
HAL Id: hal-03152032
https://ensta-bretagne.hal.science/hal-03152032

Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasibility interval and sustainable scheduling simulation
with CRPD on uniprocessor platform

Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, Frank Singhoff

To cite this version:
Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, Frank Singhoff. Feasibility interval and sustainable
scheduling simulation with CRPD on uniprocessor platform. Journal of Systems Architecture, 2021,
115, pp.102007. �10.1016/j.sysarc.2021.102007�. �hal-03152032�

https://ensta-bretagne.hal.science/hal-03152032
https://hal.archives-ouvertes.fr

Feasibility Interval and Sustainable Scheduling
Simulation with CRPD on Uniprocessor Platform

Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, Frank Singhoff

Lab-STICC, CNRS UMR 6285, Univ. Brest, France

Abstract

The use of hardware caches became essential in modern embedded systems to
address the speed gap between processor and memory. In such systems, cache-
related preemption delay (CRPD) may represent a significant proportion of task
execution time. Addressing this delay in scheduling simulation of these systems
stays an open and under-examined problem. Assumptions are often made to
simplify the computation model used in simulation and capture the worst-case
effect. Nevertheless, they can introduce situations in which scheduling simula-
tion is considered not only pessimistic but also non-sustainable. In this article,
we discuss the problem and propose a less pessimistic CRPD computation model
that allows sustainable scheduling simulation regarding the capacity parameter.
With the proposed model, a system that is schedulable with simulated worst-
case execution times remains so when these parameters are reduced. These
results improve the applicability of scheduling simulation in the early verifica-
tion stage for systems with caches. Experiments conducted with our CRPD
computation model show a 5% to 12% improvement of schedulability task set
coverage and a 30% to 50% reduction of preemption cost with regard to exist-
ing CRPD computation models. An integration in a scheduling simulator and
a performance evaluation are also realized for the proposed model.

Keywords: real-time embedded systems, scheduling simulation, cache related
preemption delay

1. Introduction

The popularization of cache memory in the embedded market comes from
two motives. First, over the past two decades, processor speeds have increased
dramatically. The use of high performance embedded processors means that
memory access time has become a significant bottleneck which requires the use of5

cache memory. Second, more and more commercial off-the-shelf components are
used in real-time embedded system (RTES) design as they allow significant cost
savings [1]. Indeed, most commercial processors incorporate cache memories.

Cache memory may enhance the whole performance in term of response
time; however, it can also lead to execution time variability due to the varia-10

Preprint submitted to Journal of System Architecture February 6, 2021

tion of preemption cost in preemptive scheduling context. Multiple tasks could
share this hardware resource which may lead to cache-related preemption delay
(CRPD) being introduced. By definition, CRPD is the delay added to the ex-
ecution time of a preempted task because it has to reload cache blocks evicted
by a preemption [2]. The work in [3] has shown that CRPD can represent up15

to 40% of the Worst-Case Execution Time (WCET) of a program.
One of the most distinctive traits of RTES is that they have to respect

critical timing constraints. In these systems, the schedulability of each task
must be determined by applying scheduling analysis methods. As we have seen
that the effect of CRPD is not negligible, it is critical to account for this delay20

in scheduling analysis. In this article, we discuss an approach to address CRPD
in simulation-based scheduling analysis.

Scheduling simulation is a popular analysis method used in early verifica-
tion to provide a mean to detect timing constraint violations and evaluate the
schedulability of a RTES. The advantage of simulation is that it allows system25

designers to perform fast prototyping with certain levels of accuracy. In a study
conducted in [4], it was observed that the cost of solving a fault detected at the
early verification step can be 16 times less than solving it later in the develop-
ment life-cycle. In order to perform scheduling simulation, one needs to define
an abstract model of the targeted system including its software and hardware30

components as well as their interactions. Then, the schedule over a given inter-
val of time is computed and properties such as timing constraint violations are
evaluated [5].

Three properties are important to assess the applicability and the validity
of scheduling simulation: sustainability, feasibility interval, and pessimism.35

� First, a given scheduling policy and/or a schedulability test is sustainable
if a system that is schedulable under its worst-case specification remains so
when its behavior is better than the worst-case [6]. This property allows
us to guarantee the schedulability of a system by analyzing or testing
only the worst-case scenario instead of all possible cases, which is nearly40

impossible to achieve in practice.

� Second, scheduling simulation is a valid schedulability test for a given
system under the assumption that the feasibility interval is known. By
definition, the feasibility interval is the minimum interval needed to verify
the schedulability of a system [7]. If no deadline is missed during this45

interval, we can guarantee that no deadline will ever be missed. This
property allows us to guarantee the schedulability of a system by simu-
lating it during a limited interval of time, under the assumption that it is
sustainable.

� Finally, pessimistic assumptions are often taken in scheduling analysis and50

it is not an exception in scheduling simulation. However, if they are too
pessimistic, it leads to a conclusion that a system requires significantly
more computing resources to be schedulable than it is in practice.

2

Problem statement and contribution: In the context of an RTES with
caches, as far as we know, the applicability and the validity of scheduling simu-55

lation is still an open and under-examined problem. The assumptions, which are
made to simplify the computation of CRPD and capture the worst-case effect,
can introduce a situation in which scheduling simulation is non-sustainable [8],
with an unknown feasibility interval and pessimistic. These three issues signifi-
cantly limit the use of scheduling simulation as a verification method for systems60

with caches.
We need a formalization of scheduling simulation with CRPD to systemati-

cally address these issues. To the best of our knowledge, scheduling simulation
is only used in previous studies [9, 10, 11] to illustrate the effect of CRPD. The
authors also used simulation in their experiments; however, the method to per-65

form the simulation has not been formalized. Another problem to consider is
the lack of support for cache memory and CRPD in existing scheduling simula-
tors developed in academia [12, 13, 14]. Indeed, the development of open-source
scheduling simulators is not keeping pace with analytical-based approaches. The
most recent efforts to account for cache memory are SimSo [15] and Cheddar [16]70

which do not address the problems regarding sustainability, feasibility interval
and pessimism.

In this article, we first introduce a formalization of scheduling simulation
that allows us to systematically describe and address these issues related to
CRPD. Then, we propose a new CRPD computation model called Con-lim. In75

this model, based on an observation regarding task execution and preemption
cost at different program points in [17], we define a constraint that bounds the
CRPD by the executed capacity of a task. We show that when this assumption
holds, scheduling simulation is sustainable and less pessimistic. In addition, this
assumption also helps us to exhibit a proof of the feasibility interval. Finally,80

Con-lim leads to the implementation of a CRPD-aware scheduling simulation
methodology which is freely available as a part of Cheddar scheduling simula-
tor [18].

