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Abstract Big data collection and storage have become one of the most ob-
vious challenge in this era. Indeed, much of that data is collected thanky to
a huge number of connected devices in sensing-based IoT applications. Thus,
in order to deal with data growth in such applications, researchers have fo-
cused on data reduction approach as an efficient solution for minimizing the
amount of data collection and saving the limited sensor energy in such net-
works. Mainly, data reduction approach relies on various kinds of data pro-
cessing techniques such that aggregation, compression, prediction, clustering,
sensing frequency adaptation and spatial-temporal correlation. However, each
of those techniques has its own advantages and disadvantages regarding sensor
energy saving, data reduction ratio, data accuracy, complexity, etc. In this pa-
per, we propose a hybrid data collection and energy saving mechanism, called
All-in-One, for sensing-based IoT applications. The proposed mechanism takes
advantages from existing data reduction techniques while optimizing various
performance metrics. All-in-One relies on the cluster network architecture and
works on three main phases: on-period, in-period and in-node. The first phase,
e.g. on-period, allows each sensor node to search the similarity among its pe-
riodic collected data then to reduce its data transmission to the Cluster-Head
(CH) by applying either data aggregation, compression or prediction tech-
nique. The second phase, e.g. in-period, allows each sensor to study the vari-
ation of the monitored condition then to reduce its data collection according
to two techniques, on-off transmission or adapting sensing frequency. The last
phase, e.g. in-node, is applied at the CH level and aims to remove the re-
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dundancy among data collected by neighboring nodes, based on in-network
correlation or data clustering techniques, before sending the data to the sink.
We conducted simulations on real sensor data in order to evaluate the effi-
ciency of our mechanism, in terms of several performance metrics, compared
to other exiting techniques.

Keywords Sensing-based IoT applications · Cluster network architecture ·
Energy saving · Big data collection · Data reduction · Data redundancy study

1 Introduction

Nowadays, the number of connected sensor devices are widely increased and
exceeding even the population number. In everyday life, one can find a huge
number of deployed sensors in various applications collecting many kinds of
data. Indeed, surveillance, data collection and sensing have been recently in-
troduced in various applications such as military, agriculture, environments,
industrial, home automation, transport, etc. [1–3]. Whilst data collected by
such sensors can take values, images, audio or video types depending on the
application requirements. Starting from the beginning of this decade, sensor
devices have been more and more organized in networks under different com-
munication protocols referred as Internet of Things (IoT). With IoT networks,
we are able to monitor almost anywhere, anytime and anytime collected data
to the sink for further analyzing and studying purposes.

Indeed, IoT applications are facing several challenges and problems caused
by limited sensor resources and the densely deployment of the devices. How-
ever, one of the major challenges for researchers is how to deal, store and
analyze a huge amount of data collected in such networks. Furthermore, the
sensor devices are energy-constrained and recharging their batteries is not
always an option and it may become a costly operation. In addition, data
transmission is the higher energy cost in the sensor that quickly depletes its
available power and lowers its lifetime. Hence, data reduction approach has
taken a great attention from researchers in order to overcome the big data
challenges imposed by IoT. The main objective of such approach is to mini-
mize the data transmission at the sensors by removing on-node and in-node
redundancy existing among the collected data. In the literature, a data re-
duction can be performed in several ways such as aggregation, compression,
prediction, sensing rate adaptation, clustering, etc. However, the selection of a
suitable technique is highly related to the targeted application and the desired
performance metric (energy consumption, data accuracy, complexity, etc.) that
must be optimized.

In this manuscript, we take advantages from all data reduction techniques
and propose a hybrid and adaptive data collection mechanism, All-in-One,
for energy saving in IoT applications. The idea behind our mechanism is to
make the sensor self-reconfigurable by deciding about the most suitable data
reduction technique to be applied according to several parameters, e.g. data
redundancy ratio and remaining battery level. Basically, All-in-One works on
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three phases; the first phase is called on-period and aims to reduce the amount
of data transmitted from each sensor either by applying aggregation, compres-
sion or prediction techniques. The second phase is called in-period and allows
to adapt the sensor data transmission according to the variation of the mon-
itored condition; in-period is based on two data reduction techniques: on-off
transmission and adapting the sensing frequency. The third phase is called
in-node and seeks the data correlation among neighboring nodes based on
in-network correlation and data clustering techniques.

The remainder of the manuscript is organized as follows. Section 2 outlines
different data reduction and energy-efficient techniques proposed in sensing-
based IoT applications. Section 3 presents the periodic clustering architecture
used in our mechanism. Sections 4, 5 and 6 detail the three phases applied
at sensor and CH levels. Simulation results are discussed in section 7. Finally,
the conclusion and future work are highlighted in section 8.

2 Related Work

Data reduction in IoT is a challenging process as data are mostly correlated
and contains a high level of redundancy. Thus, what to keep or discard be-
comes a crucial task affecting the accuracy of the collected data thus the
decision made at the sink. In the literature, common techniques to perform
data reduction in IoT can be developed by applying aggregation [4], compres-
sion [5], prediction [6], clustering [7] or adapting sensing frequency [8]. The
idea behind all such techniques is to study the variation among the collected
data and try to minimize the data transmission along the path to the sink.

The authors of [9–12] are targeting to minimize data transmission by ap-
plying aggregation techniques in IoT. In [9], the authors propose a multidimen-
sional and multidirectional data aggregation (MMDA) technique in order to
enhance the data communication and ensure the privacy of the data. MMDA
allows each IoT device to organize the data into matrices then applying an
aggregation process in two directions, e.g. rows and columns. The authors of
[10] propose an entropy-driven data aggregation with a gradient distribution
(EDAGD) technique that is relying on three algorithms. The first algorithm is
called a multihop tree-based data aggregation and aims to reduce the trans-
mission distance between the sensors and the sink by minimizing the number
of hops required to reach the destination. The second algorithm is a tree-based
aggregation scheme that uses the entropy and the Choquet integral that allows
to monitor and detect abnormal events based on the sleep/active nodes strat-
egy. The last aggregation method is a gradient deployment algorithm which
aims to deal with the energy hole problem in IoT applications.

Some works such in [13–16] use data compression techniques in order to
reduce the packet size sent to the sink. The authors of [13] propose a priority-
based compressed data aggregation (PCDA) technique in order to reduce the
amount of heath data transmitted. PCDA uses compressed sensing approach
followed by a cryptographic hash algorithm at the biosensor level to save in-
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formation accuracy before sending data for diagnosis. In [14], the authors pro-
pose a Sequential Lossless Entropy Compression (S-LEC) which organizes the
alphabet of residues obtained from differential predictor into increased size
groups. S-LEC codeword consists of two parts: the entropy code specifying
the group and the binary code representing the index in the group. In [15], a
coding provenance scheme (CPS) has been proposed. Compared to traditional
compression techniques, CPS ensures a high provenance compression rate as
well as it encodes and decodes incrementally the compression ratio at the base
station depending on the condition observed.

