
HAL Id: hal-03188788
https://ensta-bretagne.hal.science/hal-03188788

Submitted on 3 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enclosing the Sliding Surfaces of a Controlled Swing
Luc Jaulin, Benoît Desrochers

To cite this version:
Luc Jaulin, Benoît Desrochers. Enclosing the Sliding Surfaces of a Controlled Swing. 6th International
Workshop on Symbolic-Numeric Methods for Reasoning about CPS and IoT, SNR 2020, Aug 2020,
Online, Austria. pp.43-55, �10.4204/EPTCS.331.4�. �hal-03188788�

https://ensta-bretagne.hal.science/hal-03188788
https://hal.archives-ouvertes.fr


T. Dang and S. Ratschan: 6th International Workshop on
Symbolic-Numeric Methods for Reasoning about CPS and IoT (SNR 2020)
EPTCS 331, 2021, pp. 43–55, doi:10.4204/EPTCS.331.4

© J. Jaulin & B. Desrochers
This work is licensed under the
Creative Commons Attribution License.

Enclosing the Sliding Surfaces of a Controlled Swing

Luc Jaulin
ENSTA-Bretagne

Brest, France
Robex, Lab-STICC

lucjaulin@gmail.com

Benoı̂t Desrochers
DGA-TN

Brest, France
benoit.desrochers@ensta-bretagne.org

When implementing a non-continuous controller for a cyber-physical system, it may happen that
the evolution of the closed-loop system is not anymore piecewise differentiable along the trajectory,
mainly due to conditional statements inside the controller. This may lead to some unwanted chatter-
ing effects than may damage the system. This behavior is difficult to observe even in simulation. In
this paper, we propose an interval approach to characterize the sliding surface which corresponds to
the set of all states such that the state trajectory may jump indefinitely between two distinct behaviors.
We show that the recent notion of thick sets will allows us to compute efficiently an outer approxima-
tion of the sliding surface of a given class of hybrid system taking into account all set-membership
uncertainties. An application to the verification of the controller of a child swing is considered to
illustrate the principle of the approach.

1 Introduction

The verification of the properties of cyber-physical systems [17, 31] is a fundamental problem for which
set membership techniques have provided original and efficient results [27] [26].

Different types of such approaches have been studied for the verification. Some require the integra-
tion of nonlinear differential equations [30][32][20]. Others are based on positive invariance approaches
[1] [19]. For the numerical resolution some methods build a grid of the state space [29][8] which makes
them computationally expensive. Lyapunov-based methods [25], level-set methods [21], or barrier func-
tions [4] are attractive, since they do not perform any integration through time. Now, these methods
generally require a parametric expression for candidate Lyapunov-like functions which is not always
realistic.

This paper considers the verification of controlled cyber-physical systems [23] which include both a
physical system and a control algorithm. The verification requires approaches coming from invariance
approaches [3], static analysis [15] and abstract interpretation [7].

To detect the discontinuities, we propose in this paper to characterize the set of states around which
undesirable switching phenomena could occur. The corresponding zone is called a sliding surface which
may become thick in case of uncertainties. In practice, the system can be trapped inside the sliding
surface without any possibility to escape.

In [16][28], it has been shown that sliding surfaces can be characterized rigorously using interval
techniques [22][18] for hybrid systems without any uncertainties. In this paper, we extend this approach
to uncertain hybrid systems.

The paper is organized as follows. Section 2 provides the formalism and defines sliding surfaces.
Section 3 introduces thick sets that will allow us to extend the concept of sliding surfaces to the case of
uncertainty. Section 4 shows how our approach can be used to validate the controller of a child swing.
Section 5 concludes the paper.
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Figure 1: Automaton representing our Cyber Physical System

2 Formalism

2.1 Hybrid system

In this paper, we consider a specific class of hybrid dynamical systems of the form

S (A) :
{

ẋ = fa (x) if x ∈ A
ẋ = fb (x) if x ∈ B= A (1)

where

• fa, fb :Rn→ Rn are continuous and differentiable,

• A is a closed subset of Rn that can be defined by inequalities linked by Boolean operators.