Organization: the rest of the article is organized as follows. Section 2
discusses related work and positions our contribution. Section 3 formalizes85

the concept of scheduling simulation and presents the system models as well
as assumptions taken in this work. Section 4 presents our application of the
formalization to existing CRPD computation models. Our proposition of an
improved computation model is discussed in section 5. Section 6 describes the
sustainability problem in scheduling simulation and proves that our proposed90

model can guarantee sustainable scheduling simulation regarding the capacity
parameter. Then, section 7 provides a feasibility interval proof. Section 8 eval-
uates the pessimism of the proposed CRPD computation model with synthetic
task sets. Section 9 presents the implementation of a CRPD-aware scheduling
simulator in Cheddar [18], an open source scheduling analyzer, which is freely95

available for researchers and practitioners. Finally, section 10 concludes the
article and discusses future work.

3

2. Related Work

In this section, we discuss prior work on scheduling analysis of RTES with
caches as well as position our contribution. Several solutions were introduced to100

consider parameters which capture cache effects in scheduling analysis. In [19],
the authors classified these solutions in two categories: cache-aware scheduling
and CRPD-aware scheduling.

In cache-aware scheduling, cache accesses are considered precisely and the
cache state at each instant has to be known during the system execution, thus,105

the exact sequence of memory blocks accessed during the task execution must
be known [19]. Because of this requirement, cache-aware scheduling analysis is
impossible to achieve in practice, except for very simple systems.

In CRPD-aware scheduling, the cache effect is assessed through induced pre-
emption delays [19]. Upper-bounds on the additional delays due to the cache110

every time a task resumes after a preemption, are precomputed by applying
static analysis. Contrary to the cache-aware scheduling problem, the task mem-
ory accesses and the cache state at each instant are not required. Thus, CRPD-
aware approaches are more applicable in simulation. Our work is positioned in
the context of CRPD-aware scheduling.115

Static analysis is mostly preferred to compute upper-bounds on the CRPD
because it is difficult to determine the worst cases by measurement as stated
in [20]. The bounds on the CRPD can be computed using Evicting Cache Blocks
(ECBs) [2] or Useful Cache Blocks (UCBs) [21]. By definition, ECBs are blocks
used by a preempting task that might override some cache locations used by the120

preempted task [2]. UCBs are blocks used by a task that are reused later on and
will have to be reloaded if evicted from the cache due to preemption [21]. These
bounds are incorporated in schedulability analysis to ensure predictability by
analytical means or scheduling simulation. Thus, CRPD-aware approaches can
be further classified as either analytical-based or simulation-based ones. In order125

to provide a complete insight of CRPD-aware approaches and better position
our contributions, related work in both domains are presented below.

2.1. Analytical-based approaches

Researchers focus on fixed-task priority scheduling and incorporate CRPD
in the response time analysis by considering either the preempting task [2], the130

preempted one [21] or both of them [22, 9, 10]. In [2] and [21], CRPD is only
computed by considering either ECBs or UCBs. Later in [22, 9, 10], tighter
upper-bounds on CRPD are computed by exploiting both ECBs and UCBs so
that a higher schedulability task set coverage is achieved. Later, in [23], the
authors proposed an extension of CRPD analysis for Earliest Deadline First135

(EDF) scheduling based on the processor demand bound function feasibility
test.

In another line of work, the authors in [24] present a method to argue about
the WCET of each task with the exact cost due to CRPD and provide a safe
estimation of the maximal number of preemptions the task may experience140

within a hyper-period, which is equal to the least common multiplier of all task

4

periods [25]. However, the authors considered a fixed cost for preemption cost
thus they did not account for a precise CRPD computation.

The methods presented above only consider the CRPD to assure predictabil-
ity, and no change was made to the scheduling policy itself. Certain techniques145

can be used to either eliminate or limit the effect of CRPD. In [26], the authors
studied cache partitioning to increase the predictability by eliminating CRPD.
They also showed that the decrease in CRPD does not compensate for the in-
crease in the worst-case execution time of tasks when the cache is partitioned.
In [17], the author aimed to reduce CRPD per preemption by applying the150

effective preemption points technique. Each job of a task is modeled by a se-
quence of non-preemptive basic blocks, and preemption is allowed only at basic
block boundaries. A memory layout optimization technique is also proposed
in [27, 28] to achieve the same objective. In another line of work, the authors
aim to effectively reduce the number of preemptions by preemption threshold155

scheduling [29]. In [30], the authors presented the deferred preemption model.
In this model, each job of a task is modeled by a sequence of non-preemptive
regions separated by a fixed preemption point. It allows a task to run for a
period of time without being preempted up to a specific limit.

The problem of computing an optimal scheduling with preemption delays160

is NP-hard as proved in [8] and neither fixed-task nor fixed-job priority-based
scheduling algorithms can be optimal for this problem. The authors also de-
scribed an offline scheduling approach to synthesize an optimal scheduling table
taking into account CRPD by solving a Mixed Integer Linear Programming
(MILP) problem [20].165

2.2. Scheduling simulation based approaches

A significant amount of effort has been put in the development of scheduling
simulators [12, 13, 14, 31, 18] since the seminal work of [32]. The support for
cache as well as CRPD is not available in existing scheduling simulators such as
MAST [12], STORM [13] and YARTISS [14] that are developed in academia.170

In [31], the authors present SimSo — a scheduling simulation tool that supports
cache sharing on multi-processor systems. It takes into account the impact of
caches through statistical models and also the direct overheads such as con-
text switches and scheduling decisions. The memory behavior of a program is
modeled based on the Stack Distance Profile (SDP) — the distribution of the175

stack distances for all the memory accesses of a task, where a stack distance is
by definition the number of unique cache lines accessed between two successive
accesses to a same line [33]. However, it is difficult to see how the usage of SDP
can guarantee the worst-case behavior of preemption during simulation. To the
best of our knowledge, it is unclear how to investigate the sustainability and180

compute the feasibility interval with such model.
Indeed, very few studies have focused on the effect of preemption delay by

simulation. In some cases, the authors used simulation in their experiments;
however, the method to perform the simulation has not been formalized. Our
previous work in [16] presents a CRPD-aware scheduling simulator that is com-185

pliant with existing analytical methods in [21], [2], [34] and [28]; however, the

5

problems regarding sustainability, feasibility interval and pessimism are not ad-
dressed. In this article, we aim to address these issues by presenting a formal
and detailed description of CRPD-aware scheduling simulation.

The main advantage of the analytical approaches above is that they require190

less computational complexity and are sustainable with regard to task capaci-
ties, periods and deadlines [19]. The limitation is that, comparing to scheduling
simulation, analytical approaches are more pessimistic and have a lower schedu-
lability task set coverage. Scheduling simulation, despite of its popular use in
the industry, has been proved to be a non sustainable schedulability test with195

existing CRPD computation models [19]. Thus, in the studies above, scheduling
simulation was used as a necessary condition or a baseline to evaluate and com-
pare different approaches in terms of schedulability task set coverage. In this
article, we show that scheduling simulation with our CRPD computation model
is less pessimistic comparing to existing simulations and results in a higher num-200

ber of schedulable task sets. It complements existing work on the scheduling
simulation aspect by providing a better baseline that yields a higher percentage
of schedulability task set coverage. In addition, scheduling simulation can also
be used to record and analyze properties such as the numbers of preemptions
and various scheduling events that are not observable in static analysis. Fur-205

thermore, we show that under certain restricted scenarios, scheduling simulation
also provides a sufficient condition for schedulability.

