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Abstract: The electric power characteristic of solid oxide fuel cells (SOFCs) depends on numerous
influencing factors. These are the mass flow of supplied hydrogen, the temperature distribution
in the interior of the fuel cell stack, the temperatures of the supplied reaction media at the anode
and cathode, and—most importantly—the electric current. Describing all of these dependencies
by means of analytic system models is almost impossible. Therefore, it is reasonable to identify
these dependencies by means of stochastic filter techniques. One possible option is the use of
Kalman filters to find locally valid approximations of the power characteristics. These can then
be employed for numerous online purposes of dynamically operated fuel cells such as maximum
power point tracking or the maximization of the fuel efficiency. In the latter case, it has to be ensured
that the fuel cell operation is restricted to the regime of Ohmic polarization. This aspect is crucial
to avoid fuel starvation phenomena which may not only lead to an inefficient system operation
but also to accelerated degradation. In this paper, a Kalman filter-based, real-time implementable
optimization of the fuel efficiency is proposed for SOFCs which accounts for the aforementioned
feasibility constraints. Essentially, the proposed strategy consists of two phases. First, the parameters
of an approximation of the electric power characteristic are estimated. The measurable arguments of
this function are the hydrogen mass flow and the electric stack current. In a second stage, these inputs
are optimized so that a desired stack power is attained in an optimal way. Simulation results are
presented which show the robustness of the proposed technique against inaccuracies in the a-priori
knowledge about the power characteristics. For a numerical validation, three different models of the
electric power characteristic are considered: (i) a static neural network input/output model, (ii) a
first-order dynamic system representation and (iii) the combination of a static neural network model
with a low-order fractional differential equation model representing transient phases during changes
between different electric operating points.

Keywords: Kalman filtering; online identification; online optimization; fuel cells; neural networks;
fractional-order systems

1. Introduction

Solid oxide fuel cell (SOFC) systems [1–8] are promising options for the design and
implementation of a decentralized supply of consumers with both electric and thermal
energy [9–12]. Such kinds of decentralized supply cannot only be realized in scenarios
in which the produced electric power is fed into an existing grid (serving as a practically
infinitely large storage from the point of view of a single fuel cell systems). Further
configurations can also be investigated in isolated applications where the consumers are
not directly connected to an electric power grid. This second option is especially interesting
for the power supply of construction sites (for example, when building up new wind farms)
or when the power supply of individual houses in small mountain and island villages is of
interest. To some extent, electric energy buffers will be installed in such settings, where
the storage can be achieved by super capacitors and (Lithium-ion) batteries if short and
mid-term time scales are of interest.
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However, the installation of each storage system introduces additional cost and compo-
nents which are themselves subject to wear. The extent of the arising wear effects depends
on operating strategies which impose constraints on the charging and discharging rates as
well as the depth of discharge. For that reason, it is interesting to operate high-temperature
fuel cells such as SOFCs not only at a fixed, offline-optimized operating point but with
dynamically varying load conditions [13,14]. Such dynamic operating strategies will allow
a downsizing of the aforementioned electric energy storage components.

For that purpose, two fundamental prerequisites need to be considered. First, the
corresponding operating strategy needs to be able to make sure that the SOFC stack module
is operated at a nearly constant temperature despite variable electric load conditions. This
can be achieved by robust control strategies for the system’s thermal behavior [15–18]. Typ-
ically, the enthalpy flow of the supplied cathode gas is used as the corresponding control
input for this purpose. In most cases, this enthalpy flow controller is implemented in such
a way that the temperature of the cathode gas at the SOFC inlet manifold is manipulated.
Suitable options—that are applicable over a wide range of operating conditions—make use
of model-based feedback-linearizing approaches or sliding mode techniques. If these are
combined with state and disturbance observers to estimate the temperature distribution
in the interior of the SOFC stack (represented typically by a finite volume model) and to
determine the values of disturbance heat flows and model deviations in terms of additive
input variables, both of them can be made robust against parameter uncertainty. A guar-
anteed proof of stability can be achieved by a combination of Lyapunov techniques with
tools from the area of interval analysis. Together, they allow for a guaranteed offline and
online stabilization of the system dynamics if relevant parameters and measured quantities
are known up to finitely large tolerance bounds [19–21]. Besides these approaches, very
recent techniques for a robust control which combine interval methods with fuzzy tech-
niques in terms of the so-called type-2 interval approach can be found in [22–24]. So far,
these techniques have been mostly applied to proton-exchange membrane (PEM) fuel cells.
However, from a methodological point of view, it may be interesting to compare them in
future work with the previously mentioned references that use classical interval methods
in the frame of SOFCs.

Despite these robust temperature control strategies, temperature variations in the
range of several Kelvin occur inevitably in the interior of an SOFC stack which have a
certain impact on the efficiency of the electric power production. This also holds for the
influence of the stack inlet temperature on the electric power characteristic. In previous
work, it was therefore proposed to represent the electric power characteristic in a model-
free manner by a current-dependent polynomial [25]. However, the coefficients of this
polynomial were not set to constant values but rather estimated during system operation by
the application of a Kalman filter [26,27]. In general, Kalman filters are optimal, minimum
variance state estimators for linear dynamic system models that are influenced additively
by Gaussian process and measurement noise. Under these assumptions, a Kalman filter
provides the possibility to estimate the expected values and covariances of the Gaussian
probability densities of the state variables. Based on these estimates, numerous control
approaches have been implemented in recent years. The most well-known technique is
the combination of Kalman filters with state feedback controllers that are parameterized
by the minimization of a quadratic cost function. This cost function takes into account
a weighted superposition of state tracking errors and the required control effort and is
typically referred to as LQR design [27,28].

