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In this paper, we propose a set-inversion approach to validate the controller of a nonlinear system that should satisfy some state constraints. We introduce the notion of follow set which corresponds to the set of all output vectors such that the desired dynamics can be followed without violating the state-constraints. This follow set can then be used to choose feasible trajectories that a mobile robot will be able to follow. An illustrative example with a robot towing a trailer is presented. This example is motivated by the safe control of a boat towing a marine magnetique sensor to find wrecks.

I. INTRODUCTION

Nonlinear control methods [START_REF] Isidori | Nonlinear Control Systems: An Introduction[END_REF], [START_REF] Slotine | Applied nonlinear control[END_REF], [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF] have been studied for years and have found many convincing applications in robotics [START_REF] Novel | Commande non-linéaire des robots[END_REF], [START_REF] Fantoni | Non-linear control for underactuated mechanical systems[END_REF], [START_REF] Soetanto | Adaptive, Non-Singular Path-Following Control of Dynamic Wheeled Robots[END_REF], [START_REF] El-Ghazaly | Hybrid cable-thruster actuated underwater vehicle-manipulator systems: A study on force capabilities[END_REF]. When state constraints are involved, the problem is much less studied because it requires to solve nonlinear inequality constraints mixed with nonlinear differential equations. Even if planning methods [START_REF] Lavalle | Planning algorithm[END_REF] have provided some interesting results, the problem can still be considered as open as soon as some guarantee is required.

In this context where nonlinear differential problems are considered, interval methods have been shown to be able to provide solutions in a reliable way [START_REF] Tucker | A Rigorous ODE Solver and Smale's 14th Problem[END_REF], [START_REF] Goubault | Inner approximated reachability analysis[END_REF], [START_REF] Goldsztejn | Reliable inner approximation of the solution set to initial value problems with uncertain initial value[END_REF] and have been successful for many robotics applications such as localization [START_REF] Rohou | Reliable robot localization[END_REF], [START_REF] Desrochers | Setmembership approach to the kidnapped robot problem[END_REF], control [START_REF] Meslem | Using set invariance to design robust interval observers for discrete time linear systems[END_REF] or planning [START_REF] Guyonneau | A visibility information for multi-robot localization[END_REF], [START_REF] Porta | A Space Decomposition Method for Path Planning of Loop Linkages[END_REF]. In a dynamical context, the reliability is mainly due to the possibility to integrate nonlinear differential equations in a guaranteed way [START_REF] Dit Sandretto | Validated simulation of differential algebraic equations with Runge-Kutta methods[END_REF] [START_REF] Wilczak | Cr-Lohner algorithm[END_REF] which is not possible with other approaches, to our knowledge. Large scale problems have even been solved efficiently by adding contractors [START_REF] Rohou | Guaranteed Computation of Robots Trajectories[END_REF], [START_REF] Chabert | Contractor Programming[END_REF] to the interval theory. This motivated researchers to use more frequently interval approaches for nonlinear control [START_REF] Romig | Using interval analysis to compute the invariant set of a nonlinear closed-loop control system[END_REF], [32] [30].

In this paper, we want to combine methods coming from nonlinear control theory such as flatness [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and applications[END_REF], or feedback linearization [START_REF] Krener | Linearization by output injection and nonlinear observers[END_REF], to cast the problem of finding safe trajectories (i.e., that do not enter inside the forbidden zone) into a set inversion framework. The resolution of the set inversion problem can then be performed using interval analysis [START_REF] Jaulin | Guaranteed nonlinear estimation and robust stability analysis via set inversion[END_REF].

Set inversion is now considered as mature enough to solve efficiently real problems (see e.g., [START_REF] Drevelle | Localization confidence domains via set inversion on short-term trajectory[END_REF], [START_REF] Colle | Mobile robot localization by multiangulation using set inversion[END_REF]).