3. Formalization of CRPD-aware scheduling simulation

In this section, we first formalize the concept of scheduling simulation. Then,
we identify the characteristics that make a simulation CRPD-aware. The system210

model, notations used and assumptions taken in this work are presented along.
Works in this domain [12, 13, 14, 31, 18], including ours, adopt assump-

tions with regard to system models, scheduler and simulation interval that are
well-established in the real-time scheduling theory. The main goal of scheduling
simulation is to verify the schedulability and detect the violations of timing con-215

straints. As an exhaustive exploration with all possibilities of input parameters
and timing properties is not possible, simplified models of tasks and underlying
hardware architectures are used. In addition, timing properties are only verified
in the worst case scenarios. Furthermore, we need to define a scheduler that
provides an algorithm or a policy for ordering the execution of tasks on proces-220

sors according to some predefined criteria [35]. Lastly, the simulation is done in
a limited interval of time which is generally proved to be sufficient to guarantee
the schedulability.

Definition 1 (Scheduling simulation). Scheduling simulation is a simula-
tion of a task set T on an architecture model M under a scheduler S over a225

limited interval of time F

Assumptions of this work regarding T ,M,S and F are presented below.
Classical notations of real-time systems are used to express our models:

6

� A task set consists of n independent periodic tasks, T = {τ1, ..., τn}. A
task is defined by a quintuple: (Ci, Ti, Di, Πi, Oi). The parameter Ci,230

called the capacity, denotes the worst-case execution time (WCET) of
task τi when it executes non-preemptively starting from an empty cache.
Ti, called the period, denotes the fixed interval between two successive
releases of τi. Di is the deadline of τi. In this article, we assume that
tasks have constrained deadlines (i.e. ∀i : Di ≤ Ti).235

A release of a task τi at time t is called a job and denoted as τi[t]. The
first release of a task is at time t = Oi. We assume relative deadlines [36]
which means that all deadlines are relative to the release time of jobs. For
instance, the deadline of τi[t] is at time t+Di. If ∀τi : Oi = 0, the task set
is called synchronous; otherwise, the task set is called asynchronous. All240

timing parameters are assumed to be non-negative integers, i.e. they are
multiples of some elementary time intervals (for example the “CPU tick”,
the smallest indivisible CPU time unit).

A task is assigned a priority level Πi. We assume that the larger the value,
the higher the priority level. In addition, we assume that when a task245

completes execution, its instructions in the cache are completely evicted.
The problem of persistent cache block (PCB), which was described in [37],
is not addressed in this work. We are aware that taking into account PCBs
can result in less pessimistic simulations by allowing PCB-based WCET
reductions. In this case, we can assume that subsequent jobs of a task can250

reuse the UCBs from previously released jobs. The main challenge is to
prove that this WCET reduction is safe and finding a lower-bound. This
problem has not been addressed in the existing work, and is not in the
scope of this article.

� We assume a fixed-priority preemptive (FPP) work-conserving scheduler255

S. Work-conserving means that whenever a task completes earlier than
its WCET, the scheduler does not idle up to the theoretical WCET of the
task but executes other tasks.

� We assume a uniprocessor architecture model M with one level direct-
mapped instruction cache shared amongst tasks. The processor has a260

single processing unit that is used to execute tasks. We assume this cache
architecture because it is easier to capture the worst-case effect of CRPD
than complex ones which include data cache or multi-level of caches. In
the sequel, the term data is used to refer to a task’s data in the instruction
cache.265

� The interval F is chosen such that it is the minimum known interval
needed to verify the schedulability of task set T with regard to (M,S, C),
which is also called the feasibility interval. By definition, it is sure that
no deadline will ever be missed if and only if, when we only keep the task
requests made in F , all their respected deadlines are met [7].270

7

CRPD is taken into account in scheduling simulation through the assessment
of preemption delay. Without considering the effect of preemption delay, the
duration that a job occupies the processor is equal to or less than the task
capacity. However, when CRPD is taken into account, a job may occupy the
processor longer than the task capacity. Thus, there is a difference between the275

capacity of a task and the execution time of its jobs. We define the two terms
as follows.

Definition 2 (Capacity). The capacity Ci of a task τi is its statically analyzed
worst-case execution time. It does not include the delay added due to CRPD at
runtime.280

Definition 3 (Execution time). The execution time Et
i of a job τi[t] consists

of the duration of time during which the job occupies the processor and the delay
added due to CRPD at runtime.

To facilite the later discussion on the subject of sustainability, we provide
the definition of two terms ”reduced capacity” and ”executed capacity”. The285

first term was used in the seminal work of [6]. Even though one can argue
that the capacity is statically analyzed thus cannot be reduced, this term was
popularly used and accepted in sustainability analysis. The second term is
useful in demonstrating the effect of CRPD.

Definition 4 (Reduced capacity). A task τi has a reduced capacity if it only290

requires C ′i < Ci units of time to complete its execution. It does not include the
delay added due to CRPD at runtime.

Definition 5 (Executed capacity). The executed capacity of a job of task τi
refers to the portion of its capacity that has been executed, without any CRPD
taken into account.295

For each job, the execution time must be computed by both the correspond-
ing task’s capacity and the CRPD, which is taken into account in scheduling
simulation by considering two types of events:

� Task execution events, which are denoted as Exec(τi, t), are raised when
task τi executes on the processor at time t.300

� Preemption events, which are denoted as Prem(τi, τj , t), are raised when
task τi is preempted directly or indirectly by higher priority task τj at
time t. In our work, the notion of preemption is applied to both direct
and nested preemptions, which are defined as follows.

Definition 6 (Direct Preemption [21]). τi is said to be directly pre-305

empted by a higher priority task τj released at time t if τi is executing at
time t− 1 and is not completed at time t.

8

Definition 7 (Nested Preemption [10]). τi is said to be indirectly pre-
empted by a higher priority task τj released at time t if τi is not completed
at time t and is not executing at time t− 1310

The reason τi is not executing at time t is because it was preempted
by another higher priority task before time t. In this case, τj indirectly
preempts τi by preempting the task that preempted τi; hence we call this
a nested preemption. When a task preempts several lower priority tasks,
we need to handle several preemption events.315

The method of handling the two types of events is defined by a CRPD com-
putation model. It consists of assumptions regarding cache access profile and
events that allow us to study the effect of CRPD during scheduling simulation.

Definition 8 (CRPD computation model). A CRPD computation model
C describes a method of computing the CRPD added to the execution time of a320

task when it resumes after a preemption. A model is defined by C = {Γ,H}. Γ
is the cache access profile which describes the cache utilization of tasks. H is an
algorithm to handle preemption events and task execution events.

Definition 9 (CRPD-aware scheduling simulation). A CRPD-aware sch-
eduling simulation is a scheduling simulation with a CRPD computation model325

C

In the next section, we apply the presented formalization to the two CRPD
computation models that are used in the literature.