Other works such as [17–20] are focused on data prediction approach that
aims to build a predictive model to send to the sink instead of the whole
collected data. The authors of [17] propose a hybrid prediction model based
on two algorithms; a stagewise algorithm which is applied at sensor level and
uses a set of data points to build a predictive model to reduce sensor data
transmission. The other algorithm is used by the sink node and aims to recon-
struct the raw data generated by the sensors. In [18], the authors propose an
adapted version of dual prediction scheme (DPS) algorithm. The newest ver-
sion uses a collection of models for data prediction during the past sequences
of DPS algorithm, without updating classically the history data table. In-
deed, the prediction model is computed at the sensors and sent to the sink
or vice-versa. The authors of [19] propose an unsupervised machine learning
algorithm, called Kohonen, for predicting data generated by the sensors. Ko-
honen introduces a self organizing map based on a predictive temporal model
that makes sensor in standby mode to reduce its transmission.

In [21–24], the authors propose data clustering techniques in order to group
similar data into clusters before eliminating the redundancy. In [21], the au-
thors propose a layered adaptive compression design for efficient data collec-
tion (LACD-EDC) in industrial wireless sensor network (WSN). LACD-EDC is
based on the clustering data scheme and it aims to search the spatio-temporal
correlation within (e.g. intra) and among (e.g. inter) clusters. Then, a com-
pression method is proposed at the sensor level followed by a recover technique
at the sink in order to regenerate the raw data and achieve an approximate
data collection. The authors of [22] propose a cluster-based data gathering
algorithm for WSN called lifetime-enhancing cooperative data gathering and
relaying (LCDGRA). Basically, LCDGRA works on three phases: the first
phase aims to group the sensor nodes into clusters based on K-means cluster-
ing while applying a compression technique, e.g. Huffman coding algorithms,
in each cluster. The second phase assigns a set of relay nodes to each CH in
order to aggregate data before sending to the sink node. In the last phase, the
aggregated data are coded based on random linear coding and then relayed to
the base station.

The authors of [25–28] are dedicated to reduce the data collection and
transmission in IoT by adapting the sensing frequency of each sensor accord-
ing to the speed of the condition variation. In [25], the authors propose a data
management framework for data collection and decision making in connected
healthcare. The framework relies on three algorithms: first, an emergency de-
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tection algorithm aims to send critical records directly to the coordinator;
second, an adaptive sampling rate algorithm based on ANOVA (ANalysis Of
VAriance) and Fisher tests in order to allow each sensor to adapt its sampling
frequency to the variation of the patient situation; third, a data fusion and
decision making model is proposed at the coordinator and it is based on a deci-
sion matrix and the fuzzy set theory. The authors of [26] propose two adaptive
sampling techniques: exponential double smoothing adaptive sampling (ED-
SAS) and Wiener filter based adaptive sampling (WFAS). Both algorithms
seek the correlation between current and previous collected data and aim to
minimize the sensor sampling rate while a high level of data accuracy.

Lastly, some works such as [29–32] are targeting to reduce data collected
by neighboring nodes using in-network data processing. The authors of [29]
propose a prefix frequency filtering (PFF) technique based on clustering ar-
chitecture of the network. Further to a local processing at the sensor node
level, PFF uses Jaccard similarity function within aggregator nodes to iden-
tify similarities among near sensor nodes at each period and integrates their
sensed data into one record. In [30], the authors propose a structure fidelity
data collection (SFDC) technique dedicated to cluster-based periodic applica-
tions in WSNs. SFDC searches both spatial and temporal correlations between
nodes, using distance functions and similarity metrics respectively. In [31], an
energy-efficient communication method dedicated to periodic underwater sen-
sor applications is proposed. On the basis of the proposed technique, each node
cleans its collected data before transmitting to the appropriate CH. When re-
ceiving datasets, the CH applies K-means algorithm adopted to the ANOVA
with statistical tests in order to eliminate inter-node correlations.

3 Network Design and Preliminaries

3.1 Network Design

Transmitting the raw data collected by the sensor nodes to the sink is a funda-
mental operation in IoT. Hence, the network architecture plays an important
role in the performance of IoT applications. Subsequently, several metrics such
as congestion, energy consumption, network overload, data loss, latency, etc.
are highly affected by the selection of the network architecture. In this work,
our mechanism relies on the cluster-based network architecture in which the
data transmission between sensors and the sink is performed using two-hops
communication.

Generally, the node clustering provides an efficient scheme to organize data
traffic in the network, improve its scalability and reduce the energy consump-
tion. Typically, the clustering approach divides the sensors in the network into
clusters and assigns a CH for each cluster. Subsequently, the CH can be se-
lected among the sensor nodes or defined prior to the network deployment with
more resources than the normal nodes. Once selected, the CH is responsible of
managing the cluster and can perform in-network processing over the sensor
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data before sending toward the sink node. Fig. 1 illustrates a two-layer cluster
architecture in which the communication among the sensors and their CHs or
the CHs and the sink is performed according to a single-hop transmission.

Sink level

CH level

Sensor level

Fig. 1 Two-layers cluster-based architecture network.

3.2 Periodic Data Collection Model

After selecting the appropriate network architecture, the sensor nodes start
sensing the surrounding and sending the data toward the sink. Indeed, we can
distinguish among three types of data collection in IoT: query-based, event-
based or periodic-based [33]. In this work, we focus on the last collection model
which is used in a large number of applications that require a constant and
continuous monitoring such as phenomena study, patient observation, habitat
surveillance, traffic tracking, etc. In most of such applications, sensors col-
lect data of interest and forward them to the sink at constant periodic time
intervals for analysis and studying purposes.

Basically, in a periodic acquisition model, data are collected on a periodic
basis where each period p is partitioned into time slots. At each slot t, each
sensor node Ni captures a new reading ri then it forms, at the end of p, a
vector of F readings as follows: Rpi = {r1, r2, . . . , rF}. After that, the sensor
will send its data vector, e.g. Rpi , to its appropriate CH. Fig. 2 shows an
illustrative example for the periodic data collection model for a cluster of 3
member nodes and a CH. The period size F is fixed to 5 readings and each
sensor node Ni, i ∈ [1, 3], collects a set Rpi during each period before sending
to the CH at the end of the period.
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Fig. 2 Illustrative example of periodic data collection model.

3.3 Problem Formulation

Due to the huge amount of data collected, the periodic model provides a
significant redundancy in IoT applications. This redundancy is mostly a con-
sequence of the following situations: the on-period redundancy in which the
readings collected by a sensor in each period, e.g. Rpi , are redundant; this is
usually happening due to the short time slot or the small size of the period
size. The in-period redundancy in which the data collected by the same sensor
in consecutive periods, e.g. Rpi and Rp+1

i , are redundant; this can happen due
to the slow variation of the monitored condition. The in-node redundancy in
which the data collected by neighboring sensors, e.g. Rpi and Rpj , are redun-
dant; this happens because of the spatial and/or temporal correlation between
the nodes in the network. Unfortunately, the redundancy among data will lead,
from one hand, to complicate the data analysis at the end user and, from the
other hand, to deplete the limited energy of the sensors.