The idea of using flatness with interval methods is not new since it has been used for robust controller design [START_REF] Kletting | Robust flatness based controller design using interval methods[END_REF] [14], fault detection [START_REF] Ramatou | Actuator fault detection and diagnosis for flat systems: A constraint satisfaction technique[END_REF], state estimation [START_REF] Jaulin | Combining interval analysis with flatness theory for state estimation of sailboat robots[END_REF] or to deal rigorously with uncertainty [START_REF] Rauh | Modeling, Design, and Simulation of Systems with Uncertainties[END_REF]. The principle is to use flatness to transform differential constraints into analytical inequalities using Lie derivatives. Then, the resolution is performed numerically and rigorously using interval analysis tools [START_REF] Moore | Interval Analysis[END_REF].

In this paper, we consider problems with state constraints. We propose to project this set onto the set of vector outputs. This projection is shown to be possible if we get a controller that obliges the output to obey a desired dynamics. The corresponding projected set will be called follow set and will then be used to find trajectories that are consistent with the constraints.

Our approach will be illustrated on the tank trailer problem which is known to be difficult from the control point of view, but also for planning a safe trajectory [START_REF] Lavalle | Planning algorithm[END_REF]. This choice is motivated by the safe control of a boat towing a magnetic sensor where the validatation of the dynamic of some state constraints related to the towing cable. Other approaches of motion planning under constraints can be used to find a probable safe trajectory [START_REF] Pairet | Uncertainty-based online mapping and motion planning for marine robotics guidance[END_REF][START_REF] Berning | Rapid uncertainty propagation and chance-constrained path planning for small unmanned aerial vehicles[END_REF], but here the goal to provide guaranteed results.

The paper is organized as follows. Section II sets up the problem in a formal way and presents the mathematical tools that will be used for the resolution. Section III introduces the tank-trailer robot and shows how to find a controller so that the output (the center of the trailer) follows the required dynamics. Section IV defines the follow set and shows that it can be described as a set inversion problem. It also explains how the follow set can be used to find safe trajectories. A testcase related to the safety trajectory of the tank-trailer robot for internal and external collisions is considered in Section V. Section VI concludes the paper and gives some perspectives.

II. FORMALISM

Consider a mobile robot described by the following state equations

   ẋ = f (x) + g(x) • u y = h(x) x ∈ X (1) 
where u ∈ R m is the vector of controls (or the vector of actuators), x ∈ R n is the state vector and y ∈ R m is the output vector. The functions f , g, h are assumed to be smooth. The dimensions of u and y are both equal to m. All vectors depend on the continuous time t. In our context, the system is a robot and the output y corresponds to its position in the workspace which may be of dimension 2 or 3. The set X is a state constraint that should be satisfied. We now introduce the concept of Lie derivatives, classical in control theory [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF]. It will allow us to express any kth derivative of any output as an analytical expression of the state x.

Lie derivatives . We have

ẏ = dh dx (x) • f (x) =L f h(x) + dh dx (x) • g(x) =Lgh(x)
• u.

The quantity L f h(x) is the Lie derivative along with f of h at x. We can define recursively the ith order Lie derivative by

L i f h(x) = L f L i-1 f h(x) = d(L i-1 f h) dx (x) • f (x).
Relative degree. The relative degree relative for the outputs y j , j = 1, . . . , m, is the smallest integer ρ j such that

L g L ρj -1 f h j (x) = 0.
Controllability. We want our system to follow a specific dynamic for y, say ẏ = Ψ(y). We consider the error

e = ẏ -Ψ(y) = L f h(x) + L g h(x) • u -Ψ(h(x)).
If the system is controllable with y as an output, using classical nonlinear control method, we can find a controller u = c(x) such that e(t) converges exponentially toward 0 [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF].

The following section illustrates these concepts in the tanktrailer control problem. Then, we will see in Section IV how the state constraint could be taken into account in this context.

III. TANK TRAILER CONTROL PROBLEM A. Model

The state equations of the tank-trailer system, represented by Figure 1, are given by:

      ẋ1 ẋ2 ẋ3 ẋ4 ẋ5       =       x 5 cos x 3 x 5 sin x 3 0 x 5 sin(x 3 -x 4 ) 0       f (x) +       0 0 u 1 0 u 2       g(x)•u (2) 
with (x 1 , x 2 ) the position of the tank, x 3 its heading, x 4 the heading of the trailer and x 5 the speed of the car. Note that here g(x) does not depend on x. We consider as an output the center of the trailer

y 1 y 2 = x 1 -cos x 4 x 2 -sin x 4 = h(x). (3) 
We propose here a controller such that the output follows the desired dynamics. This choice is motivated by the control of our robot Boatbot which is an autonomous rubber-boat towing a kayak to which a magnetometer is attached (see Figure 2). The goal of this robot is to build a magnetic map to localize wrecks [START_REF] Leblond | Recherche d'objets archéologiques sous-marins à partir de données multi-capteurs[END_REF]. In this application, the output vector y corresponds to the position of the magnetometer. The approach we will follow here is inspired by [START_REF] Rouchon | Flatness, motion planning and trailer systems[END_REF], except that here we want to follow a dynamics for y and not a specific trajectory.

B. Flattened feedback

The first step to applying a nonlinear control approach is to draw the graph of differential delays of the system (see Figure 3). A continuous arc corresponds to a differential delay between two variables. The dashed arc corresponds to an analytical non-differential relation relating to two variables. For instance, since we read from the state equations that ẋ1 = x 5 cos x 3 we add the two arcs x 5 → x 1 and x 3 → x 1 . The relative degrees ρ 1 , ρ 2 of y 1 , y 2 can be read from the graph by counting the number of continuous arcs separating the output y i to the inputs u 1 , u 2 . We get ρ 1 = ρ 2 = 2. Now, since ρ 1 + ρ 2 = 2 + 2 < dim x = 5, a feedbackbased linearization method leaves a state variable without any control. If we are lucky, this floating state variable is stable and the resulting behavior is correct. Now, if we push the method up to the simulation, we observe that for our system the floating state variable is unstable. This instability makes the approach inappropriate. The following theorem, illustrated by Figure 4, provides flattened feedback of our vehicle. Without more precisions (see [START_REF] Rouchon | Flatness, motion planning and trailer systems[END_REF] for details), this means for us that the sum of the relative degrees corresponds to the dimension of the system. Theorem 1. Consider the controller

v1 = a 1 u = A -1 (x) • v 1 a 2 -b(x) ρ(x,v1,a2) (4) 
where

A(x) = -x 5 sin(x 3 -x 4 ) cos(x 3 -x 4 ) x 5 cos(x 3 -x 4 ) sin(x 3 -x 4 ) and b(x) = x 2 5 sin 2 (x 3 -x 4 ) -x 2 5 sin(x 3 -x 4 ) cos(x 3 -x 4 )
.

In the new coordinate system given by

z =         z 1 z 2 z 3 z 4 z 5 z 6         =         x 1 -cos x 4 x 2 -sin x 4 x 5 cos(x 3 -x 4 ) v 1 x 4 x 5 sin(x 3 -x 4 )         ϕ(x,v1) (5)
we get the closed-loop system: Remark 2. This theorem suggests a better coordinate system to represent the state where, (y 1 , y 2 ) is the center of the trailer, z 5 the heading of the trailer, (z 3 , z 6 ) the speed vector of the front car expressed in the trailer frame. It also suggest to control directly the acceleration of the trailer (via a 1 ) and its rotation rate (via a 2 ).

        ż1 ż2 ż3 ż4 ż5 ż6         =         z 3 cos z 5 z 3 sin z 5 z 4 a 1 z 6 a 2         = f z (z) + g z (z) • a y 1 y 2 = z 1 z 2 = h z (z) (6) 
Proof: We have

ẏ = L f h(x) + L g h(x) =0 • u = x 5 cos(x 3 -x 4 ) cos x 4 sin x 4 (5) = z 3 cos z 5 sin z 5 (7) 
Moreover ż3 = L f z 3 + L g z 3 • u z5 = L 2 f z 5 + L g L f z 5 • u or equivalently ż3 z5 = A(x) • u 1 u 2 + b(x) (8) 
where

A(x) = L g1 z 3 L g2 z 3 L g1 L f z 5 L g2 L f z 5 and b(x) = L f z 3 L 2 f z 5 .
It is trivial to check that A(x) and b(x) are the matrices given in the Theorem. The matrix A(x) is singular only if x 5 = 0, i.e., if the speed is zero. If we take the linearizing feedback u = A -1 (x) (v -b(x)) , then (8) becomes

ż3 z5 = v 1 v 2 . (9) 
Finally ż1

= z 3 cos z 5 ż2

= z 3 sin z 5 ż3

= v 1 ż4

(5)

= v1

(4)

= a 1 ż5

(5)

= ẋ4

(2)

= x 5 sin(x 3 -x 4 )

(5)

= z 6 ż6 = z5 (9) = v 1 .
which corresponds to [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF]. As illustrated by Figure 5, the sum of the relative degrees of each output is now equal to the dimension of the system (3 + 3 = 6). 