4. Formalization of CRPD computation models

In this section, we present two types of CRPD computation models: an of-330

fline computed CRPD called Coff in which CRPD is computed before simulation
time, and an online computed CRPD called Con in which CRPD is computed
during simulation time.

4.1. Coff: an offline CRPD computation model

The CRPD that a task experiences due to a preemption is computed offline335

before simulation time and does not change regardless of cache state during the

simulation. This offline CRPD computation model, denoted Coff = {Γ,H}, can
be defined as follows:

� Γ = {(γi) | ∀τi ∈ T }. γi is the CRPD added to the execution time of task
τi whenever τi is preempted regardless of the preempting task. We can340

consider that γi is provided as a prerequisite or computed by applying the
UCB analysis method presented in [21].

� H: whenever a task τi is preempted by a higher priority task, γi is added
to the execution time of task τi.

9

0 2 4 6 8 10 12 14 16 18 20 22 24 (t)

:Task release :Task execution :CRPD :Task completion

τ1

τ2

τ3

Figure 1: CRPD is computed offline and does not depend on the preempting task. τ3 experi-
ences 2 units of CRPD every time it is preempted.

This model is pessimistic because preempting tasks may not evict the data345

in the cache of the preempted task. A schedule provided by applying Coff is
depicted in Figure 1. To keep the example short and simple, we only give an

incomplete schedule without detailed task parameters. In this example, Coff

assumes that task τ3 experiences 2 units of CRPD every time it is preempted
even if for some preempting tasks, the CRPD is smaller. In addition, as pointed350

out in [17], the maximum amount of CRPD is related to the amount of use-
ful information that have to be reloaded into the cache. Indeed, if a task is
preempted shortly after it starts, it has not yet loaded all of the UCBs and
will therefore not experience the maximum CRPD. In other words, if a task is
preempted during the period that it is reloading the evicted cache blocks, it is355

pessimistic to add the offline computation CRPD to the remaining execution
time.

Furthermore, the pessimism also depends on the method of computing the
CRPD offline for each task. For example, we can assume that either all or part
of the data of τi in the cache are evicted and need to be reloaded.360

4.2. Con: an online CRPD computation model

CRPD is computed based on the cache access profiles presenting the sets of
UCBs and ECBs of each task. Then, during scheduling simulation, we evalu-
ate the number of UCBs that have to be reloaded when a task resumes after
preemptions. Con = {Γ,H} can be defined as follows.365

� Γ = {(UCBi,ECBi) | ∀τi ∈ T }: for each task τi, a set of UCBs and ECBs
are statically computed before simulation. They are denoted UCBi and
ECBi, respectively.

– UCBi is computed by applying data flow analysis on a task’s control
flow graph presented in [21]. This can be achieved by using a static370

analysis tool such as aiT 1. For a task, the sets of UCBs of each basic
block are computed. UCBi is then determined by the basic block
with the highest number of UCBs. The usage of only a single set of

1http://www.absint.com/ait

10

UCBs is indeed a simplification. However, it has been shown in [10]
that the correctness of CRPD computation is not impacted. In [38],375

the authors exploit the fact that for the i-th preemption, only the i-
th highest number of UCB has to be considered. However, as shown
in [10] and [17], a significant reduction typically only occurs at a high
number of preemptions.

– ECBi is computed by taking into account cache blocks accessed in380

the execution of a task. For a task, we assume that the position and
size of assembly instructions of each basic block in the memory are
known. Knowing these data and the cache associativity, which is
direct-mapped in our case, we can compute the set of ECBs.

� H: event handler, which is implemented in the simulator for the two385

events Prem(τi, τj , t) and Exec(τi, t), must be able to keep track of the
remaining UCBs in the cache of a task and compute the CRPD based on
this number.

The following simulation data is managed and updated by the simulator
during the scheduling simulation interval:390

– UCBt
i: denotes the set of UCBs of τi in the cache at time t.

– γti : denotes the delay added to the execution time of τi when it
resumes at time t.

– BRT: is a constant block reload time. We assume that the cache
block reload time can be upperbounded by a constant and is denoted395

as BRT. This is a strong assumption even though it is popularly
taken in prior works [21, 2, 34]. For modern architectures it could be
challenging to determine a correct bound on the BRT due to timing
anomalies.

Then H can be expressed by two event handlers.400

– For each Prem(τi, τj , t), UCBt
i is updated as follows:

UCBt
i = UCBt−1

i − (UCBt−1
i ∩ ECBj) (1)

When a task τi is preempted by a higher priority task τj at time
t, we remove UCBt−1

i ∩ ECBj cache blocks from the set of UCBs
of τi in the cache. The preemption events mentioned here include
both direct and nested preemptions. By tracking the sets of UCBs
of tasks in the cache and updating them at the preemption event,405

nested preemptions are systematically taken into account.

– For each Exec(τi, t), γ
t
i is computed as follows:

γti = |UCBi −UCBt
i| · BRT (2)

In addition, because the CRPD is accounted for, we consider that τi
has reloaded all of its UCB in the cache. Thus, we have to perform

11

0 2 4 6 8 10 12 14 16 18 20 22 24 (t)

:Task release :Task execution :CRPD :Task completion

τ1

τ2

τ3

Γ1 = (∅, {1, 2})
Γ2 = (∅, {3, 4})
Γ3 = ({3, 4}, {1, 2, 3, 4})

Figure 2: CRPD is computed during the schedule. Cache access profiles Γi = (UCBi,ECBi)
are given on the right. The CRPD added to the execution time of τ3 is 2 when it is preempted
by τ2 and is 0 when it is preempted by τ1.

the following assignment:

UCBt
i = UCBi (3)

In this CRPD computation model, UCBt
i is used as an internal data

of the scheduling simulator to compute the CRPD instead of an exact
representation of a task’s data in the cache at a point in time

It is assumed that any partial execution of a task needs to load all of its410

UCBs into the cache. In addition, a task uses all of its ECBs. These assumptions
are pessimistic considering the real execution of a task. However, to relax this
assumption, one must provide information about which memory blocks are being
used at a given instant. In other words, we would need a more detailed task
model in which each unit of task capacity is linked to one or several memory415

blocks or cache blocks. In this case, CRPD could be computed based on which
UCBs are being used at a given instant. However, as far as we know, there
is no timing analysis tool that can provide such information. Relaxing this
assumption requires a timing analysis technique, which is beyond the scope of
this article.420

Con is less pessimistic in the sense that it only takes into account the CRPD
introduced by reloading necessary cache blocks. In Figure 2, we illustrate the
schedule provided by Con. As we can see, τ3 only experiences CRPD when it
is preempted by τ2 at time t = 2 because τ2 evicts two UCBs of τ3, which are
cache blocks 3 and 4. In addition, because τ1 does not evict any UCBs of τ3,425

the CRPD at time t = 12 is 0.