3.4 An Overview to All-in-One Mechanism

In this paper, we propose an All-in-One mechanism applying on sensors and
CHs that allows eliminating the redundancy exiting in WSN. Fig. 3 shows
the main phases of the proposed mechanism along with the process of redun-
dancy elimination proposed at each phase. At the sensor level, our mechanism
searches the redundancy among the data collected by a sensor at each period
and round respectively. On one hand, we search the similarity among collected
data by each sensor; then by using an on-period decision table based on the
variation level and the sensor battery level, we select the most adequate data
reduction method. Subsequently, we propose data reduction algorithms based
on three concepts: prediction, compression, and aggregation. On the other
hand, our mechanism searches the in-period redundancy by each sensor at
each round. Therefore, an in-period decision table is introduced to consider
the similarity between data in the round along with the sensor battery level
to decide about the appropriate elimination method, e.g. Sensing Frequency
Adaptation (SFA) or On-Off Transmission (OOT). At the CH level, the in-
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node redundancy among neighboring nodes is investigated in order to reduce
the periodic number of packets sent to the sink. Subsequently, the redundancy
elimination process is based on the packet types. First, the compressed packets
are grouped into clusters then sent the cluster centroids to the sink. Second,
the aggregated packets are propagated using an in-network aggregation tech-
nique then sending the unsimilar data to the sink. Third, the predicted and
off packets are directly forwarded to the sink without any elimination process.
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Fig. 3 Flow diagram of All-in-One mechanism.

4 On-Period Redundancy Elimination Model

In IoT, the periodic data collection is a fundamental operation in order to
understand the behavior of the monitored environment and increase the reli-
ability of the taken decision. However, this collection model produces a high
redundancy level among the data that leads to send un-useful information to
the sink and consumes the available energy in the sensor. In order to overcome
these problems, researchers have focused on three main reduction approaches
to eliminate in-period redundancy at each sensor: aggregation, compression
and prediction. In this section, we introduce an efficient technique for each
approach, then we propose a new hybrid model for removing the in-period
redundancy.
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4.1 Aggregation-Based Reduction Technique

The data aggregation seeks the similarities among the data collected in order to
eliminate the existing redundancies and reduce the size of data transmission to
the CH. Hence, we first define the Aggregate function that allows each sensor
to search the similarities among the readings in Rpi as follows:

Definition 1 Aggregate(rj , rk). Assume rj and rk are two readings collected
by the same sensor during a period p. Then, rj and rk are considered similar
if and only if the difference between them is less than a defined threshold δ as
follows:

Aggregate(rj , rk) = |rj − rk| ≤ δ (1)

where δ is a user-defined threshold determined according to the application
requirements.

Then, in order to maintain the accuracy of the aggregated data, we define
the weight, called wgt, for each reading as follows:

Definition 2 wgt(rj). The weight of a reading rj is defined as the number of
similar readings to rj in the same reading set Rpi .

Based on the Aggregate and weight functions, the sensor searches the sim-
ilarity among every pair of readings in Rpi until no more redundancy exists
(Algorithm 4.1). The algorithm takes as input the set of readings collected by
a sensor during a period and returns, as output, the aggregated set of readings
that will be sent to the CH at the end of the period. For each collected read-
ing, the sensor searches for its similarity (according to the Aggregate function)
with all readings in the set; if the two compared readings are similar (accord-
ing to the similarity threshold) then the weight of the corresponding reading
is added by one (lines 2-9). Then, the sensor calculates the weight for each
reading and adds it to the aggregated set that will send to the CH (line 10).

Algorithm 1 Data Aggregation Algorithm.

Require: a sensor node: Ni; a period: p; a set of readings: Rpi ; similarity
threshold: δ.

Ensure: Aggregated set of readings: R
′p
i .

1: R
′p
i ← ∅

2: for each reading rj ∈ Rpi do
3: wgt(rj) = 1
4: for each reading rk ∈ Rpi where k > j do
5: if Aggregate(rj , rk) ≤ δ then
6: increment wgt(rj)
7: delete rk from Rpi
8: end if
9: end for
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10: R
′p
i ← R

′p
i ∪ {(rj , wgt(rj))}

11: end for
12: return R′i

p

4.2 Compression-Based Reduction Technique

By definition, the compression is the process of combining redundant readings
into a reduced set of records. Indeed, in order to determine the data redun-
dancy, the correlation among the readings should be studied. In this paper,
we focus on the Pearson correlation coefficient (PCC) as one of the metrics
that is most used to measure the correlation degree among data sets. Pearson
coefficient gives a value between −1 and +1 where +1 (respectively −1) indi-
cates a perfect (respectively negative perfect) correlation among the datasets.
Mathematically, the Pearson correlation coefficient between two data sets Ri
and Rj is given by to the following equation:

Pearson(Ri, Rj) =

F
∑F
k=1 rikrjk −

∑F
k=1 rik

∑F
k=1 rjk√

F
∑F
k=1 r

2
ik
− (
∑F
k=1 rik)2

√
F
∑F
k=1 r

2
jk
− (
∑F
k=1 rjk)2

(2)

where rik ∈ Ri, rjk ∈ Rj and F is the number of readings in Ri or Rj .
Therefore, Ri and Rj are considered to be highly correlated (e.g. redun-

dant) if and only if:
|Pearson(Ri, Rj)| > ε (3)

where ε is the Pearson’s threshold.
Algorithm 4.2 shows the compression technique applied over the data col-

lected by each sensor during a period, based on the Pearson coefficient metric.
First, all the readings are assumed correlated and Ri is assigned to a tempo-
rary set of reading subsets, e.g. S (line 2). Then, the correlation among the
readings is calculated by dividing them into two equal subsets using the func-
tion Partition (line 4). Thus, if the correlation exceeds the Pearson threshold
then the readings are considered redundant and, consequently, the average
of the readings is computed (e.g. r) and added with its weight (e.g. wgt(r))
to the final reading set that will sent to the CH (lines 5-10). Otherwise, e.g.
the correlation coefficient does not exceed the Pearson threshold, the readings
are considered unsimilar and we repeat the process over each subset until all
readings within each subset become redundant. Therefore, at the end of each

period, each sensor will send the compressed set of readings R
′p
i to the CH.
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Algorithm 2 Data Compression Algorithm.

Require: a sensor node: Ni; a period: p; a set of readings: Rpi ; Pearson thresh-
old: ε.

Ensure: Compressed set of readings: R
′p
i .

1: R
′p
i ← ∅

2: S ← Ri
3: for each set Rk ∈ S do
4: (Rkl , Rkr ) = Partition(Rk)
5: if Pearson (Rkl , Rkr ) ≤ ε then
6: r = Mean(Rk)
7: wgt(r) = |Rk|
8: // |Rk| is the total number of elements in Rk

9: R
′p
i ← R

′p
i ∪ {(r, wgt(r))}

10: remove Rk from S
11: else
12: S ← S ∪ {Rkl , Rkr}
13: remove Rk from S
14: end if
15: end for
16: return R

′p
i

4.3 Prediction-Based Reduction Technique

In IoT, the data prediction allows each sensor to build, based on the col-
lected data, a predictive model in order to send to the sink which, in its
turn, regenerates the raw data. In this work, our prediction model is based
on the Newton Forward Differences (NFD) method that takes the periodic
data collected by a sensor, e.g. Rpi , and finds the polynomial coefficient set,
e.g. Epi , to send to the CH. Mathematically, given a set of readings Rpi =
{(s1, r1), (s2, r2), . . . , (sF , rF )}, where si represents the time slot in which the
reading ri is taken during the period, then the NFD first set up the forward
difference table as:

s r ∆r ∆2r . . . ∆c−1r ∆cr
s1 r1 ∆r1 ∆2r1s2 r2 ∆r2 ...

