation of completion
algorithms due to missing observations and/or outliers at
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Fig. 11: PETRELS-ADMM in time-varying scenarios.

low-noise conditions [45]. The data matrix was affected by
different percentages of missing (P) and outliers (S) from
0% − 90%. The location and value of corrupted entries
(including missing and outliers) were uniformly distributed.

Fig. 12 shows that the proposed algorithm of PETRELS-
ADMM based RMC outperforms GRASTA, LRGeomGC and
RPCA-GD. At low outlier intensity (i.e., fac-outlier = 0.1),
PETRELS-ADMM based RMC, LRGeomGC and RCPA-GD
provide excellent performance even when the data is corrupted
by a very high corruption fraction. At high outlier inten-
sity (i.e., fac-outlier ≥ 1), PETRELS-ADMM based RMC
provides the best matrix reconstruction error performance,
GRASTA still retain good performance, while RPCA-GD and
LRGeomGC fail to recover corrupted entries.

C. Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed
PETRELS-ADMM algorithm in the application of RST for
video background/foreground separation, and compare with
GRASTA and PETRELS-CFAR. We use four real video
sequences for this task, including Hall, Lobby, Sidewalk
and Highway datasets. In particular, the two former datasets
are from GRASTA’s homepage8, while the two latter datasets
are from CD.net20129 [46]. The Hall dataset consists of
3584 frames of size 174×144 pixels, while the Lobby dataset
has 1546 frames of size 144 × 176 pixels. The Sidewalk
dataset includes 1200 frames of size 240 × 352 pixels.
Highway dataset has 1700 frames of size 240 × 320
pixels. We can see from Fig. 13, PETRELS-ADMM is ca-
pable of detecting objects in video and provides competitive
performance as compared to GRASTA and PETRELS-CFAR.

8https://sites.google.com/site/hejunzz/grasta
9http://jacarini.dinf.usherbrooke.ca/dataset2012



13

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

PETRELS-ADMM

0 20 40 60 80

0

20

40

60

80

GRASTA

0 20 40 60 80

0

20

40

60

80

RPCA-GD

0 20 40 60 80

0

20

40

60

80

LRGeomGC

Fig. 12: Effect of outlier intensity on robust matrix completion performance. White color denotes perfect recovery, black color
denotes failure and gray colour is in between.

VI. CONCLUSIONS

In this paper, we have proposed an efficient algorithm,
namely PETRELS-ADMM, for the robust subspace tracking
problem to handle missing data in the presence of outliers.
By converting the original RST problem to a surrogate one,
which facilitates the tracking ability, we have derived an
online implementation for outlier rejection with a low com-
putational complexity and a fast convergence rate while still
retaining a high subspace estimation performance. We have
established a theoretical convergence which guarantees that
the solutions generated by PETRELS-ADMM will converge to
a stationary point asymptotically. The simulation results have
suggested that our algorithm is more effective than the state-
of-the-art algorithms for robust subspace tracking and robust
matrix completion. The effectiveness of PETRELS-ADMM
was also verified for the problem of video background-
foreground separation.
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