For the online identification of the electric power characteristic of SOFCs, the Kalman
filter makes use of the terminal voltage and terminal current of the SOFC stack as the
measured parameters. The influence of the thermal operating point, gas mass flow and
current dependencies on the electric power of the SOFC stack cannot be described perfectly
by the assumed polynomial ansatz in [25]. Therefore, they are dealt with by adapting the
polynomial’s coefficients in an online, real-time implementable manner by means of the
Kalman filter in [25]. The estimation results then provided the required information to
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derive a maximum power point tracking procedure that uses the electric current as the
control variable.

In this paper, the Kalman filter-based online identification scheme from [25] is ex-
tended toward not only estimating current dependencies but also for quantifying the effect
of hydrogen gas mass flow variations. This latter extension is crucial for the derivation
of control procedures that do not only adjust the terminal current to achieve a certain
(maximum) power but also restrict the current such that overshooting the maximum power
point is prevented and the system is guaranteed to be operated in the region of Ohmic
polarization. In addition to current variations, the hydrogen mass flow will be adjusted
systematically with the help of the Kalman filter’s estimation results. In summary, it
becomes possible to optimize the fuel efficiency while simultaneously achieving a certain
electric power as the system output under the constraint of preventing an overshoot of the
maximum power point.

This paper is structured as follows. In Section 2, a summary of three structurally
different simulation models for the electric power characteristic of an SOFC stack is pre-
sented. These simulation models differ in both their accuracy and complexity. In this
paper, they are used to mimic different relations between the electric stack current and
the hydrogen mass flow as the system inputs (together with further temperature-induced
disturbances) to validate the proposed strategy for the online optimization of fuel efficiency.
This strategy is based on the online identification of the electric power characteristic of
an SOFC according to Section 3. This estimation scheme is then extended in Section 4
toward a real-time implementable current and hydrogen mass flow optimization. This
optimization aims at an improved fuel efficiency and simultaneously ensures that the SOFC
stack is operated in the regime of Ohmic polarization. The efficiency of this estimation and
optimization procedure is validated by means of numerical simulations in Section 5, before
conclusions and an outlook on future work are given in Section 6.

2. Modeling of the Electric Power Characteristic of Solid Oxide Fuel Cells

Previous work of the author has shown that the electric power characteristic of SOFCs
depends in a non-negligible way on the enthalphy flow of the supplied reaction me-
dia at the anode and cathode sides as well as on the internal temperature of the SOFC
stack [13,25]. Corresponding system models then make use of a finite-volume discretization
of the thermal system behavior according to Figure 1. Those system models can either
be derived in an equations-based form by representing phenomena such as heat conduc-
tion, heat convection, and exothermal reaction enthalpies [16]. Alternatively, data-driven
options [5,6,29,30] are possible which identify the nonlinear dynamics by means of feedfor-
ward neural networks (approximating nonlinearities in the voltage-current characteristic as
well as nonlinearities that can be traced back to Tafel’s equation [1,25,31,32]). These neural
network models are interfaced with linear dynamic elements to represent the thermal
system behavior in terms of ordinary differential equations [33]. From the point of view
of controlling the thermal operating point, it was shown that discretizations with L = 1,
M = 3, and N = 1 as indicated in Figure 1 are sufficiently accurate. Hence, the correspond-
ing segment temperatures ϑ(1,1,1), ϑ(1,2,1), and ϑ(1,3,1) can also be assumed to be available
for identification purposes of the electric power characteristic of the SOFC. A summary
of all variables required for the following modeling of the electric power characteristic is
given in Table 1.

2.1. Static Neural Network Model

As the fundamental, static electric power model, the neural network representation
according to Figure 2 is considered. Its optimal configuration of inputs qj, j ∈ {1, . . . , m},
can be identified by the procedure summarized in Section 2.2.1. This procedure relies on a
principal component analysis that is based on a singular value decomposition approach [34].
In [33], it was shown that the most relevant input parameters, which were acquired
in [13,33] with a sampling frequency of 10 Hz at a test rig available at the University of
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Rostock, Germany, are given by the quantities marked with the!symbols in the first row
of Table 2.

i=1 ,...,L

j=1 ,...,M

k=1,...,N

system
boundary

of supplied
media ṁχ,in

temperature ϑχ,in

=(1,M ,1)

=(1,1,N )

=(L ,1,1)

=(1,1,1)
=(L,M ,N )

1,M,N

⋮

⋮

=(L,M ,1)⋮

⋮

=(1,M ,N )

 
LM

 

 

L N

L
L

mass flow

local temperature distribution ϑ

volume elements ∈{(1,1,1), ... ,(L,M ,N )}

ambient temperature ϑA

ϑA

Figure 1. Spatial semi-discretization of the fuel cell stack module (arrangement of finitely large
volume elements in up to three space coordinates) [16].

Table 1. Variables of the solid oxide fuel cell (SOFC) model.