∆c−1r1

...
...

...
∆2rF−3 ...

sF−2 rF−2 ∆rF−2 ∆2rk−2sF−1 rF−1 ∆rF−1sF rF

Table 1 Forward Difference table.
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where ∆rj = rj+1 − rj , j ∈ [0,F − 1].
Then, the NFD method uses the Newton forward formula in order to find

the value for any reading ri taken at the slot time si as follows:

ri ≈ f(s1 + hu) = r1 + u∆r1 +
u (u− 1)

2!
∆2y1 + . . .

+
u (u− 1) (u− 2) . . . (u− c+ 1)

c!
∆cr1 (4)

where h is called the interval of difference (h = s2 − s1) and u = (ri − r1)/h.
Finally, in order to allow the sink to regnerate the readings in Rpi , the sensor

must send the set of variables needed in the Newton forward formula to calcu-
late the rk values of all readings, e.g. Epi = {s1, s2, r1, ∆r1, ∆2r1, . . . ,∆

cr1}.

4.4 Performance Discussion of On-Period Techniques

This section gives further considerations of the three introduced on-period
techniques by studying the thresholds’ selection, the accuracy, the complexity,
and the energy consumption.

4.4.1 Selection of Thresholds’ Values

Obviously, the efficiency of the aggregation, compression, and prediction tech-
niques are highly related to the selection of the thresholds c, δ, and ε respec-
tively. Subsequently, increasing or decreasing the threshold values may change
the performance of several metrics in WSN, such as: the accuracy, the data
latency, the data transmission ratio, and the energy consumption. Hence, se-
lecting the appropriate values of thresholds are critical in the first stage of
our mechanism. Therefore, we consider that the thresholds’ values should be
determined by the decision makers or experts depending on the application
requirements. For instance, in health monitoring applications, the thresholds
should optimize the accuracy of the collected data more than other metrics,
while, in the environmental applications, the energy conservation gets the high-
est priority compared to other metrics. Thus, these parameters are based on
the application criticality and the studied phenomenon.

After selecting their values, the decision makers assign the thresholds ac-
cordingly into all sensors nodes prior to deployment or they can adjust it online
in function of the application requirement.

4.4.2 Accuracy Study

In compression-based and prediction-based techniques, the increase of the val-
ues of thresholds (e.g. c and ε) will proportionally increase the amount of
data sent, thus the accuracy of the information sent, and vice versa. While, in
the aggregation-based technique, the accuracy of the sent data will increase



Big Data in Periodic Sensor Networks 13

with the decrease of similarity threshold, e.g. δ. However, in our mechanism,
the wgt function defined in the aggregation and compression algorithms (e.g.
Algorithms 1 and 2) will maintain the full accuracy of the sent data.

4.4.3 Complexity Study

The complexity is an important metric in WSN due to the limited sensor
resources, especially processing and storage. From one hand, the processing
complexity of any proposed technique may affect the system latency which is
crucial in many WSN applications, especially in healthcare or military. On the
other hand, sensors are characterized by relatively small memory size; hence,
any technique should satisfy the memory constraint. The complexity of the
three proposed techniques can be studied as follows:

– The aggregation technique: each sensor node Ni forms a set Rpi of F read-
ings in each period. Due to the Aggregate function, the size of this set
can be reduced from F to |R′ip|. Therefore, this technique has at most
O(|R′ip|2) as a computation complexity at the sensor and saves at most
2 × |R′ip| values, e.g. readings with their weights, at each period in its
memory.

– The compression technique: the sensor Ni recursively divides the reading
set collected in every period into two equal partitions before calculating
their correlation according to Pearson coefficient. Hence, the computation
complexity of the compression algorithm will be of O(log(|Rpi |)) while the
memory storage will be equal, at most, to 2×|R′ip| (e.g. mean values with
their weights), similarly to that of the aggregation technique.

– The prediction technique: according to the NFD method, the sensor sends
the set of coefficients, e.g. Epi , calculated at each period to the CH. Thus,
the computation complexity of the prediction algorithm should be of O(c×
log(|Rpi |)) while the memory storage is limited to the length of the NFD
coefficient set, e.g. |Epi |.

Based on the above study, we clearly show that the complexities of all
techniques are suitable for the case of sensor nodes.

4.4.4 Energy Consumption Study

In WSN, the data transmission operation consumes most of the sensor energy
compared to other operations, e.g. sensing and processing [41]. Thus, mini-
mizing the periodic data transmitted from sensors and CHs is mandatory to
save the energies. Hence, the three proposed on-period techniques can be con-
sidered as good solutions for conserving the node energies and extending their
lifetime. This is due to the redundancy elimination process introduced in each
one of them that allows to reduce the amount of transmitted data and only
send the useful information towards the sink. Furthermore, as mentioned be-
fore, the elimination process ensures the accuracy of the sent data and limits
the effect on the decision made by the end user.
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4.5 Hybrid-Based On-Period Reduction Technique

Indeed, the selection among the data reduction approaches (aggregation, com-
pression or prediction) is a crucial decision for the sensor since it affects several
performance metrics. For instance, the data prediction technique can highly
save the sensor’s energy because it reduces the data transmission more than
aggregation and compression techniques. However, the prediction technique
can negatively affect the accuracy of the transmitted data. Hence, we propose
a hybrid-based on-period reduction model that takes advantages from several
reduction techniques while optimizing several performance metrics. The pro-
posed model is based on two main parameters, e.g. the condition variation
and the remaining sensor battery, in order to decide the reduction technique
that should be used in each period. Subsequently, the condition variation is
calculated according to the ANOVA and a statistical test, e.g. Bartlett test.

4.5.1 ANOVA Model and Bartlett Test

ANOVA is a well-known statistical method that is used to test the variance
among a group of data sets if it is significant or not. First, ANOVA computes
a T -statistic value, according to a statistical test, then the data sets are con-
sidered redundant (or have low variance) if the calculated T is less than a
critical value Tα for some false-rejection probability α; more the value of Tα
is decreased, more the redundancy among the data sets is.

On the other hand, Bartlett test [34] checks if a group of data sets have an
equal variance. Thus, Bartlett test verifies the null hypothesis that variances
are equal across data sets comparing to the alternative hypothesis that the
variances are significant. In our case, the objective is to calculate the variance
among readings collected by a sensor during a period (e.g. Rpi ). Hence, we
first divide Rpi into d equal divisions (or subsets) where each division Dj ,
j ∈ [1, d], contains F/d readings. Then, the Bartlett test can be applied over
Rpi as follows:

T =
(F − d) ln(σ2

p)−
(F
d − 1

)∑d
j=1 ln (σ2

j )

λ
(5)

where :

λ = 1 +
1

3(d− 1)

(
d

F
d − 1

− 1

F − d

)

and σ2
p is the pooled variance that is defined as:

σ2
p =

1

F − d

d∑
j=1

σ2
j
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Therefore, in order to test the variance T among the readings in Rpi , we
select two critical values for Tα, e.g. Tα0 and Tα1 where α0 < α1 . Then, the
condition variation is based on:

– T ≤ Td−1,α0
or low variation: the variance among the divisions is not

significant and the readings in Rpi are considered similar.
– Td−1,α0

< T ≤ Td−1,α1
or medium variation: the variance among the divi-

sions is a bit significant and the readings in Rpi are considered redundant.
– T > Td−1,α1 or high variation: the variance among the divisions is signifi-

cant.