This definition is illustrated by the automaton of Figure 1, taking the conventions used for hybrid systems
[2, 14]. The red arrows show transitions which may generate the sliding phenomena that are studied in
this paper.

2.2 Algebra of closed sets

Given a set X ⊂ Rn, we denote by cl(X) the smallest closed subset of Rn which contains X. The in-
tersection of closed sets and the finite union of closed sets if still a closed set. We define the closed
complementary A of the closed set A as

A= cl{x|x /∈ A}.

The boundary of the closed set A is denoted by ∂A. The closed set A is topologically stable if ∂A= ∂A.
For instance, the disk of D = {x ∈ R2|‖x‖ ≤ 1} is topologically stable with D = {x ∈ R2|‖x‖ ≥ 1}

and ∂D = ∂D = {x ∈ R2|‖x‖ = 1}. But the circle C = {x ∈ R2|‖x‖ = 1} is not topologically stable.
Indeed C= cl{x ∈ R2|‖x‖ 6= 1}= R2 and ∂C= {x ∈ R2|‖x‖= 1} 6= ∂C= /0.

In this paper, we will assume that

1. closed sets A involved in the formulation (1) are topologically stable, i.e., they have the same
boundary as their interior.

2. the closed sets can be defined as a finite composition (with unions, intersections) of sets of the
form

A= {x ∈ Rn |c(x)≤ 0}

where c is a smooth function.
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2.3 Lie derivative

We recall the notion of Lie derivative that will be used to define the sliding surfaces. Consider a function
c : Rn→ R. The Lie derivative of c with respect to the field f : Rn→ Rn as

L c
f (x) =

dc
dx

(x) · f(x) . (2)

We also define the Lie set as
Lc

f = {x|L c
f (x)≤ 0} . (3)

In our context, the field depends on i ∈ {a,b} (see 1). We will write

L c
i (x) = L c

fi
(x)

Lc
i = Lc

fi

(4)

2.4 Sliding surface

The sliding surface S(A) [12] for S (A) (see Equation 1) is defined as the largest subset (with respect
to the inclusion ⊂) of the boundary ∂A of A such that the system can stay inside for a non-degenerate
interval of time.

If A is defined by the inequality c(x) ≤ 0, then B = A is defined by c(x) ≥ 0 and the boundary by
c(x) = 0 (see Subsection 2.2). The sliding surface is

S(A) = ∂A∩
{

x |L c
a (x)≥ 0 ∧L c

b (x)≤ 0
}

= ∂A∩Lc
a ∩Lc

b.
(5)

Figure 2, taken from [16], illustrates the principle of this proposition in the case where A is described
by one inequality c(x)≤ 0. The boundary ∂A of A is composed of four parts :

∂A∩Lc
a (q) ∩Lc

b (q) → magenta
∂A∩Lc

a (q) ∩Lc
b (q) → red

∂A∩Lc
a (q) ∩Lc

b (q) → yellow
∂A∩Lc

a (q) ∩Lc
b (q) → black

One trajectory (dotted line) x(t) is also represented. Before the yellow arc, c(x) is positive and decreases.
When it crosses the yellow arc, c(x) = 0 for some isolated time point t1. Then x(t) remains inside A until
it reaches the red arc. It slides in the red arc for some non-degenerate time interval. When x(t) reaches
the magenta arc, it leaves A.

We recall the following result that has been proved in [16].