C. Control the flattened system

We consider the flattened system defined by

ż = f z (z) + g z (z) • a y = h z (z)
as defined by [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF]. We want y to follow a desired dynamics ẏ = Ψ(y), such as, for instance, the Van der Pol equation given by:

ẏ1 ẏ2 = y 2 -y 2 1 -1 y 2 -y 1 Ψ(y)
The error that we want to cancel is the difference between the course of the trailer and the direction given by the vector field:

e(z) = ẏ -Ψ(y) = L fz h z (z) -Ψ(h z (z)) = z 3 cos z 5 -z 2 z 3 sin z 5 + (0.01 • z 2 1 -1)z 2 + z 1 .
We have

ė(z) = L 2 fz h z (z) -L 1 fz Ψ(h z (z)) = -z 3 z 6 sin z 5 -z 3 sin z 5 + z 4 cos z 5 (z 6 + z1z2 50 + 1)z 3 cos z 5 + ( z 2 1 z3
100 -z 3 + z 4 ) sin z 5 and

ë(z) = L 3 fz h z (z) + (L gz L 2 fz h z (z)) • a -L 2 fz Ψ(h z (z))
We do not give the full expressions of all quantities with respect to the z i 's for the sake of clarity. We have deg(e 1 ) = deg(e 2 ) = 2, this is why the dependency with respect to a occurs only at the second derivative ë. Let us choose the error equation

ë + 2 ė + e = 0
to converge to zero. We get

L 3 fz h z (z) + (L gz L 2 fz h z (z)) • a -L 2 fz Ψ(h z (z)) ë(z) + 2 (L 2 fz h z (z) -L 1 fz Ψ(h z (z))) ė(z) + +L fz h z (z) -Ψ(h z (z)) e(z)
= 0

or equivalently

a = β(z) = -L gz L 2 fz h z (z) -1 • L 3 fz h z (z) -L 2 fz Ψ(h z (z)) + 2 ė(z) + e(z)
.

Combining this expression with the controller (4), as illustrated by Figure 6, we get the trailer center following exactly the required vector field. Figure 7 illustrates the behavior of the controller. In the previous section, we have proposed a controller such that the output follows exactly the desired vector field. In this section, we take into account the state constraint x ∈ X.

Observability. A system is said to be observable [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] if there exist a function Φ and integers r 1 , . . . , r m such that x = Φ (y 1 , ẏ1 , . . . , y r1 1 , . . . , y m , ẏm , . . . , y rm m )

The integers r i generally correspond to the relative degrees for the outputs y j , j = 1, . . . , m, but this is not mandatory.

This assumption is valid for many systems as if it is flat with the flat output y. In what follows, we assume that we have an observable system and that Φ is available.

In the case where y follows exactly the dynamics Ψ, we can write

y (i) j = L i Ψ y j .
We define the follow set as

Y = γ -1 (X) ,
where γ :

R m → R n y → Φ(y 1 , L Ψ y 1 , . . . , L ρ1
Ψ y 1 , . . . , y m , L Ψ y m , . . . , L ρm Ψ y m ) and X is the set of state constraints that should be satisfied for the state x. The set Y corresponds to the set of all y such that if y follows the dynamics Ψ, then all state constraints are satisfied. Most of the time, the set Y cannot be computed exactly because of the non linearities between the output y and the state vector. So, using a set inversion approach, an inner and an outer approximations for Y can be obtained [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF]. These approximations are computed with the SIVIA (Set Inversion Via Interval Analysis) algorithm which consists of testing interval vectors from Y space with a dichotomy strategy. Finally, the exact solution set is bracketed between the inner and the outer approximation.