4.5.2 Sensor Battery Level

The lifetime of the IoT networks is heavily related to the sensor battery level
which, in its turn, can be quickly consumed when the amount of data trans-
mission increases. Hence, in addition to condition variation level, we propose
to take into account the remaining energy of the sensor in order to adapt
the periodic data transmission to the CH. The idea is that when the sensor
battery level becomes crucial, e.g. less than a defined threshold, its data trans-
mission must be more and more reduced but without highly affecting the data
integrity.

Let assume that the initial energy of the sensor is Ei and the remaining
one during the current period p is Er. Then, we define a critical threshold Ec
where the sensor energy becomes crucial if it reaches this threshold. Therefore,
the decision about the sensor battery level during p can be made as follows:

– if Ei ≥ Ec then high battery level.
– otherwise, low battery level.

4.5.3 On-Period Data Decision

At the end of each period, the hybrid-based reduction technique allows each
sensor to decide about the reduction approaches (aggregation, compression
and prediction) that should be applied over the collected data. Table 2 shows
the decision made by the sensor based on the calculated variation and battery
levels. Subsequently, the selection of the reduction approaches inside the on-
period data decision table is motivated by the following reasons:

– if the variation and battery levels are low then the data prediction must be
used. This will reduce the data transmission to the minimum (thus save the
sensor energy) but without losing the information collected by the sensor.

– if the variation is high then the data aggregation is preferably to be used.
This is because the aggregation will decrease the similarity between the
transmitted data without ensuring a high level of data accuracy.

– otherwise, the data compression constitutes an ideal technique that com-
promises between data reduction and data accuracy.
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hhhhhhhhhhhhhVariation level

Battery level
Low High

Low Data prediction Data compression
Medium Data compression Data compression
High Data aggregation Data aggregation

Table 2 On-period data decision table.

5 In-Period Redundancy Elimination Model

Mostly, the data collected by each sensor during successive periods are highly
correlated depending on the variation of the monitored condition. Particularly,
the slowdown of the environment leads to increase the redundancy among the
sensed data which results in sending useless information to the sink and con-
suming the sensor energy. Hence, eliminating the in-period data redundancy
becomes an essential technique to achieve fair data reduction rates and con-
serve the limited energy resources of IoT. In the next section, we introduce
two mechanisms in order to search, then eliminate, the redundancy existing
among periods: on-off transmission and sensing frequency adaptation.

5.1 Sensing Frequency Adaptation (SFA) Mechanism

In the periodic collection model, the selection of the appropriate sensing fre-
quency of each sensor is a very important decision before deploying the net-
work. Consequently, a high sensing frequency can lead to increase the redun-
dancy among the collected data and consume the sensor energy while the
decreasing of the sensing frequency can affect the accuracy of the transmitted
data. Hence, adapting the sensing frequency to the environment variation is
thereby resulting in data reduction and saving sensor energy.

Mathematically, let assume a round π consisting of P period in which a sen-
sor node Ni will collect a set of readings sets as follows: Ri = {R1

i , R
2
i , . . . , R

P
i }.

Therefore, in order to study the condition variation, ANOVA and Bartlett test
are applied again over the data sets in Ri. Thus, the condition is ”slow down”
if the calculated variation T is less than a certain threshold TP−1,β for some
false rejection probability (risk β). Consequently, the sensor must adapt its
sensing frequency according to the Adapting function based on the Bezier
curve [35]:
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Adapting(T, TP−1,β , Cr,F) ={
(F−2by)

4b2x
T 2 +

by
bx
T if (TP−1,β − 2bx = 0)

(F − 2by)(∝ (T ))2 + 2by ∝ (T ), if (TP−1,β − 2bx 6= 0)

where

∝ (T ) =
−bx+

√
bx2−2bx×T+TP−1,β×T
TP−1,β−2bx ∧

0 ≤ bx ≤ TP−1,β
0 ≤ T ≤ TP−1,β
TP−1,β > 0

and bx = −TP−1,β × Cr + TP−1,β while by = F × Cr.

Subsequently, the Adapting function takes four variables as input: the vari-
ance between readings in a round (T ), the variance threshold (TP−1,β), the
criticality of the monitored application (Cr) and the original period size (F).
Indeed, the application criticality (Cr) is a value between 0 and 1 that is as-
signed by the expert depending on the monitored application and that should
be taken into account when adapting the sensor frequency. For instance, Cr
must take a value near to 1 in high critical applications (i.e. healthcare and
military) and near to 0 in low critical applications (i.e. weather and environ-
ment monitoring). Therefore, the Adapting function calculates the new sensing
frequency of the sensor in the next round.

5.2 On-Off Transmission (OOT) Mechanism

The objective of this technique is to avoid sending similar data in successive
periods from each sensor to the CH. Thus, the sensor will update the CH
about the condition variation only if a noticed difference is detected compared
to the mast sent data. This will decrease the number of packets sent from
each sensor, save its energy and reduce the congestion in the network. Indeed,
one can find several functions that allows to search the similarity among data
sets such as Jaccard, Dice, Cosine, etc. In this paper, we focus on the Jaccard
similarity as one of most used and well adapted functions to several domains.
For the sake of simplicity, let assume a round consisting of two periods, e.g.
Ri = {R1

i , R
2
i }, thus reading sets in Ri are considered similar according to the

Jaccard function if:

Jaccard(R1
i , R

2
i ) =

|R1
i ∩R2

i |
|R1
i ∪R2

i |
≥ tJ (6)

where tJ is the Jaccard threshold in [0, 1] where 0 indicates that the read-
ings are totally different and 1 that are totally equal.

Algorithm 5.2 shows the on-off transmission mechanism applied at each
sensor during a round. Indeed, we define two types of packets that will send
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by the sensor: On Packet which contains the identification (id) of the sen-
sor with its readings collected during the current period; Off Packet which
only contains the id of the sensor informing the CH that the current collected
readings are removed due to the similarity with the previous ones. Thus, the
sensor sends the reading set collected during the first period to the CH in a
On Packet while saving it in its memory at the same time (lines 1-2). Then,
for every new reading set collected in the next period, the sensor searches
its similarity with the set saved in the memory based on the Jaccard func-
tion; if the new set is similar to the saved one, then the sensor removes the
new one, while sending a Off Packet to the CH (lines 4-6). Otherwise, e.g.
the new one is not similar to the saved one, the sensor sends the new reading
set to the CH while replacing the saved set by the new reading set (lines 7-10).

Algorithm 3 On-Off Transmission Algorithm.

Require: a sensor node:Ni; a round: π; set of reading sets:Ri = {R1
i , R

2
i , . . . , R

P
i };

Jaccard similarity threshold: tJ .
Ensure: Saved reading set: Rji .