5. Con-lim - an improved online CRPD computation model

In this section, we first analyze the limitations of the two CRPD computation
models presented in section 4 and illustrate these limitations with an example.
Then we discuss the cause of these limitations and propose an approach to ad-430

dress them. Our proposed approach is formalized into a new CRPD computation
model named Con-lim.

12

Task Ci Ti Di Oi Πi UCBi ECBi

τ1 4 12 12 0 3 ∅ {1,2}
τ2 8 24 24 0 2 {3} {3,4}
τ3 8 24 24 0 1 {1,2} {1,2}

Table 1: Task set example.

0 2 4 6 8 10 12 14 16 18 20 22 24

:Task release :Task execution :CRPD

:Task completion :Deadline miss

(t)

τ1

τ2

τ3

Figure 3: Schedule of the task set in Table 1 in the first 24 units of time. All deadlines are
met. There is no preemption.

5.1. Limitations of previous CRPD computation models

Both CRPD computation models presented previously do not account for
the executed capacity of a task when computing CRPD. Ignoring this element435

makes CRPD-aware scheduling simulation pessimistic and can also lead to a
misconception regarding sustainability analysis, which is described later in the
section.

We provide in Table 1 an example in which there is an occurrence of both
pessimistic CRPD computation and non-sustainable scheduling with Con. The440

scheduling of this task set in the first 24 units of time is given in Figure 3, which
shows that all deadlines are met. Regarding the job of task τ3 released at t = 0,
it experiences the interference from higher priority tasks τ1 and τ2.

In Figure 4, we assume that the C2 is reduced to 7 instead of 8. Because
of this change, the job of τ2 completes at time t = 11. Then, τ3 starts at time445

t = 11 and is preempted by τ1 at time t = 12. Later, τ3 resumes at time
t = 16. Regarding Con, the CRPD added to the capacity of τ3 at time t = 16 is
computed as follows:

1 at time t = 11: τ3 starts, UCB11
3 = 1, 2450

2 at time t = 12: τ3 is preempted by τ1, all of its UCBs are evicted → UCB12
3 = ∅

3 at time t = 16: UCB16
3 = ∅ as τ3 does not execute from t = 12 to 16

4 at time t = 16: γ163 = |UCB3 −UCB16
3 | · BRT = |{1, 2} − ∅| · 1 = 2

The added CRPD is 2 units of time and τ3 missed its deadline. We can see455

that there are two problems illustrated in this figure:

1. The computed CRPD by applying Con is 2 time units. This value is larger
than the executed capacity of task τ3, which is 1 time unit.

13

0 2 4 6 8 10 12 14 16 18 20 22 24 (t)

:Task release :Task execution :CRPD

:Task completion :Deadline miss

τ1

τ2

τ3

Figure 4: Non-sustainable scheduling regarding capacity parameter with Con. The capacity
of τ2 is reduced to 7 < C2 = 8. τ1 preempts τ3 at time t = 12

0 2 4 6 8 10 12 14 16 18 20 22 24 (t)

:Task release :Task execution :CRPD

:Task completion :Deadline miss

τ1

τ2

τ3

Figure 5: Sustainable scheduling regarding the capacity parameter by limiting the CRPD
added. The capacity of τ2 is 7 < C2 = 8. τ1 preempts τ3 at t = 12

2. The behavior of decreasing capacity of task τ2, which is considered a better
behavior, makes the task set unschedulable. Thus, scheduling simulation460

with Con is non-sustainable with regard to the capacity parameter.

We proceed by presenting an improved CRPD computation model that can
handle both problems in the next section.

5.2. Con-lim: an improved CRPD computation model

In this section, we first discuss the basic idea that leads to the proposition465

of Con-lim CRPD computation model then present its formalization.
Our idea comes from an initial observation in [39] that the CRPD is at most

be proportional to the executed capacity. As pointed out in [17], the maximum
amount of CRPD is related to the amount of useful information that has to be
reloaded into the cache. Indeed, if a task is preempted shortly after it starts,470

it has not yet loaded all of the UCBs and will therefore not experience the
maximum CRPD.

Based on these observations, we design a computation model in which the
computed CRPD is limited by the executed capacity of a task. As a result, the
execution time gained by an early start is not neglected by the effect of CRPD,475

which is the case illustrated in Figure 4.

14

Our idea is illustrated in Figure 5. In this figure, the CRPD, which is
computed at time t = 16, due to τ1 preempting τ3 is limited by the previously
executed capacity of τ3. In this case, we can obtain a feasible schedule and τ3
can meet its deadline.480

The proposed CRPD computation model named Con-lim is defined as follows:

� Γ = {(UCBi,ECBi) | ∀τi ∈ T }: For each task, a set of UCBs and ECBs
are statically computed before simulation as described in the case of Con.

� H: the event handler for two events Prem(τi, τj , t) and Exec(τi, t) is
similar to Con but with one added constraint: the interval of time that
a task spends to load memory blocks into the cache cannot be larger than
the interval of time in which it has been executed. In other words, if task τi
executes non-preemptively in an interval of time ∆, there cannot be more

than min(|UCBi|,
⌊

∆

BRT

⌋
) UCBs loaded into the cache. As a result, we

can state that if task τi executes non-preemptively in an interval of time
∆ and loaded ρi UCBs into the cache, we have:

ρi · BRT ≤ ∆ (4)

In Con-lim, we introduce notation ρti that denotes the number of UCBs
of τi in the cache at time t. When τi executes non-preemptively in an
interval of time [t, t+ ∆), the number of UCBs in the cache at time t+ ∆
is computed as follows:

ρt+∆
i = min(|UCBi|, ρti +

⌊
∆

BRT

⌋
) (5)

In Equation 5, in case τi starts execution at time t, there is no UCB loaded
and ρti = 0. In case τi resumes execution at time t after it is preempted,485

ρti > 0 unless all UCBs loaded before t are evicted. We also take into
account the fact that ρt+∆

i ≤ |UCBi| with the min operator.

Event handler H can be presented as follows:

– For each Prem(τi, τj , t), UCBt
i is updated as in Con:

UCBt
i = UCBt−1

i − (UCBt−1
i ∩ ECBj) (6)

– Event Exec(τi, t) is handled as follows. When τi resumes execution
at time t after being preempted, we compute the preemption cost γti .

γti = min(|UCBi −UCBt−1
i |, ρt−1

i) · BRT (7)

ρti = max(0, ρt−1
i − |UCBi −UCBt

i|) (8)

Equation 7 computes the preemption cost with two upper-bounds
deduced by the number of UCBs evicted and the number of UCBs490

15

loaded into the cache. Equation 8 updates the number of UCBs that
remain in the cache.

We assume that if τi is not executed at time t, the number of UCBs
loaded does not change.

ρti = ρt−1
i (9)

As stated in Equation 8, ρti is updated at the time a task resumes
execution. It conforms with our approach of computing the preemp-
tion cost at the time a task resumes execution. If ρti is updated at495

preemption events, Equation 7 is not valid anymore.