Proposition 2.1. Consider two closed sets A1 and A2. As illustrated by Figure 3, we have

(i) S(A1∩A2) = (S(A1)∩A2)∪ (S(A2)∩A1)

(ii) S(A1∪A2) =
(
S(A1)∩A2

)
∪
(
S(A2)∩A1

) (6)

Proposition 2.1 can be used to compute the sliding surface of a set A as soon as A can be defined by
inequalities connected by Boolean operators such as and, or, not. The proposition is illustrated by Figure
4 in the case where A=A1∪ (A2∩A3) and Ai = {x|ci (x)≤ 0}. The trajectory (green) slides twice, first
on ∂A1, then it slides on ∂A2. The sliding surfaces are painted red.
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Figure 2: Sliding surface S(A) (red) for A= {x|c(x)≤ 0}

Figure 3: Illustration of Proposition 2.1, the sliding surfaces are painted red
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Figure 4: Sliding surfaces for A= A1∪ (A2∩A3)

2.5 Sliding surface in case of uncertainties

In case of uncertainties, the system defined in (1) can be described as

Sp :
{

ẋ = fa (x) if x ∈ A
ẋ = fb (x) if x ∈ A

but now, A, fa, fb are uncertain. For instance, they may depend on a parameter vector p ∈ [p] which
models the uncertainties. Recall that from Equation 5, the sliding surface satisfies

S = ∂A∩Lc
a ∩Lc

b

Assume that 
A⊂ ⊂ A⊂ A⊃

Lc⊂
a ⊂ Lc

a ⊂ Lc⊃
a

Lc⊂
b ⊂ Lc

b ⊂ Lc⊃
b

The sliding surface satisfies

∂A⊂∩Lc⊃
a ∩Lc⊂

b︸ ︷︷ ︸
S⊂

⊂ S⊂ ∂A⊃∩Lc⊂
a ∩Lc⊃

b︸ ︷︷ ︸
S⊃

and we can write

S ∈ [[S⊂,S⊃]] = ∂ [[A⊂,A⊃]]∩ [[Lc⊂
a ,Lc⊃

a ]] ∩ [[Lc⊂
b ,Lc⊃

b ]]

using the thick set formalism described in the following section. In our application, is is clear that S⊂= /0,
since the set to be enclosed is a surface that has no volume. The set S⊃ is an upper approximation of this
surface as illustrated by Figure 5.
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Figure 5: The set S⊃ (red) is an upper approximation of the sliding surface Sp to be enclosed

3 Thick sets

When dealing with uncertainties, the evolution equation involved in Equation 1 and the sets A,B become
uncertain. The sliding surface to be computed becomes thick and now has an interior. To compute an
inner and an outer approximation of this approximation, we now introduce the recent concept of thick set
with the associated algebra [10].

3.1 Definition

If an interval of R is an uncertain real number, a thick set is an uncertain subset of Rn. More precisely, a
thick set is an interval of the powerset of Rn equipped with the inclusion ⊂ as an order relation.

A thin set is a subset of Rn. It is qualified as thin because its boundary is thin.
Denote by (P(Rn),⊂), the powerset of Rn equipped with the inclusion ⊂ as an order relation. A

thick set [[X]] of Rn is an interval of (P(Rn),⊂). If [[X]] is a thick set of Rn , there exist two subsets of
Rn , called the subset bound and the superset bound such that

[[X]] = [[X⊂,X⊃]] = {X ∈P(Rn)|X⊂ ⊂ X⊂ X⊃}. (7)

The subset X⊃\X⊂ is called the penumbra and plays an important role in the characterization of
thick sets [9]. Thick sets can be used to represent uncertain sets (such as an uncertain map [11]) or soft
constraints [6]. It can also can also be extended to fuzzy sets as shown in [13][5].

3.2 Algebra

We now show how we can define operations for thick sets (as a union, intersection, difference, etc.). The
main motivation is to be able to compute with thick sets.