1: Rji ← R1
i

2: On Packet(i, Rji )
3: for each set Rki ∈ Ri where k ≥ 2 do

4: if Jaccard (Rki , Rji ) ≥ tJ then
5: ignore Rki
6: Off Packet(i)
7: else
8: Rji ← Rki
9: On Packet(i, Rji )

10: end if
11: end for
12: return Rji

5.3 Hybrid-Based In-Period Reduction Technique

Obviously, SFA and OOT can both minimize the in-period data redundancy
and save the sensor energy. However, SFA can reduce the data transmission
to the CH more than OOT because it minimizes its data collection even all
readings collected in successive periods are similar. Otherwise, OOT can en-
sure more data accuracy than SFA because data collected are not sent to the
CH only if they are very similar. Hence, in order to make a trade-off between
energy saving and data accuracy, we propose a hybrid-based in-period model
that allows each sensor to select between SFA and OOT at the end of each
round. The proposed model takes into account the in-period similarity among
the collected data and the remaining sensor battery then it decides about the
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suitable technique to apply at the end of each round. Subsequently, the sen-
sor battery level usage is similar to the situation proposed in subsection 4.5.2
while the in-period similarity study is described on the next section.

5.3.1 In-Period Similarity Study

Indeed, similarity functions are one of the most accurate approaches to search
the redundancy among the data compared to other approaches, particularly
ANOVA and distance functions. Therefore, we propose to use the Jaccard
similarity function in order to determine the similarity level among data col-
lected in successive periods. Once the data similarity level is calculated, the
sensor decides about the in-period technique that must be used according to
the in-period decision table (see next section). Given a round π consisting of
two periods, e.g. R1

i and R2
i , the Jaccard similarity between both periods can

be calculated according to the equation 6. Then, in our model, we distinguish
between three levels of similarities among data collected in π:

– 0 ≤ Jaccard(R1
i , R

2
i ) ≤ 0.5 or low similarity : this indicates that the moni-

tored condition is rapidly changing over the periods.
– 0.5 < Jaccard(R1

i , R
2
i ) ≤ 0.75 or medium similarity : this indicates that

the monitored condition is slowly changing over the time which leads to a
certain level of redundancy among the collected data.

– 0.75 < Jaccard(R1
i , R

2
i ) ≤ 1 or high similarity : in which the monitored

condition is not significantly changing which results in a high similarity
among the collected data.

5.3.2 In-Period Decision Table

This table shows the decision made by the sensor at the end of each round
based on the data similarity and the battery levels (Table 3). Subsequently,
the sensor selects the in-period reduction technique according to the following
criteria:

– the sensor must decrease its sensing frequency when the similarity level
increases, either with low or high battery level. This will reduce the redun-
dancy among the collected data.

– by fixing to the similarity level to low, medium or high, the sensor must
decrease it sensing frequency with the decreasing level of its battery. This
will save the sensor energy and avoid a rapid depletion of its battery.

– if a high data similarity level is detected, the sensor will not send the
current collected data to the CH (e.g. apply OOT) and will adapt its
sensing frequency to the minimum.
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hhhhhhhhhhhhhSimilarity level

Battery level
Low High

Low F ′ = 40% of F F ′ = F

Medium F ′ = 30% of F F ′ = 60% of F

High OOT +

F ′ = 20% of F
OOT +

F ′ = 40% of F

Table 3 In-period data decision table.

6 In-Node Redundancy Elimination Model

At the end of each period, the CH receives all data sets coming from its sen-
sors. Indeed, such data are mostly redundant due to the spatial and temporal
correlation among the sensors. Therefore, the CH can remove this redundancy
in order to reduce the number of packets sent to the sink (thus saves its own
energy) and provide only a useful information to the end user. In this section,
we introduce two approaches to eliminate in-node (e.g. between nodes) redun-
dancy at the CH: in-network aggregation and data clustering. Subsequently, in
order to apply each of the proposed approaches, the CH must recalculate the

raw data, e.g. Rpi , of each received data set, e.g. R
′p
i , according to the applied

in-period approaches.

6.1 In-Network Aggregation Approach

This approach aims to eliminate redundant data sets generated by pairs of
neighboring sensors before sending to the sink. Pairs of redundant sets are de-
termined by using distance functions that compute the dissimilarities between
two data sets. Thus, two data sets are considering duplicate if the distance
between them is less than a predefined threshold. Once all duplicated pairs
are found, the CH selects a subset of data to send to the sink while eliminating
the other ones. Therefore, the in-network aggregation approach is divided into
two steps:

– Pairs generation: In this step, the CH searches all pairs of redundant data
sets based on the distance functions. In this paper, we use the Euclidean
distance as one of the most distance functions used in the literature. Given
two sets of data Rpi and Rpj collected by two sensors at the same period p,
then the Euclidean distance Ed between both sets is:

Ed(R
p
i , R

p
j ) =

√√√√ F∑
k=1

(rik − rjk)2 (7)

where rik ∈ R
p
i and rjk ∈ R

p
j . Then, Rpi and Rpj are considered redundant

if the Euclidean distance between them is less than a threshold, tE :
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Ed(R
p
i , R

p
j ) ≤ tE (8)

– Pairs selection: After determining all redundant pairs, the CH tries to re-
duce the number of data sets to the sink by selecting a subset among them
instead of sending the whole data sets (Algorithm 6.1). For each generated
pair, the CH selects the received set having the highest number of elements,
e.g. |R‘p

j |, then it adds it to the final list of data sets that will send to the

sink (line 2−4). Simultaneously, the CH removes all pairs that contain R‘p
i

or R‘p
j from the set of generated pairs (line 5).

Algorithm 4 In-Network Aggregation Algorithm.

Require: List of generated pairs: A = {(Rpi , R
p
j ) such that Ed(R

p
i , R

p
j ) ≤

tE and i 6= j}.
Ensure: List of sent data sets: L.

1: L← ∅
2: for each pair (Rpi , R

p
j ) ∈ A do

3: Consider |R
′p
i | ≥ |R

′p
j |

4: L← L ∪ {R
′p
i }

5: Remove all pairs containing Rpi or Rpj
6: end for
7: return L

6.2 Data Clustering Approach

Generally, clustering is a data exploratory task that aims to group data into a
set of K clusters in a way that the similarity among data in the same cluster is
high and that among clusters is low. Thus, data clustering can be an efficient
solution to reduce the data transmission from the CH by sending only one
information, e.g. the centroids of the clusters, from each cluster to the sink.
Researchers have proposed a lot of clustering techniques for various types of
data. One of the most popular algorithms in data clustering is K-means [36];
it is flexible, simple, already adapted to huge number of applications and used
with various kinds of data [37–39].

Typically, the K-means is an iterative algorithm in which the process starts
by randomly selecting an initial centroid for each cluster. Then, each data
set is assigned to the nearest centroid, according to the Euclidean distance
(see equation 7), and the first round of cluster formation is performed. After
that, the cluster centroids are updated and the process is repeated until the
convergence of the criterion function (Algorithm 6.2).
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Algorithm 5 K-means Algorithm.

Require: Set of reading sets: Rp = {Rp1, R
p
2, . . . , R

p
n}, Cluster number: K.