The schedule of task set in Table 1 with Con-lim is shown in Figure 5. In
this figure, the capacity of τ2 is reduced to 7 < C2 = 8. τ1 preempts τ3 at
time t = 12. Regarding Con-lim, when taking into account parameter ρ3,500

we have:

1 at time t = 16: UCB16
3 = ∅, ρ3 = 1

2 at time t = 16: γ163 = min(|UCB3 −UCB153|, ρ3) · BRT = 1
505

From this example, we can see that the advantage of Con-lim is two-fold.
First, it is less pessimistic compared to classical CRPD computation mod-
els. In addition, the observed scheduling remains schedulable despite of a
decrease in the capacity of τ2.

510

By taking into account ρti in the computation of γti , we can prove the fol-
lowing theorem.

Theorem 1. The added CRPD cannot be larger than the executed capacity of
task τi. In other words, if τi executes in n−1 discrete intervals [tx, tx+∆x), x ∈
(0, 1, ..., n− 1) and experiences preemption costs γ

ty
i , y ∈ (1, ..., n), we have:

n∑
y=1

γ
ty
i ≤

n−1∑
x=0

∆x (10)

Proof. Because of the length of the proof, we only present a prove sketch in
this section, and the complete proof is presented in Section 10.1.515

The basic idea is to prove the theorem by induction. In the base case, we
assume τi starts at t0 and executes non-preemptively in interval [t0, t0 + ∆0)
then be preempted at t0 + ∆0 by higher priority tasks. It resumes at time t1
and executes non-preemptively in interval [t1, t1 + ∆1). Later, it is preempted
at time t1 + ∆1 and resumes at time t2. In the first interval, τi starts from an520

empty cache. In the second interval, τi can have UCBs in the cache at time t1.
We need to prove the following equations:

γt1i ≤ ∆0 (11)

16

γt1i + γt2i ≤ ∆0 + ∆1 (12)

The inductive step is established by assuming τi executes in n discrete in-
tervals [tx, tx + ∆x), x ∈ (0, 1, ..., n) and experiences preemption costs γ

ty
i , y ∈

(1, ..., n+ 1) and we have:

n∑
x=1

γtxi ≤
n−1∑
y=0

∆y (13)

then, we prove that:

(
n∑

x=1

γtxi) + γ
tn+1

i ≤ (
n−1∑
y=0

∆y) + ∆n (14)

�

To conclude, in this section, we describe and prove an important property
of the improved CRPD computation model Con-lim. In the next three sections,525

we discuss in detail the three properties: sustainability, feasibility interval and
pessimism of Con-lim, respectively. Sustainability and feasibility interval are
proved by mathematical means in Section 6 and 7 while pessimism is evaluated
by experimental means with synthetic task sets in Section 8.

6. Sustainability analysis of scheduling simulation with Con-lim
530

In this section, we recall the definition of sustainability, discuss sustainability
analysis of classical CRPD computation models and analyze sustainability of
scheduling simulation with Con-lim.

Definition 10 (Sustainability [6]). A given scheduling policy and/or a schedu-
lability test is sustainable if any system that is schedulable under its worst-case535

specification remains so when its behavior is better than the worst-case. The
term ”better” means that the parameters of one or more individual task(s) are
changed in any, some, or all of the following ways: (1) reduced capacity, (2)
larger period and (3) larger relative deadline.

These changes are originally considered ”better” behaviors because of the
following observation. We assume that a job of τi released at time t and has
a deadline at t + Di. In preemptive scheduling context, a job of τi released at
time t experiences the interference from higher priority tasks, denoted Iti , in
the interval [t, t + Di). This interference is execution time of higher priority
taks, which includes their capacities and CRPD. The job of τi is feasible if the
following condition is satisfied [40]:

Ci + Iti ≤ Di (15)

17

� Reduced capacity means a decrease in the value of Ci. In addition, it can540

be a reduction in the capacities of higher priority tasks, thus Iti is also
decreased.

� Larger periods decreases Iti by reducing the number of higher priority
tasks released in the interval [t, t+Di).

� Larger relative deadlines increases Di.545

All the changes are supposed to make the feasibility condition easier to be
satisfied.

A schedulability test, such as scheduling simulation or worst-case response
time analysis, must be aware of unpredictable changes in task parameters even
if these are considered better behaviors. Indeed, for all realistic systems, con-550

siderable variability in execution times are to be expected.
The problem related to CRPD in sustainability analysis for fixed-priority

preemptive scheduling context can be defined as follows. Two parameter changes
(1) reduced capacities and (2) larger periods could decrease Iti by ∆. However,
as shown by examples in the next sections, these two changes can increase the555

number of preemptions, which later lead to an increase of CRPD by γ. If γ > ∆
due to CRPD, these parameter changes, which are considered a better scenario,
may increase the interference and makes the task set to be unschedulable. Later
in the section, we also discuss the third parameter change (3) increasing dead-
lines and its impact in the FPP scheduling context.560

6.1. Reduced capacity

We prove that scheduling simulation with Con-lim is sustainable regarding
the capacity parameter.

Theorem 2. Assuming Con-lim, a decrease of ∆ in the execution time of higher
priority tasks can only leads to a maximum increase of γ the execution time of565

a job of lower priority task where γ ≤ ∆.

Proof. We prove this theorem by reasoning. We assume that in the new
schedule, due to a decrease of ∆ in the execution time of higher priority tasks,
a jobs of τi executes in n additional intervals [tx, tx + ∆x) with ∆ =

∑n
x=0 ∆x.

Without losing generality, we assume that n intervals are discrete but arranged
consecutively in the new schedule. The CRPD added due to these intervals can
be isolated by assuming τi starts execution from an empty cache at time t1.
This reasoning can be backed up by the fact that τi already had to pay for any
CRPD happens outside of these intervals in the original schedule. Applying
Theorem 1, we have:

γ =

n+1∑
y=1

γ
ty
i ≤

n∑
x=0

∆x = ∆ (16)

18

0 2 4 6 8 10 12 14 16 18 20 22 24 (t)

:Task release :Task execution :CRPD

:Task completion :Deadline miss

τ1

τ2

τ3

Figure 6: Non-sustainable scheduling simulation regarding period parameter with Con-lim.
The period of τ1 is increased to 13 > T1 = 12. τ1 preempts τ3 at t = 13. τ3 missed its
deadline at t = 24.

We now prove that a decrease in the execution time of higher priority tasks
does not create additional interference to lower priority tasks. The decrease in
execution time is always larger than or equal to the CRPD introduced by the
possible increase in the number of preemptions.570

Theorem 3. Scheduling simulation with Con-lim is sustainable with regard to
the capacity parameter.

Proof. Suppose that a system is deemed schedulable; i.e., for all jobs of all
tasks, the feasibility condition defined in Equation 15 is satisfied.

We evaluate a job of task τi following the feasibility condition. A decrease
in the execution time of higher priority tasks can introduce a new interference
denoted I ′ti . We have I ′ti = Iti − ∆ + γ, where ∆ is the decrease in execution
time and γ is the CRPD introduced by this change. We have γ ≤ ∆ according
to Theorem 2. Thus, I ′ti ≤ Iti . To conclude, the following equation holds.