Consider two thick sets [[X]] = [[X⊂,X⊃]] and [[Y]] = [[Y⊂,Y⊃]]. We define the following operations
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[9] which corresponds to an interval extension in the sense of Moore [22] applied to thick sets:

[[X]]∩ [[Y]] = [[X⊂∩Y⊂,X⊃∩Y⊃]]
[[X]]∪ [[Y]] = [[X⊂∪Y⊂,X⊃∪Y⊃]]

[[X]] = [[X⊃,X⊂]]
∂ [[X]] = [[X]]∩ [[X]]
f([[X]]) = [[f(X⊂), f(X⊃)]]

f−1([[X]]) = [[f−1(X⊂), f−1(X⊃)]]

(8)

We could also have defined these operations as follows:

[[X]]� [[Y]] = [[
⋂
{X�Y,X ∈ [[X]],Y ∈ [[Y]]} ,

⋃
{X�Y,X ∈ [[X]],Y ∈ [[Y]]}]]

where � is a binary operator on sets such as ∪,∩,\, . . . , and

φ [[X]] = [[
⋂
{φ(X),X ∈ [[X]]} ,

⋃
{φ(X),X ∈ [[X]]}]]

where φ is a unary operator on sets such as ∂X,X, . . .
Some of these operations are illustrated by Figure 6. The first subfigure represents the thick set

[[X]] = [[X⊂,X⊃]]. The lower bound X⊂ is painted red; the penumbra X⊃\X⊂ is painted orange; and all
x outside the upper bound X⊃ of [[X]] is in blue.

3.3 Atoms

To compute with thick sets, we first need to generate elementary thick sets, called the atoms. They
can be given by geometrical sets such as boxes, polygons or disks. They can also constructed from an
expression of the form f (x,p) ≤ 0, where f : Rn×Rm → R and p ∈ [p] is the parameter vector. This
can be done by the following operator

[[σ ]]( f , [p]) = [[X⊂,X⊃]]

with
X⊂ = {x|∀p ∈ [p] f (x,p)≤ 0}
X⊃ = {x|∃p ∈ [p] f (x,p)≤ 0}.

4 Characterizing the sliding surface of an uncertain controlled child swing

In this section, we propose an original academical example which illustrates how the thick set algebra
can be used to characterize sliding surfaces of uncertain hybrid systems.

4.1 Pendulum

Consider a pendulum depicted in Figure 7, left. Its state representation is(
ẋ1
ẋ2

)
=

(
x2

−sinx1 + p1 +u

)
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Figure 6: Operations between two thick sets. Red means inside, Blue means outside and Orange is for
the penumbra
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Figure 7: Child swing with state vector x = (x1,x2)

The pendulum represents a child swing, u is a security break and p1 is a perturbation which can be
associated to the force generated by the child. In a nominal behavior, we have, u = 0 but when the energy
of the swing becomes too large, the controller generates a friction u=−x2 to slow down the swing. More
precisely, the following controller is:

if c(x)< 0 then u = 0 else u =−x2,

where c(x) = x2
1 + x2

2− 1 plays the role of the energy. The corresponding vector field is represented in
Figure 7, right with two different trajectories (red) for p1 = 0.

4.2 Thick approximation of the sliding surface

Assume that, when the controller alternates indefinitely between u = 0 (break off) and u = −x2 (break
on), the controller may be damaged. We want to compute the sliding states which can be difficult to
detect with simulations.

We have the two fields

fa =

(
x2

p1− sinx1

)
, fb =

(
x2

p1− sinx1− x2

)
where p1 ∈ [p1] is an uncertain variable. We have

L c
a (x) = dc

dx (x) · fa (x)

=
(

2x1 2x2
)
·
(

x2
p1− sinx1

)
= 2x1x2 +2x2(p1− sinx1)

(9)

and
L c

b (x) = dc
dx (x) · fb (x)

=
(

2x1 2x2
)
·
(

x2
p1− sinx1− x2

)
= 2x1x2 +2x2(p1− sinx1− x2)



52 Enclosing the Sliding Surfaces of a Controlled Swing

Figure 8: The orange zone corresponds to the outer approximation S⊃ of the sliding surface S

To take into account the fact that x1 and x2 are given to the controller with a given bounded error
p2 ∈ [p2], p3 ∈ [p3], we take

A=
{

x|(x1 + p2)
2 +(x2 + p3)

2−1≤ 0
}
.