Ensure: Set of clusters C = {C1, C2, . . . , CK}.
1: for j ← 1 to K do
2: randomly choose centroid cj among Rp belongs to Cj
3: end for
4: repeat
5: for each data set Rpi ∈ Rp do
6: Assign Rpi to the cluster Cjwith nearest cj

(i.e., Ed(R
p
i , R

p
j∗) ≤ Ed(R

p
i , R

p
j ); j ∈ {1, . . .K})

7: end for
8: for each cluster Cj , where j ∈ {1, . . .K} do
9: Update the centroid ci to be the centroid of all data readings currently

in Cj
10: end for
11: until no change in the cluster memberships
12: return C

6.3 Hybrid-Based In-Node Reduction Technique

Obviously, in-network aggregation and data clustering approaches are quite
different from the redundancy elimination point of view. Thus, they have dif-
ferent impacts regarding various performance metrics, especially number of
periodic packets sent and data accuracy. Since the first approach searches the
redundant data sets in pairs instead of groups in the second one, it saves the
data integrity more than the other one. However, the data clustering saves
the sensor energy more than the in-network aggregation because it limits the
number of transmitted packets to the cluster centroids. Thus, in order to en-
sure a trade-off between both metrics, we propose a hybrid in-node reduction
approach to apply over the data sets received by the CH at each period.

Let first recall the four types of packets received by a CH during a period:
1) Off Packet indicating that the data set collected at the current period is
similar to that sent in the previous one; 2) Aggregate Packet containing the
data aggregated according to the Algorithm 1; 3) Compressed Packet contain-
ing the data compressed according to the Algorithm 2; 4) Predicted Packet
containing the coefficient set calculated based on the Newton forward formula
4. Therefore, the forwarded packets from the CH to the sink can be shown
according to the in-node decision algorithm (Algorithm 6.3). First, all packets
of types Off Packet and Predicted Packet will be added to the final list of
sets sent to the sink, e.g. I (lines 4-7). Indeed, such types of packets do not
consume the energy of CH because they contain no data (e.g. Off Packet)
or a few data values (coefficient set in Predicted Packet). Then, for the sen-
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sors sending aggregated packets, the CH applies the in-network aggrgeation
approach in order to remove the redundancy among them and reduce the num-
ber of packets sent to the sink. Finally, the CH applies the K-means algorithm
to the data sets compressed by the sensors (lines 10-12 and 16).

Algorithm 6 In-Node Reduction Algorithm.

Require: set of reading sets: Rp = {Rp1, R
p
2, . . . , R

p
n}, cluster number: K,

Euclidean distance threshold: tE .
Ensure: Final list of sent packets: I.

1: I ← ∅
2: A← ∅
3: C ← ∅
4: for each Rpi ∈ Rp do
5: if Rpi is of type Off Packet or Predicted Packet then
6: I ← I ∪ {Rpi }
7: else
8: if Rpi is of type Aggregate Packet then
9: A← A ∪ {Rpi }

10: else
11: C ← C ∪ {Rpi }
12: end if
13: end if
14: end for
15: I ← I ∪ In-Network Aggregation(A, tE)
16: I ← I ∪Data Clustering(C,K)
17: return I

7 Simulation Results

In order to evaluate the performance of our mechanism, we used real sensor
data collected from Intel Berkeley Research Lab [40]. This data contains read-
ings for 46 sensors recording environmental condition including temperature,
humidity, light and voltage. Every 31 seconds, the sensor collects new read-
ing for each feature then it sends toward the sink for archive purpose. In our
simulation, we used a file that includes a log of about 50000 readings for each
sensor. We assume that each sensor reads the data from its corresponding file
for a period of time, then it sends them toward a CH placed at the center of
the lab after applying our mechanism. We implemented the algorithms used in
our mechanism based on Java simulator and we compared the obtained results
to those obtained in the PFF [19] and S-LEC [14].

Table 4 summarizes the parameters used in our simulation with their tested
values.
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Parameter Symbol Values

Aggregate threshold δ 0.05, 0.1, 0.2

Pearson threshold ε 0.4, 0.5, 0.6, 0.7
Prediction threshold c 4, 5, 6
Period size F 50, 100, 250
ANOVA thresholds α0, α1 0.01, 0.05
Initial sensor energy Ei 5 mJ

Critical energy threshold Ec
Ei
2

Round size π 2 periods
Jaccard threshold tJ 0.7
Eulidean distance threshold tE 0.4
Clusters number K 4, 6, 8

Table 4 Simulation environment.

7.1 On-Period Decision Study

Fig. 4 shows which on-period technique has been selected by a sensor at the
end of each period based on the on-period decision table. In each subfigure
(4(a), 4(b) and 4(c)) represents prediction, compression and aggregation tech-
niques respectively. The obtained results confirm the behavior of our proposed
technique as follows: 1) when its remaining energy is high, the sensor selects
between compression and aggregation in order to ensure a high data accuracy
along with the reduced amount of data transmission; 2) when its remaining
energy becomes low, the sensor applies the prediction technique, except if the
data redundancy is low, in order to reduce to the minimum its data trans-
mission while saving the information integrity. We can also observe that the
lifetime of the sensor is more extended with the light condition compared to
temperature and humidity; this indicates that the light readings are highly
redundant compared to other ones thus the sensor can more reduce its data
transmission by applying either compression or prediction techniques.

7.2 In-Period Decision Study

Fig. 5 shows the decision made by the sensor at the end of each round accord-
ing to the in-period decision table. Subsequently, the numbers in the y-axes are
describing as follows: 1, 3 and 5 indicate a low battery level with low, medium
and high data similarity respectively; 2, 4, and 6 indicate a high battery level
with low, medium and high data similarity respectively. The obtained results
reveal several observations: 1) the sensing frequency of the sensor is dynami-
cally adapted after each round in each of the three conditions (temperature,
humidity and light). 2) By analyzing the new sensing frequencies of the sen-
sors, we observe that the light condition reduces its data collection more than
the other conditions because the light readings are more similar compared to
other ones. Hence, we observe that the light sensor, mostly, selects between
the fifth and sixth in-period techniques depending on its battery level, e.g. low
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Fig. 4 Variation of the on-period technique selected by the sensor at each period, F = 50,
δ = 0.1, ε = 0.5, c = 5.

or high. Otherwise, the data similarity level of temperature readings almost
varies between low and medium, thus its sensing frequency varies between 1
and 4, while the humidity readings are more redundant than temperature and
it varies between 1 and 5.

Based on the selected in-period technique, Fig. 6 shows the new sensing
frequencies of a sensor after adapting its sampling rate after each round. Be-
cause the light readings are very similar, the light sensor adapts its sensing
frequencies to the minimum in order to avoid collecting redundant data, e.g.
40% when its battery level is low and 20% when its battery level is high. On
the other hand, the temperature and humidity readings are less similar than
those of light, thus they adapt their sensing frequencies less than the light
sensor, e.g. mostly between 20% and 50% for the temperature and between
10% and 50% for the humidity.
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Fig. 5 Variation of the in-period decision made by the sensor at each round, F = 50,
δ = 0.1, ε = 0.5, c = 5.
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Fig. 6 Variation of the sensing frequency of a sensor during periods, F = 50, δ = 0.1,
ε = 0.5, c = 5.