Variable Physical Meaning

ϑ(1,1,1), ϑ(1,2,1), ϑ(1,3,1) stack segment temperatures, discretization in the direction of gas mass flow
I electric stack current
U electric stack voltage
U̇ temporal derivative of the electric stack voltage
PEL electric power
ṁCG mass flow of supplied cathode gas (preheated air)
ϑCG,m gas inlet temperature at the cathode
ṁN2 nitrogen mass flow (anode)
ṁH2 hydrogen mass flow (anode)
ϑAG,m gas inlet temperature at the anode
ϑA ambient temperature
subscript index m measured variable (added for distinction from simulation and estimation results)
subscript index k discrete time index (sampling time: 0.1 s)

Table 2. Optimal network input selection for the neural network representations of the electric power characteristic
according to Figure 2 (first row) and 5 (second row), where ṁN2 ≈ 5.1 · 10−4 kg

s = const. The indices AG and CG denote the
anode and cathode gas components, respectively, while ϑA is the ambient temperature.

Network Type Network Inputs qk

ϑ(1,1,1) ϑ(1,2,1) ϑ(1,3,1) I U ṁCG ϑCG,m ṁN2 ṁH2 ϑAG,m ϑA

static voltage prediction (Figures 2, 7 and 9) ! % ! ! % % ! ! ! ! %

dynamic voltage prediction (Figure 5) ! % ! ! ! % ! ! ! ! %

According to Figure 2, the neural network (where the number of hidden layer neurons
with hyperbolic tangent activation functions was reduced from an initially overparam-
eterized model with L = 30 to L = 7, by using the principal component analysis from
Section 2.2.2) produces the stack voltage Uk, sampled at the same time instants k for which
the vector qk of input data is given. A multiplication of the network output with the
terminal current Ik of the SOFC stack then provides the corresponding power PEL,k. If
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the layer weights and bias variables which are highlighted by the filled arrow heads in
Figure 2 are optimized in MATLAB by means of the standard Bayesian regularization back-
propagation algorithm (parallelized on four CPU cores) with a maximum number of 5000
epochs, in which a worsening of the validation performance was allowed in 50 subsequent
iterations, the model accuracy according to Figure 3 is obtained. From the depicted horizon
of data, a random subdivision into training (70%), test (15%), and validation (15%) data
was performed as described in [33]. Note, the data in the current paper does not only
contain the measurements from [33] (the first approx. 1.5 hours of the depicted values in
Figure 3) but further experiments in which the hydrogen mass flow was adapted for a
constant electric current with variable power. These data were acquired in the experiments
published in [13].

... ... ∑

Bias Bias

q1,k

qm,k

H1

HL

Uk

Input
layer

Hidden
layer

Ouput
layer

•

Ik

PEL,k

Figure 2. Static neural network model for the electric power characteristic of the SOFC stack with the
network inputs ϑm,(1,1,1),k, ϑm,(1,3,1),k, Ik, ϑCG,m,k, ṁN2,k, ṁH2,k, ϑAG,m,k and the output Uk.

To show the variability of the SOFC input parameters qj,k, their respective measure-
ments are summarized in Figure 4. These further system inputs are identical for the
alternative, dynamic representations for the electric power characteristics described in the
Sections 2.3–2.5.

(a) Electric power: absolute values. (b) Electric power: approximation errors PEL,m −
PEL,stat.

Figure 3. Comparison between measured and estimated stack power, PEL,m and PEL,stat, for the system model in Figure 2.
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(a) Stack segment temperatures. (b) Gas inlet temperatures.

(c) Cathode gas mass flow. (d) Hydrogen mass flow.

(e) Electric stack current. (f) Stack voltage.

Figure 4. System inputs for the neural network model identification (experimental data).
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2.2. Optimization of the Neural Network Structure

In this subsection, a brief overview of the singular value decomposition approach for
finding optimal neural network inputs as well as for the optimization of the numbers of
hidden layer neurons is given. For implementation details, the reader is referred to [33].

2.2.1. Optimal Network Inputs

The selection of optimal (non-redundant and sufficiently information carrying) net-
work inputs is performed by means of a subset selection that is based on a singular value
decomposition of suitable matrices [34]. To find the optimal network inputs, the training
data matrix T ∈ Rl×m is considered, where l denotes the number of training samples; m is
the number of inputs to the networks, cf. Figure 2. Using this matrix T, a singular value
decomposition is performed according to

T = UTΣTVT
T , (1)

where UT
TUT = I and VT

TVT = I with the identity matrix I ∈ Rm×m hold. Due to the fact
that the number of training samples exceeds the number of network inputs, l > m holds.
Then, ΣT is a block matrix

ΣT =

[
diag{σT,1, . . . , σT,m}

0(l−m)×m

]
, (2)

where σT,1 ≥ σT,2 ≥ . . . ≥ σT,m ≥ 0 are the singular values sorted in descending order and
0(l−m)×m ∈ R(l−m)×m is a zero matrix of appropriate dimension.

The number ηT > 1 of relevant system inputs is identified as the largest integer
for which

ηT

∑
i=1

σ′T,i ≤ 1− εT (3)

holds with the normalized singular values

σ′T,i = σT,i ·
(

m

∑
i=1

σT,i

)−1

(4)

and the sufficiently small threshold value 0 < εT � 1.
According to [34], define the matrix V̄T as the first ηT columns of VT and partition

it into
V̄T =

[
V̄T,1 V̄T,2

]
(5)

with V̄T,1 ∈ RηT×ηT and V̄T,2 ∈ R(m−η)×ηT . Performing a QR factorization of V̄T
T with

column pivoting yields a permutation matrix PT ∈ Rm×m such that

QT[V̄T,1 V̄T,2
]TPT =

[
RT,1 RT,2

]
(6)

holds so that RT,1 is upper triangular and QT
TQT = I. Now, the selected input subset T1 is

obtained as
TPT ≡

[
T1 T2

]
, (7)

where T1 ∈ Rl×ηT . For consistency with Figure 2, the number ηT is afterwards renamed
into m.