To compute the paving associated to the expression (5), we need to build the atoms [[A]], [[Lc
a]], [[Lc

b]]
as explained in Subsection 3.3.

If we choose [pi] = [−0.1,0.1],∀i, we get the approximation represented by Figure 8, Left. It is
obtained by the following statements

1 [p1] := [p2] := [p3] := [−0.1,0.1]
2 [[Lc

a]] := [[σ ]](2x1x2 +2x2(p1− sinx1), [p1])
3 [[Lc

b]] := [[σ ]](2x1x2 +2x2(p1− sinx1− x2), [p1])

4 [[A]] := [[σ ]]((x1 + p2)
2 +(x2 + p3)

2−1, [p2]× [p3])

5 [[S]] := ∂ [[A]]∩ [[Lc
a]] ∩ [[Lc

b]]

We note that S⊂ = /0, which is consistent with the fact that the surface to be approximated has no volume.
This is the reason why the outer approximation S⊃ of the surface S corresponds to the penumbra of the
thick set [[S]].

4.2.1 One more condition

We extend our example by adding another condition in order to illustrate the facility of using thick set
algebra to compute with uncertain sets.

To avoid to frighten the child on the swing, we want that when the swing goes strongly backward,
the break does not switch on. More precisely, the controller becomes

if x2
1 + x2

2−1≤ 0︸ ︷︷ ︸
c1(x)

≤ 0 or x2 +0.2︸ ︷︷ ︸
c2(x)

≤ 0 then u = 0 else u =−x2.



J. Jaulin & B. Desrochers 53

The or condition can be treated using Proposition 2.1. We have

L c2
a (x) = dc2

dx (x) · fa (x) = p1− sinx1 (10)

and
L c2

b (x) = dc2
dx (x) · fb (x) = p1− sinx1− x2 (11)

An enclosure [[S]] for the sliding surface S is represented by Figure 8, Right. It is obtained by the
following statements

1 [p1] := [p2] := [p3] := [−0.1,0.1]
2 [[Lc1

a ]] := [[σ ]](2x1x2 +2x2(p1− sinx1), [p1])
3 [[Lc1

b ]] := [[σ ]](2x1x2 +2x2(p1− sinx1− x2), [p1])
4 [[Lc2

a ]] := [[σ ]](p1− sinx1, [p1])
5 [[Lc2

b ]] := [[σ ]](p1− sinx1− x2, [p1])

6 [[A1]] := [[σ ]]((x1 + p2)
2 +(x2 + p3)

2−1, [p2]× [p3])
7 [[A2]] := [[σ ]](x2 +0.2+ p3, [p3])

8 [[S1]] := ∂ [[A1]]∩ [[Lc1
a ]] ∩ [[Lc1

b ]]

9 [[S2]] := ∂ [[A2]]∩ [[Lc2
a ]] ∩ [[Lc2

b ]]

10 [[S]] :=
(
[[S1]]∩ [[A2]]

)
∪
(
[[S2]]∩ [[A1]]

)
A PYTHON program associated with this example can be tested here:

www.ensta-bretagne.fr/jaulin/swing.html

5 Conclusion

In this paper, we have presented a new approach based on thick sets to enclose the sliding surfaces of
a cyber-physical system in case of interval uncertainties. If the state of the system is on this sliding
approximation, it may hesitate indefinitely between two different strategies. As a result, the system may
be trapped on the sliding surface and the system may be damaged. It is thus important to compute an
approximation of the sliding surface.

An expression given with thick sets can also be written as a quantified constraint satisfaction problem
[24]. The main advantage of using a thick set expressions is that it corresponds to an interval extension
of the thin set expression we want to compute. Thick sets is thus an interval representation of the
uncertainties attached to the set we want to compute. Thick set arithmetic can also be interpreted as
an interval arithmetic used to compute with uncertain subsets of Rn, where as the classical interval
arithmetic is used to compute with uncertain real numbers.
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