7.3 Data Transmission Ratio at Sensor

Fig. 7 shows the number of readings sent from each sensor to the CH after
applying both on-period and in-period techniques, for 15 periods of simula-
tions. The results are dependent on the period size (Fig. 7(a)), the aggregate
threshold (Fig. 7(b)), the compression threshold (Fig. 7(c)) and the prediction
polynomial degree (Fig. 7(d)). We observe that our mechanism can reduce the
data transmission to the CH more than the PFF and S-LEC in all cases. Sub-
sequently, it allows each sensor to send 9% to 45% of data less than PFF and
28% to 67% of data less than S-LEC. Furthermore, the obtained results show
that: 1) the data transmission from the sensor, using our mechanism, increases
with the increasing values of the period size (Fig. 7(a)) and the compression
threshold (Fig. 7(c)). This is because, from one hand, the variance among the
data calculated using ANOVA increases when the period size increases and,
from the other hand, the collected readings become less redundant when the
compression threshold increases. 2) The sensor sends, using our mechanism,
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less data to the CH when the aggregated threshold increases (Fig. 7(b)). This
is due to the similarity among the collected readings, which increases with the
increasing of the aggregate threshold. 3) The data transmission will not be
highly affected when varying the predicted polynomial degree.
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Fig. 7 Number of readings sent from each sensor to the CH.

7.4 Energy Consumption in Sensor

As previously mentioned, the energy consumed in the sensor node is highly
related to the amount of its transmitted data. Fig. 8 shows the remaining
energy of temperature, humidity and light sensors in function of the period
progress. In our simulations, we implemented the Heinzelman model proposed
in [41] as one of the most models used to evaluate the energy consumption
in sensor networks. Accordingly to this model, the energy consumption highly
depends on the transmission and receiving operations while negligating the
other factors (sensing and processing). Thus, the energy consumption of a

sensor for transmitting its set of data R
′p
i with size |R

′p
i | to the CH located at

distance d is:
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ETX = Eelec × |R
′p
i | × 64 + βamp × |R

′p
i | × 64× d2 (9)

where 64 indicates the bit representation of each value, and Eelec is the
energy consumption of a sensor in its electronic circuitry (usually Eelec =
50nJ/bit), and βamp represents the energy consumption in RF amplifiers to
compensate the loss (usually βamp = 100 pJ/bit).

Obviously, the remaining energy in each sensor proportionally decreases
depending on the amount of data transmitted, with the progress of the period
number. Subsequently, more the amount of data is reduced at each period, e.g.
using on-period, and more the sensing frequency of the sensor is minimized at
each round then less the available energy will be depleted. This supports the
extension of the light sensor lifetime compared to those of other sensors due
to the high redundancy level existing among light readings.
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Fig. 8 Remaining energy in a sensor in function of the period progress, F = 50, δ = 0.1,
ε = 0.5, c = 5.

7.5 Packet Types Study at CH

In Fig. 9, we study the types of packets (Off Packet, Aggregate Packet,
Compressed Packet and Predicted Packet) received by the CH at each pe-
riod. The obtained results show that the number of packets for each type
can differ from one period to another for the same sensor (e.g. temperature,
humidity or light) or they can differ for the different sensors at the same
period. We can also observe that most of the received packets are of type
Compressed Packet followed by the Aggregate Packet, Predicted Packet
and Off Packet respectively, for various kind of sensors and for all periods.
This is because compression is a compromised decision between aggregation
and prediction approaches for energy saving and data accuracy at the same
time. Furthermore, the results shows that the CH is receiving more packets
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of type Predicted Packet starting from the period number 27 for the tem-
perature and humidity readings, and from the period number 36 for the light
readings; this indicated that the energy of the sensors becomes low starting
from such periods and the sensors have to reduce their data transmission in
order to conserve their power supply. Finally, we observe that some sensors
are delivering Off Packet to the CH indicating that the readings collected in
successive periods are similar.

7.6 In-Node Decision Study

Fig. 10 shows the number of sets periodically sent from the CH to the sink
after applying the in-node reduction algorithm (Algorithm 6). In addition
to the Off Packet and Predicted Packet, the CH sends a subset of the
Aggregate Packet, after removing the redundancy among them (Algorithm
4), and a subset of the compressed packets, after making them in clusters (Al-
gorithm 5), to the sink. Thus, the obtained results are dependent on the period
size (F), the aggregation threshold (δ) and the number of clusters (K) (Fig.
10(a) to 10(c)) while they are not affected by the changing of the predicted
polynomial degree (Fig. 10(d)). Subsequently, we observe, using our mecha-
nism, that the periodic number of sent sets decreases when the values of F
or K decrease, or the value of δ increases. This is because when F decreases
or δ increases the similarity among the sensor sets will increase thus the CH
will send less sets to the sink in order to avoid sending redundant data sets.
Whilst, the decreasing of the cluster number leads to decrease the number of
cluster centroids send to the sink. Furthermore, we observe that our mech-
anism outperforms PFF from 20% to 40% and S-LEC from 56% to 73% in
terms of reducing the number of packets sent to the sink.

In Fig. 11, we show an illustrative example of the packet types received by
the CH during a period and after applying K-means over the Compressed Packet.
During this period, we observe that the CH receives 2 packets of typeOff Packet,
3 packets of type Predicted Packet, 15 packets of type Aggregate Packet and
26 packets of type Compressed Packet. Thus, after dividing the Compressed Packet
into 4 clusters, the following observations are eminent: 1) the sets are unequally
distributed to the clusters; this is due to the random selection of the cluster
centroids and the convergence function used in K-means. 2) The sensors in the
same cluster are not necessary spatially correlated. 3) The temporal correlation
among sensors can happen even they are not spatially correlated.

8 Conclusion and Future Work

Data reduction will remain one of the main concerns for researchers in order to
extend the sensing-based IoT applications and deliver a useful data for the end
user. In this paper, we proposed a hybrid-based data collection mechanism,
called All-in-One, with the aim to reduce the data transmission at several
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Fig. 9 Variation of periodic packet types received by the CH.

stages in the network. The proposed mechanism allows to remove the redun-
dancy existing among the collected data on on-period, in-period and in-node
levels. Furthermore, on each level, we introduced several data reduction tech-
niques while proposing hybrid-based approaches in order to optimize several
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Fig. 10 Number of sets sent periodicaly from the CH to the sink.
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Fig. 11 Illustrative example of packet types received by the CH during a period and after
applying K-means over the compressed packets, K = 4.

performance metrics of the network. We conducted extensive simulations on



32 Marwa Ibrahim∗ et al.

real sensor data in order to evaluate the efficiency of our mechanism compared
to other exiting techniques.

As future work, we have several directions to optimize our mechanism at
both sensor and CH nodes. From one hand, it is important to add a shift
phase between successive transmissions in order to avoid collision in the net-
work. In addition, we seek to add other parameters when adapting the sensing
frequencies of the sensors like correlation with other nodes. At the CH level,
we plan to add a scheduling strategy in order to switch the correlated nodes
into sleep/active modes. Thus, the overall network energy will be improved
and the collision will be reduced.
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