2.2.2. Optimal Number of Hidden Layer Neurons

The selection of an optimal number of hidden neurons basically follows the same
procedure as described for the optimal input selection. The major difference is that the
matrix T from the previous subsection is now replaced by a matrix H ∈ Rl×L, where L is
the number of neurons in the hidden layer. This matrix is determined from a simulation
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of an over-parameterized neural network after its training up to the point of reasonable
convergence. Then, the matrix H is used to determine the singular value decomposition
UH, ΣH, VH, from which the 1 ≤ ηH < L most important singular values are extracted after
specifying a small positive threshold εH. This number ηH characterizes a systematically
chosen number of hidden layer neurons with which the training can be re-initialized. In
general, further reductions may be possible by executing the singular value decomposition
again after completion of the training phase, cf. [33].

2.3. First-Order Dynamic Neural Network Model

An extension of the static neural network system model described in the Section 2.1
is given in Figure 5. It is obtained by training the relationship between the input vector
qk (second row of Table 2) which has been augmented by the stack voltage Uk as a further
input variable. In this model, the time derivative U̇k is treated as the neural network output.
As described in detail in [33], the inputs and the output of this neural network need to
be low-pass filtered with identical time constants so that no undesired phase shifts occur.
Moreover, the variable U̇k is obtained — for the network’s training phase — by a numerical
derivative approximation after the aforementioned filtering.

...

... ∑

Bias Bias

q1,k

qm,k

Uk

H1

HL

U̇k

Input
layer

Hidden
layer

Ouput
layer

voltage

∫
dt

Uk •

Ik

PEL,k

Figure 5. Dynamic neural network model for the electric power characteristic of the SOFC stack with
the network inputs ϑm,(1,1,1),k, ϑm,(1,3,1),k, Ik, ϑCG,m,k, ṁN2,k, ṁH2,k, ϑAG,m,k, Uk and the output U̇k.

For the application of this neural network, the time derivative U̇k of the stack voltage
is numerically integrated and fed back to the network’s input layer. Moreover, the electric
power is obtained in analogy to the previous system model by a multiplication of Uk, i.e.,
the integrator output, with the electric current Ik. As in Section 2.1, the training has been
started with an over-parameterized hidden layer containing L = 30 neurons. Their number
was reduced by means of the principal component analysis summarized in Section 2.2.2
to L = 9. A comparison of the root mean square approximation error of this network in
Table 4 with the static alternative from Figure 2 shows a slightly worse approximation of
the actual fuel cell power. Hence, this option (visualized in Figure 6) is not considered
for the numerical validation of the proposed filter-based estimation and optimization
procedure of this paper. Instead, the dynamic system models described in the following
two subsections are employed.
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(a) Electric power: absolute values. (b) Electric power: approximation errors
PEL,m − PEL,dyn.

Figure 6. Comparison between measured and estimated stack power, PEL,m and PEL,dyn, for the
system model in Figure 5.

2.4. Hammerstein Neural Network Model with Integer-Order Dynamics

Hammerstein models are generally composed of a static input nonlinearity which
forms the input to a linear dynamic system. Following this philosophy, the system model
in Figure 7 is obtained. Here, the input nonlinearity is given by the same neural network
already described in Section 2.1. Due to the fact that the linear transfer function GIO(s) in
Figure 7 is a pure linear low-pass filter with gain equal to one, the steady-state outputs
of both the neural network and the linear transfer function, i.e., Ũk and Uk, respectively,
are identical.

... ... ∑

Bias Bias

q1,k

qm,k

H1

HL

Ũk

Input
layer

Hidden
layer

Ouput
layer

GIO(s) = 1
Ts+1

Uk •

Ik

PEL,k

Figure 7. Hammerstein-type dynamic model for the electric power characteristic of the SOFC stack
with integer-order dynamics with the network inputs ϑm,(1,1,1),k, ϑm,(1,3,1),k, Ik, ϑCG,m,k, ṁN2,k, ṁH2,k,
ϑAG,m,k and the output Ũk.

Hence, this Hammerstein-type extension of the static neural network model in Figure 2
aims at describing the transient processes for rapid changes in the inputs qk with enhanced
accuracy. As before, the electric power PEL,k is obtained by a pure multiplication of Uk
with Ik. Note, due to the restriction of GIO(s) to a first-order transfer function, the only
parameter to be optimized in this system model is the time constant T > 0 s. This parameter
is obtained by numerically solving a least squares optimization problem in which the
integral over the squared difference between the measured and simulated stack voltages
Uk is minimized. If the simulation step size is set equal to the sampling step size at which
measured data are available (100 ms), the lower parameter bound T ≥ 0.5 s ensures that
the discretization of the transfer function GIO(s) by means of an explicit Euler method is
sufficiently accurate.
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A further increase of the order of the transfer function GIO(s) did not show any
significant improvement of the model accuracy. Therefore, only this first-order model is
visualized in Figure 8 and listed in Table 4.

(a) Electric power: absolute values. (b) Electric power: approximation errors
PEL,m − PEL,IO.

Figure 8. Comparison between measured and estimated stack power, PEL,m and PEL,IO, for the system
model in Figure 7.