Once this follow set has been computed, a reachability analysis could be performed to find viable domains in y [START_REF] Le Mézo | Bracketing the solutions of an ordinary differential equation with uncertain initial conditions[END_REF]. Thus, all found y is such that all state constraints will always be satisfied as long as the dynamics Ψ is followed.

Consider once more the tank trailer system which is controlled so that y follows the dynamics Ψ. If we know y 1 , y 2 , ẏ1 , ẏ2 , ÿ1 , ÿ2 then we can find the corresponding x. This is illustrated by Figure 8 where we can understand that to follow properly the desired trajectory in the y space, there exists a unique possibility for x(t). This point is clarified by the following proposition. Fig. 8. From y and its derivatives, we can find x Proposition 3. For the tank-trailer system, we have x = Φ (y 1 , ẏ1 , ÿ1 , y 2 , ẏ2 , ÿ2 ) as given by Figure 9. 

and from (3), we get

x 1 x 2 = y 1 y 2 - cos x 4 sin x 4 .
Moreover, differentiating [START_REF] Goldsztejn | Reliable inner approximation of the solution set to initial value problems with uncertain initial value[END_REF], we get ẋ4 = ẏ1 ÿ2 -ÿ1 ẏ2 ẏ2 1 + ẏ2 

V. TEST-CASES

In this section, we consider again the tank-trailer robot. For safety reasons, probably the most important state constraints are the collisions. Figure 10 illustrates two types of collisions: internal and external. External collision. Assume that there exists a polygonal obstacle to be avoided (purple in Figure 11). The orange area is the place where the trailer center cannot go safely with the required dynamics. In the green area, the output y can safely follow the cycle with the guarantee that the robot never collides with the obstacle. The follow set has been computed with the algorithm SIVIA based on interval analysis. The polygonal assumption for the obstacle is not a limitation of the method. Any obstacle with a known shape could have been considered as well.

Internal collision. Assume that if a maximum angle of 70°exists between the trailer and the tank, then an internal collision occurs. The set of all acceptable trailer positions is painted green in Figure 12, assuming that the robot follows Fig. 12. The green area corresponds to the follow set associated with an internal collision. In the orange area, the controller will lead to a state with an angle x 4 -x 3 too strong and the non-collision constraint will be violated. This Figure has been obtained in 2 minutes. the required dynamics. Again, we have validated the painted trajectory and the limit cycle since it remains in the follow set. An illustrating video is given at the following link: https://youtu.be/892 by8LVEw.

The computed follow set is an inner approximation (and the orange area the complementary of the outer approximation), so it is a little smaller than the exact one, to guarantee a safe behavior.

VI. CONCLUSION

In this paper, we have considered the problem of the validation of a trajectory of a robot with its controller when state constraints exist. We have shown that using Lie derivatives, it was possible to derive non-differential constraints defining the follow set that takes place in the set of outputs y. Now, the dimension of y is usually small (typically 2 or 3) in mobile robotics, since it corresponds to the world space. As a consequence, we were able to propose an interval-based algorithm to compute an inner and an outer approximation of the follow set. If the output trajectory remains inside this set, then the trajectory can be considered as validated. An example related to the tank-trailer robot has been treated in the case where internal and external collisions should be avoided.

This problem is of particular importance in the case of articulated cumbersome robots such as marine robots where sensors have to be towed in an environment with many obstacles including rocks, islands, or other boats.

In addition to maritime applications where towing sensors such as sonars or CTD (Conductivity Temperature Depth) probes is quite typical for oceanography and hydrography, as shown in the new attached video, delivery with ground robots towing trailers full of postal packages, food deliveries, etc. could be another example of application. Since around 5 years, deliveries with aerial drones has been a quite popular topic, yet it seems at the moment there are several obstacles (such as safety, highly changing law regulations about aerial drones, energy efficiency, acceptation by people, etc.) that prevent it to be common. Fleets of ground robots with trailers could be a good alternative as long as they are able to safely follow predefined paths where they would ask for a human operator to temporarily control them in case of an unexpected event on their known path. This could be first used inside e.g. universities campus or factories, where the environment of the robot can be more easily controlled than directly in the street.
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