Ci + I ′ti ≤ Ci + Iti ≤ Di (17)

This means that if τi can meet the deadline with Ci + Iti , it can still meet the575

deadline with the new interference I ′ti . We conclude that any job of task τi is
still feasible. �

6.2. Larger period

The change in period can unfortunately create additional preemptions and
jeopardize the schedulability even with Con-lim.580

Theorem 4. Scheduling simulation with Con-lim is not sustainable with regard
to the period parameter.

Proof. We prove this theorem by using a counter example. Changing period
of tasks can lead to unschedulable task sets even with Con-lim. This problem is
illustrated in Figure 6.585

19

In this figure, the period of task τ1 in Table 1 is changed to 13. As a result,
at time t = 12, τ3 can execute. At time t = 13, τ3 is preempted by τ1 and there
is one unit of preempted cost added to the capacity of τ3. Finally, τ3 missed the
deadline at time t = 24. �

We can observe that the change in the period of τ1 does not decrease the590

interference from higher priority tasks to the job of τ3 released at t = 0, even in
the case CRPD is not considered. Furthermore, it also creates one additional
preemption. When CRPD is taken into account, the interference is increased.
Thus, τ3 missed its deadline at time t = 24. This observation above restricts
the usage of scheduling simulation as a schedulability test for pure periodic task595

sets. In case of aperiodic task sets, scheduling simulation can only be used as a
necessary condition.

6.3. Larger relative deadline

FFP scheduling with Con-lim is sustainable with regard to the deadline pa-
rameter as the schedule generated by a FFP scheduler itself is independent from600

the deadlines. In other words, deadlines do not influence scheduling decisions.
In FFP scheduling context, an increase in relative deadlines is simply a less
stringent timing constraint if we do not reassign task priorities. In this case,
larger deadlines neither decrease the execution time of tasks, nor create addi-
tional preemptions, nor change the CRPD. We do not investigate the case where605

task priorities are reassigned according to new deadlines. This case is indeed
more complex because a new priority ordering can result in a higher number of
preemptions and preemption cost.

6.4. Summary

To sum up, in this section, we have investigated the sustainability anal-610

ysis of scheduling simulation with Con-lim regarding the three task parameter
changes: capacity, period and relative deadline. We have proved that scheduling
simulation with Con-lim is sustainable regarding capacity and relative deadline
parameter and is not sustainable regarding period parameter. The result means
that scheduling simulation with Con-lim is an improvement compared to classical615

models. It can be used to verify and guarantee the schedulability of periodic
tasks where the changes in the period parameter are predictable and unsustain-
ability is not an issue for scheduling simulation. However, it cannot be applied
to task sets with sporadic tasks.

7. Feasibility interval of scheduling simulation with Con-lim
620

In this section, we establish a feasibility interval F to determine the schedu-
lability of a periodic task set T , running on a uniprocessor systemM scheduled
by a fixed priority preemptive scheduler S, with regard to Con-lim.

We analyze two properties that are used to define the feasibility interval in
the literature namely stabilization time and periodic behavior. As presented625

20

in [40] and [7], a well established result on these properties regarding RTES
without cache memory is that for a task τi, after an initial stabilization time
Si defined later in the section, the execution of τi is periodic in the interval Pi,
which is the level-i hyper-period defined as follows:

Definition 11 (Level-i hyper-period [40]). The level-i hyper-period Pi of630

task τi is equal to the least common multiplier of the periods of τi and its higher
priority tasks. Pi = lcm(Ti, (Tj | ∀τi,Πj > Πi)).

Then, the feasibility interval of τi is [0, Si +Pi). To determine the feasibility
interval of our system model, we investigate the stabilization time when CRPD
is taken into account. Second, we prove the periodic behavior of the task and635

establish the feasibility interval. We use this approach to present the feasibility
interval of synchronous periodic tasks in Section 7.1 and asynchronous periodic
tasks in Section 7.2.

7.1. Synchronous periodic tasks

The feasibility interval of a synchronous task set T can be deduced as follows:640

Theorem 5. For a synchronous task set T running on (M,S, Con-lim), we
have F = [0, H)

The hyper-period H = lcm(Ti | ∀τi) is the level-i hyper-period of the lowest
priority task. The basic idea behind the proof of this theorem is utilizing the
repetition property of the synchronous release at time 0 and H to deduce the645

schedulability condition.

Proof. First, we observe that a task set is schedulable only if all deadlines of
jobs released in [0, H) are met before H. It means all jobs must be completed
before H. Second, there is no additional interference to consider in the second
synchronous release at time H and the schedule in [H, 2H) is simply identical650

to the schedule in [0, H). In addition, the cache state at the end of the interval
[0, H) cannot negatively influence the schedule in the interval [H, 2H). We
recall that the capacity parameter is computed by assuming the worst-case
in which a task starts from an empty cache. Another problem to consider is
PCB-based WCET reductions [37]. In other words, capacities of tasks in the655

interval [H, 2H) can be reduced if there are PCBs remain in the cache after
time H. This problem is addressed as we have proved the sustainability of
scheduling simulation with regard to the capacity parameter. Thus, it is only
necessary to investigate the schedule in the interval [0, H) to conclude about
the schedulability of synchronous tasks. �660

We note that the classical feasibility interval of [0, Di) for synchronous T
on (M,S) is not applicable to systems with cache. The work presented in [20]
has shown that the instant at time 0 when all tasks are released cannot be
considered as the critical instant.

21

7.2. Asynchronous periodic tasks665

For asynchronous periodic tasks, the concept of stabilization time was intro-
duced in [40] and [7] to study the problem of feasibility interval. Because of the
asynchronous releases, there could be an interval of time, in which lower priority
tasks are released and executed while higher priority tasks are not released. In
this interval, the scheduling of a task is considered to be not stabilized. Stabi-670

lization time is defined as follows:

Definition 12 (Stabilization time [40]). The stabilization time Si of task τi
is an instant at when τi is released and all higher priority tasks were released
before Si.

The computation of Si is inductively defined as follows:675

S1 = O1,
Si = max(Oi, Oi + dSi−1−Oi

Ti
e · Ti) (i = 2, 3, ..., n).

The basic idea of the initial stabilization time can be explained as follows.
For a job τi[t] released before the stabilization time Si, 0 < t ≤ Si, not all
higher priority tasks are released. Because of that reason, τi[t] does not have680

to compete with these tasks. Thus, the interference caused by higher priority
tasks to τi[t] is lower than subsequent releases of τi. The execution of τi[t] in
this low interference context could not be repeated in the future.

This stabilization time can be applied to CRPD-aware scheduling as the
computation of stabilization time only needs to take into account the offsets685

and the periods of tasks. CRPD is a factor which affects the execution time of
tasks but does not affect theirs release times and the stabilization times.