2.5. Hammerstein Neural Network Model with Fractional-Order Dynamics

The fractional-order extension in Figure 9 follows the same principal idea as the use
of the integer-order filter in the previous subsection. The only change is the replacement of
the integer-order powers of the Laplace variable s in the transfer function GIO(s) by non-
integer values in GFO(s). In the time domain, this corresponds to a fractional derivative
order ν with 0 < ν ≤ 1. Note, for ν ≡ 1 with n = 1, this model becomes equal to the
one of Section 2.4. However, for ν 6= 1, it provides a further degree of freedom for the
optimization in addition to the numerator and denominator coefficients bi and ai.

... ... ∑

Bias Bias

q1,k

qm,k

H1

HL

Ũk

Input
layer

Hidden
layer

Ouput
layer

GFO(s) =

n−1
∑

i=0
bisi·ν

n
∑

i=0
aisi·ν

Uk •

Ik

PEL,k

Figure 9. Hammerstein-type dynamic model for the electric power characteristic of the SOFC stack with fractional-order
dynamics with the network inputs ϑm,(1,1,1),k, ϑm,(1,3,1),k, Ik, ϑCG,m,k, ṁN2,k, ṁH2,k, ϑAG,m,k and the output Ũk.

A numerical optimization in the least-squares sense for the choice of n = 1 and
n = 3 led to the parameter values listed in Table 3. The resulting root of the mean square
approximation error (RMS) and the corresponding graphical comparison of both models
can be found in Table 4 as well as in Figure 10a–d.



Clean Technol. 2021, 3 216

Table 3. Parameters for the fractional-order transfer function GFO(s) in Figure 2 and 5 on the basis of
the optimized neural network with L = 7 hidden neurons (the fact that b0

a0
6= 1 indicates a static gain

adaptation by the employed optimization routine).

Order n Order ν a0 a1 a2 a3 b0 b1 b2

1 0.4864 2.5784 1.0000 − − 2.5951 − −
3 0.7195 0.5000 0.6053 6.4360 1.0000 0.5013 5.43 · 10−5 6.8654

(a) Electric power: absolute values (n = 1). (b) Electric power: approximation errors
PEL,m − PEL,FO1 (n = 1).

(c) Electric power: absolute values (n = 3). (d) Electric power: approximation errors
PEL,m − PEL,FO3 (n = 3).

Figure 10. Comparison between measured and estimated stack power, PEL,m and PEL,FO1 (resp.,
PEL,FO3), for the system model in Figure 9.

For the numerical evaluation of the fractional differential equations, which represent
the time domain formulation

n

∑
i=0

ai ·
d(i·ν)U(t)

dt(i·ν)
=

n−1

∑
i=0

bi ·
d(i·ν)Ũ(t)

dt(i·ν)
(8)

of the transfer function GFO(s), the MATLAB solver fde12 published in [35] was employed.
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Table 4. Overview of the training and simulation results for the neural network models in Figures 2, 5, 7, and 9.

No. Network Type Optimized? Training Data Hidden Neurons RMS

ϑ̇(1,1,1) ϑ̇(1,2,1) ϑ̇(1,3,1) U̇ U

Figure 2 voltage prediction (static) % % % % % ! 30 7.1388 W
Figure 2 voltage prediction (static) ! % % % % ! 7 5.5677 W

Figure 5 voltage prediction (dynamic) % % % % ! % 30 10.5563 W
Figure 5 voltage prediction (dynamic) ! % % % ! % 9 10.8218 W

Figure 7 voltage prediction (GIO(s)) % % % % % ! 30 7.1413 W
Figure 7 voltage prediction (GIO(s)) ! % % % % ! 7 5.4972 W

Figure 9 voltage prediction (GFO(s), n = 1) % % % % % ! 30 7.1469 W
Figure 9 voltage prediction (GFO(s), n = 1) ! % % % % ! 7 5.3782 W

Figure 9 voltage prediction (GFO(s), n = 3) % % % % % ! 30 7.1726 W
Figure 9 voltage prediction (GFO(s), n = 3) ! % % % % ! 7 5.3876 W

Due to the fact that the change of the model accuracy between n = 1 and n = 3 is
negligibly small, the further numerical evaluations are based on the system models from
Figures 2, 7 and 9, where n = 3 is chosen for the fractional-order system representation.

3. Kalman Filter-Based Power Estimation and Online Parameter Identification

To implement an instationary Kalman filter [26–28] on the basis of a general discrete-
time system model

xk+1 = Akxk + Ekwk (9)

with the measurement equation

yk = Ckxk + vk , (10)

the electric power characteristic of the SOFC is locally approximated at each time instant k
by a polynomial in the electric current and the hydrogen mass flow according to

PEL,k ≈
(

I[m1−1]
k ⊗ ṁ[m2−1]

H2,k

)
· xk . (11)

Here, the coefficient vector xk ∈ R∏2
i=1 mi represents the state vector to be estimated

by the Kalman filter. In addition, the Kronecker product which connects the vectors of
monomials of both the current and the hydrogen mass flow is denoted by ⊗.

Setting m1 = m2 = 3 in

I[m1−1]
k =

[
I0
k I1

k I2
k . . . Im1−1

k

]
(12)

as well as
ṁ[m2−1]

H2,k =
[
ṁ0

H2,k ṁ1
H2,k ṁ2

H2,k . . . ṁm2−1
H2,k

]
, (13)

second-order polynomials are obtained in both the electric current and the hydrogen mass
flow. This system model is a generalization of the one used in [25] (Equation (12)), where
only electric current dependencies were accounted for.

As mentioned above, the vector xk of yet unknown coefficients is treated as the state
vector of the Kalman filter. Its entries need to be adjusted at run-time to account for the
influence of changes of the stack temperature, the gas inlet temperatures and the cathode
gas and nitrogen mass flows. This adjustment is made on the basis of the voltage and
current measurements Uk and Ik, respectively. Thus, the measured power PEL,k = Uk · Ik
serves as a scalar realization of the general output vector yk given in Equation (10).
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In general, the Kalman filter for the system model (9) with (10) consists of the predic-
tion step

µ
p
x,k+1 = Akµe

x,k + Ekµw,k (14)

Cp
x,k+1 = AkCe

x,kAT
k + EkCw,kET

k (15)

as well as the measurement-based innovation

µe
x,k = µ

p
x,k + Lk ·

(
ŷk −Ckµ

p
x,k − µv,k

)
(16)

Ce
x,k = Cp

x,k − LkCkCp
x,k (17)

with the time-varying Kalman gain

Lk = Cp
x,kCT

k

(
CkCp

x,kCT
k + Cv,k

)−1
. (18)

Here, in full analogy to [25], the noise processes wk and vk are assumed to be given by
the stochastically independent normal distributions N

(
ξ, µξ , Cξ

)
, ξ ∈ {wk, vk}, ξ ∈ Rnξ

with

N
(
ξ, µξ , Cξ

)
=

1√
(2π)nξ · det

(
Cξ

) · exp
(
−1

2
(ξ − µξ)

TC−1
ξ (ξ − µξ)

)
(19)

and the corresponding mean vectors µξ and covariance matrices Cξ . Under the assumption
that both process and measurement noise have a vanishing mean, µξ ≡ 0 holds.

Due to the fact that the vector xk describes slow variations of the parameters of the
electric power characteristic of the SOFC in a model-free way, the system matrix Ak in (9)
is set to the identity matrix I9×9 ∈ R9×9. This corresponds to representing the dynamics of
these parameters by a so-called discrete-time integrator disturbance model, see also [25].

Due to the assumption of independent Gaussian noise processes for all components of
the state vector, the disturbance input matrix simplifies to Ek = I9×9 with a purely diagonal
covariance matrix Cw,k = diag

{[
σ2

w,1 . . . σ2
w,9
]}

. It is parameterized by means of the
standard deviations σw,i, i ∈ {1, . . . , 9}, of the state variabilities between two subsequent
sampling steps. These entries can be used as tuning factors in the Kalman filter parame-
terization to ensure a sufficiently fast convergence of the local approximation to the true
electric power characteristic.

With the help of this model, the predicted parameters (superscript p) of the electric
power characteristic can be described by the vector E{xk+1} = µ

p
x,k+1 of expected values

together with the corresponding covariance matrix Cp
x,k+1 according to

µ
p
x,k+1 = µe

x,k and (20)

Cp
x,k+1 = Ce

x,k + Cw,k . (21)

Here, the superscript symbol e on the right-hand sides denotes the outcome of the
previous innovation step. For the scalar power measurement (11) with the variance Cv,k,
the innovation step at the time instant k — which precedes the prediction (20), (21) — is
given by

µe
x,k = µ

p
x,k + Lk ·

(
ŷk − ȳT

k · µ
p
x,k

)
and (22)

Ce
x,k = Cp

x,k − Lk · ȳT
k ·C

p
x,k . (23)

In (22) and (23), the time-varying Kalman gain introduced in (18) results in

Lk = Cp
x,k · ȳk ·

(
ȳT

k ·C
p
x,k · ȳk + Cv,k

)−1
∈ R9 , (24)



Clean Technol. 2021, 3 219

where
ȳT

k =
(

I[2]k ⊗ ṁ[2]
H2,k

)
. (25)

In [25], the standard deviation

σPEL,k =

√
E
{(

PEL,k − E
{

PEL,k
})2
}

(26)

was introduced for a quantification of the uncertainty in the approximation of the electric
power characteristic. If both current and mass flow dependencies are accounted for,
Equation (26) turns into

σPEL,k =

√
E
{

ȳT
k ·
(

xk − µe
x,k

)
·
(

xk − µe
x,k

)T
· ȳk

}

=

√
ȳT

k · E
{(

xk − µe
x,k

)
·
(

xk − µe
x,k

)T
}
· ȳk

=
√

ȳT
k ·C

e
x,k · ȳk .

(27)

As soon as σPEL,k becomes approximately constant after a certain number of successive
prediction and innovation steps, or falls below a certain threshold, adjustments of the
stack current as well as the gas mass flow are admissible by the optimization procedure
described in the following section. This criterion allows for a clear separation of the time
scales of the transient phase of the Kalman filter-based parameter identification as well as
of the following optimization procedure so that instabilities due to overlapping time scales
are avoided. Moreover, σPEL,k serves as a quality criterion that allows for checking how
close the actual operating state of the SOFC can come to a desired electric operating point.

Note, the goal of operating the SOFC in the region of Ohmic polarization is ensured if

∂PEL,k

∂Ik
≈
([

0 1 2Ik . . . (m1 − 1) · Im1−2
k

]
⊗ ṁ[m2−1]

H2,k

)
· µe

x,k > 0 (28)

holds.

4. Online Optimization of the Electric Current and Hydrogen Mass Flow

In this section, an online optimization of the electric current and hydrogen mass flow
of the SOFC is implemented such that a desired operating point (specified by its desired
electric power PEL,d) is attained. Simultaneously, the supplied hydrogen mass flow should
be minimized. This is expressed by the cost function

Jk = (PEL,k − PEL,d)
2 + γ1ṁ2

H2,k + γ2 ln
(

Imax,k

Imax,k − Ik

)
(29)

with the electric power PEL,k according to (11), which is evaluated for the results µe
x,k of the

Kalman filter’s innovation step. The cost function Jk includes a strict barrier in terms of
a logarithmic term that helps to make sure that the electric current Ik does not exceed its
admissible upper bound Imax according to the inequality

Ik < Imax,k :=
z · F

MH2 · Nc
· ṁH2,k . (30)

This inequality results from Faraday’s law and can alternatively be formulated as a
lower limit ṁH2,min,k for the supplied hydrogen mass flow

ṁH2,k > ṁH2,min,k =
MH2 · Nc

z · F · Ik . (31)
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Here, z = 4 is the number of electrons involved in the reaction between hydrogen
and oxygen, F = 9.6485 · 104 As

mol is Faraday’s constant, MH2 = 2.01588 · 10−3 kg
mol the molar

mass of hydrogen, and Nc the number of (planar) fuel cells that are electrically connected
in series under the assumption of a homogeneous mass flow over all of the cells. For
compatibility with the system identification in Section 2, Nc = 60 is used in the following.

For both formulations (30) and (31), the boundary of the admissible operating domain
is represented by an infinitely large cost in (29). This infinite cost is attained on the boundary
of the admissible operating domain, i.e., for those conditions at which the hydrogen mass
flow is completely consumed by the production of the actual electric power PEL,k.

If the system’s optimization is initialized with an admissible operating point
(

Ik, ṁH2,k
)

satisfying the inequalities (30) and (31), it is guaranteed by the following optimization
scheme that all subsequent operating points are also admissible.

From a system theoretic perspective, the inclusion of the inequality (30), or alter-
natively (31), in the cost function (29) by means of logarithmic terms is inspired by the
so-called barrier Lyapunov function technique [17,18,36]. It represents a kind of repelling
potential that forces the optimization results to stay within the admissible operating do-
main. In other control-oriented research activities such approaches are employed to prove
stability of a closed-loop controller in the presence of hard one- or two-sided state and
output as well as actuator constraints. For further details about real-time capable strategies
for parameter adaption of nonlinear robust feedback controllers exploiting such barrier
functions, the reader is referred to [17,18,37] as well as to [38]. The focus of the last refer-
ence is on using sensitivity-based feedforward and predictive control procedures to avoid
exceeding state constraints instead of exploiting barrier function techniques.

The online optimization of the cost function (29) is performed by means of a gradient
descent method [39,40] for an adaptation of the control inputs

uk =
[
Ik ṁH2,k

]T (32)

according to the update rule
uk+1 = uk − α · ∇Jk · Jk (33)

with the step size parameter α > 0 . To ensure a fully deterministic behavior of the
optimization algorithm, only a single update step according to (33) is performed at each
discretization instant.

The step size parameter α in (33) is set to

α = 10−3 · 1√
∇JT

k · ∇Jk

(34)

for the implementation in the following section, where ∇Jk is the gradient of the cost
function Jk (with PEL,k as the measured power and P̂EL,k the estimate of the Kalman filter
provided after executing the innovation stage)

∇Jk =


∂Jk
∂Ik

∂Jk
∂ṁH2,k

 =


2 · (PEL,k − PEL,d) ·

∂P̂EL,k

∂Ik
+ γ2 ·

1
Imax − Ik

2 · (PEL,k − PEL,d) ·
∂P̂EL,k

∂ṁH2,k
+ 2γ1ṁH2,k

 , (35)

where
∂P̂EL,k

∂Ik
:=
([

0 1 2Ik . . . (m1 − 1) · Im1−2
k

]
⊗ ṁ[m2−1]

H2,k

)
· µe

x,k (36)

and
∂P̂EL,k

∂ṁH2,k
:=
(

I[m1−1]
k ⊗

[
0 1 2ṁH2,k . . . (m2 − 1) · ṁm2−2

H2,k

])
· µe

x,k (37)
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hold. Note, all current and mass flow dependencies of the expressions in (35)–(37) are
expressed in terms of the previous commanded values uk, so that filtering of these quantities
is not required for an online implementation.

As described in the previous section, updates of uk are only executed when σPEL,k
in (27) is approximately constant for at least 10 s or sufficiently small. If this is not the case,
uk+1 = uk is used in the following numerical validation.

Moreover, the further parameters used for the optimization in the following section
are γ1 = 100 and γ2 = 1. Due to the relatively long time constants for variations of
operating points in SOFCs, the optimization procedure is evaluated each second, i.e., at
each tenth sampling point of the Kalman filter. It performs an underlying check whether
the inequality (28) can be expected to be satisfied in the following time step. If not, the
electric current is reduced. To avoid too large update steps by the previously introduced
scaling factor α, this value is reduced if the update leads to mass flow variations that exceed
1% of the current amount of supplied hydrogen. Moreover, the hydrogen mass flow is
kept constant if the gradient-based update rule suggests its reduction in cases when its
current value is only 5% larger than the limit given in (31). Then, only adaptations of Ik are
performed.

5. Numerical Validation

The numerical validation of the Kalman filter and its use for the online input opti-
mization of the SOFC is subdivided into two subsections. First, the capability of detecting
a system operation in the regime of Ohmic polarization, characterized by the increasing
branch of the estimated power characteristic is demonstrated on the basis of the simulation
models shown in Section 2. Second, the Kalman filter is initialized on the basis of these
simulations up to a certain point of time, at which the online optimal control is activated.

5.1. Identification of Operation in Ohmic Polarization

In Figure 11, it is shown exemplarily for the static neural network model as well as for
the proposed fractional-order system representation that the Kalman filter according to
Section 3 can identify regions, where the operating point overshoots the point of maximum
electric power. Note, all system inputs qk of the evaluated models are given by the
experimental data depicted in Section 2.

Those regions, where the operating point exceeds the maximum power point, are
visualized in gray color in Figure 11. Note, although different simulation approaches were
employed in both subgraphs, the estimation results are in good coincidence. Orange color
indicates the estimated expected value P̂EL,k, while the two further colors represent the
interval

[
P̂EL,k − 3σPEL,k ; P̂EL,k + 3σPEL,k

]
in which the standard deviation σPEL,k is estimated

according to (27).

(a) System model acc. to Section 2.1. (b) System model acc. to Section 2.5 (n = 3).

Figure 11. Detection of operating points exceeding the maximum power point.
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Figure 12 analyzes the previous statements concerning the overshoot detection with
respect to the maximum power point in more detail. Setting the mass flow equal to the
measured values at two selected points of time, see Figure 11a, the local quadratic ap-
proximations of the power characteristic can be depicted as function of the stack current.
Obviously, Figure 12a represents an operating condition, where the system is close to its
maximum power point, while in Figure 12b a reduction of the stack current (and/or, re-
spectively, increase of the hydrogen mass flow) would be necessary to ensure the operation
in the regime of Ohmic polarization.

(a) Approximation for t = 25, 200 s. (b) Approximation for t = 41, 400 s.

Figure 12. Estimated quadratic approximations of the power characteristics as a function of the
electric current I for operating points not exceeding the maximum power point (Figure 12a) and
exceeding this critical point (Figure 12b).

5.2. Validation of the Kalman Filter-Based Input Optimization

Figures 13–15 depict the optimization of the input vector uk as described in Section 4.
For the analysis of the robustness of the proposed optimization scheme, three different
types of desired power variations are considered. These are

• step-wise changes,
• sinusoidal power variations, and
• a smooth transition between operating points that is characterized by the superposi-

tion of atanh functions.

In all three cases, the first 1000 s of the data from Section 2 were employed to ini-
tialize the Kalman filter (note, in practice, also much shorter phases are sufficient; the
choice is only motivated by the fact that the adaptation of uk should be restricted to a
domain in which overshooting the maximum power point is avoided). All three depicted
optimization results as well as the comparison of the roots of the mean square tracking
error according to Table 5 show an excellent performance of the proposed methodology.
A further smoothening of the input signals and a reduction of remaining tracking errors
could be achieved by a combination with the closed-loop controllers presented in [13], for
which the method presented in Section 4 could be used as a kind of feedforward control
signal generator.

Finally, it should be pointed out that the proposed estimation and optimization
procedure is readily implementable for real-time applications. This is underlined by the
fact that the average computing times of the Kalman filter-based estimation in combination
with the input optimization were approx. 22.3µs with a standard deviation of 54.9µs on a
standard notebook computer under Windows 10, 64 bit, Intel i5-8365U CPU @1.60GHz,
in a MATLAB 2019B implementation in which no specific optimizations by means of
precompiling individual subroutines were performed. Note, this computing time is smaller
by more than a factor of 1000 than the sampling period so that it does not impose any
severe restrictions concerning real-time implementability.
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(a) Optimized fuel cell power. (b) Electric current.

(c) Hydrogen mass flow.

Figure 13. Input optimization for the fractional-order system model with n = 3 for step-wise changes
of the desired electric power.

(a) Optimized fuel cell power. (b) Electric current.

(c) Hydrogen mass flow.

Figure 14. Input optimization for the integer-order system model for sinusoidal changes of the
desired electric power.
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(a) Optimized fuel cell power. (b) Electric current.

(c) Hydrogen mass flow.

Figure 15. Input optimization for the static neural network system model with n = 3 for smooth
changes of the desired electric power.

Table 5. Comparison of the tracking behavior of the proposed input optimization scheme for various
system models and different types of reference signals for the desired electric power.

System Model Reference Signal RMS

Figure 2 step-wise changes 5.3969 W
Figure 2 sinusoidal 4.8799 W
Figure 2 smooth 1.2417 W

Figure 7 step-wise changes 5.6445 W
Figure 7 sinusoidal 4.9088 W
Figure 7 smooth 2.1662 W

Figure 9 (n = 3) step-wise changes 5.3298 W
Figure 9 (n = 3) sinusoidal 4.7466 W
Figure 9 (n = 3) smooth 1.3455 W

6. Conclusions and Outlook on Future Work

In this paper, a real-time implementable Kalman filter-based optimization procedure
for tracking temporally varying electric power demands of SOFCs was presented. This
approach allows for a robust optimization of the fuel utilization. It is readily applicable to
real-life applications and computationally cheap to implement.

As it has been shown that low-order fractional differential equation models may be
useful to enhance the modeling accuracy for electrochemical systems such as the power
characteristic of SOFCs, future work will deal with an in-depth robustness assessment
of fractional-order system representations. Initial work into this direction can be found
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in [41,42], where novel interval-based simulation routines were developed for this class of
systems.
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