Periodic Behavior

In this section, we analyze the periodic behavior of systems with cache after
the initial stabilization time. We make an initial observation that the execution690

of an individual task in an FPP scheduling context depends only upon its own
properties and higher priority tasks. Thus, we define two conditions that make
the execution of τi periodic:

� The first condition is that τi is released periodically in a fixed interval.
This condition is satisfied in our system model because we only take into695

account periodic tasks.

� The second condition is that the interference from higher priority tasks to
τi is periodic in a fixed interval. In other words, after a fixed interval, two
jobs of τi experience the same interference. We proceed by proving that
this second condition is also satisfied when CRPD is taken into account.700

Based on the two conditions, if we can prove that the job of τi released at
time ti after the stabilization time Si (ti = Oi +m · Ti,∀m ∈ N|ti ≥ Si), which
is denoted τi[ti], ti ≥ Si and the job of τi released at time ti + k · Pi, which
denoted τi[ti + k · Pi],∀k ∈ N∗, experience identical interferences from higher
priority task, we can conclude that τi is periodic in interval Pi after the initial705

stabilization time Si. We establish the following theorem:

22

Theorem 6. For all tasks τi, the job τi[ti], ti = Oi + m · Ti,∀m ∈ N|ti ≥ Si

and the job τi[ti + k · Pi], k ∈ N∗ experience identical interferences from higher
priority tasks τ0, ..., τi−1.

Proof. This theorem is proved by induction.710

Base case: We assume that tasks are ordered according to their priority.
Considering the highest priority task τ1, it experiences no interference. Thus,
the schedule of τ1 is periodic from S1 with the period P1 = T1.

Consider the second highest priority task τ2, since the task is ordered by
priority, the periodic behaviors of τ1 cannot be affected by τ2. Because the715

schedule of task τ1 is periodic from S1 with the period P1 = T1, τ1 is also
periodic from S2 (S2 ≥ S1) with the period P2 = lcm{P1, T2}.

The interference created by the capacity of τ1 to the two jobs τ2[t2](t2 =
O2 + m · T2, t2 ≥ S2) and τ2[t2 + k · P2] (∀m ∈ N,∀k ∈ N∗) is periodic and
identical as we assumed that task capacity is constant.720

The two jobs τ2[t2] and τ2[t2 + k · P2] experience identical sequence of pre-
empting tasks. If τ2[t2] is firstly preempted by τ1 at time t2+∆, then τ2[t2+k·P2]
will be firstly preempted by τ1 at time (t2 + k · P2) + ∆, 0 ≤ ∆ < D2. Because
the sets of UCBs and ECBs of τ1 and τ2 are fixed and both jobs of τ2 have
executed ∆ units of time, the CRPD of the two preemptions are identical. The725

same argument can be applied to subsequent preemptions by τ1 to τ2[t2] and
τ2[t2 + k · P2] if they exist. We can conclude that the CRPD by τ1 that τ2[t2]
and τ2[t2 + k · P2] experience are identical.

From the deductions above, we can conclude τ2[t2] and τ2[t2 + k · P2] expe-
rience identical interference.730

Inductive Case: we assume that Theorem 6 is true for τ1, ..., τi. The
objective now is to prove that it is also true for τi+1.

From the assumption, the schedule of the task subset {τ1, ..., τi} is periodic
from Si with the period Pi. Since the task is ordered by priority, the periodicity
of the task subset cannot be changed by τi+1. Hence, we can deduce that the735

schedule of the task subset is also periodic from Si+1 (Si+1 ≥ Si) with the
period Pi+1 = lcm{Pi, Ti+1} is identical. We can have the following deductions:

� The interference created by the capacity of τ1, ..., τi to the two jobs τi+1[ti+1]
(ti+1 = Oi+1 + m · Ti+1, ti+1 ≥ Si+1) and τi+1[ti+1 + k · Pi+1] (∀k ∈ N∗)
is identical.740

� The CRPD created by τ0, ..., τi preempting each other to the two jobs
τi+1[ti+1] and τi+1[ti+1 + k · Pi+1] are identical.

� The two jobs τi+1[ti+1] and τi+1[ti+1 + k · Pi+1] experience identical se-
quence of preempting tasks. Thus, the CRPD created by τ0, ...τi preempt-
ing τi+1[ti+1] and τi+1[ti+1 + k · Pi+1] is identical.745

From these deductions, we can conclude that τi+1[ti+1] and τi+1[ti+1 + k ·
Pi+1] experience identical interference. �

23

As the theorem regarding periodic behavior is proved, we can now prove the
following theorem about the feasibility interval:

Theorem 7. A task τi is feasible if and only if the deadlines corresponding to750

the releases of the task in [0, Si + Pi) are met.

Proof. From Theorem 6, we deduce that the execution of τ1, τ2, ..., τi in the
interval [Si, Si + Pi) and [Si + k · Pi, Si + (k + 1) · Pi),∀k ∈ N∗ are identical.
Thus, it is sufficient to check if τi can meet its deadlines in only one interval of
time plus the interval [0, Si). �755

From Theorem 7, we can conclude that for a task set of n periodic tasks, the
feasibility interval is [0, Sn + Pn).

Theorem 8. For asynchronous task set T running on (M,S, Con-lim), we
have F = [0, Sn + Pn)

In the last two sections, we have established theoretical results which show760

the soundness of scheduling simulation with Con-lim. In the next section, we
present an evaluation of Con-lim and provide an implementation of a CRPD-
aware scheduling simulator and its performance evaluation.

8. Pessimism of scheduling simulation with Con-lim

In this section, we present experiments to compare the pessimism of CRPD765

computation models. They are evaluated in terms of schedulability task set
coverage, number of preemptions and preemption cost. These metrics allow us
to show that our CRPD computation model is less pessimistic than the existing
ones.

The base configuration of our experiments is as follows. The generation of770

task periods and cache utilizations in our experiments is based on the exist-
ing work in [10]. Task periods are uniformly generated from 5 ms to 500 ms, as
found in most automotive and aerospace hard real-time applications. Generated
task sets are harmonic in order to have a low feasibility interval and scheduling
simulation interval. Task deadlines are implicit, i.e. ∀i : Di = Ti. Processor775

utilization values are generated using the UUniFast algorithm [41]. Task execu-
tion times are set based on the processor utilizations and the generated periods:
∀i : Ci = Ui · Ti, where Ui is the processor utilization of task i. Task offsets are
uniformly distributed from 1 ms to 30 ms.

Cache memory is direct mapped. The number of cache blocks is equal to 256780

and block reload time is 8 µs [10]. Cache usage of each task is determined by
the number of ECBs. They are generated using UUniFast algorithm for a total
cache utilization of 5. For each task, the set of UCBs is generated according
to a uniform distribution ranging from 0 to the number of ECBs multiplied by
a reuse factor RF=0.3. If the set of ECBs generated exceeds the cache size, it785

is limited to the cache size. For the generation of the UCBs, the original set

of ECBs is used. For Coff, we assume that γi = |UCBi| · BRT every time that
task τi is preempted. For Con and Con-lim, CRPD computation model has been
already described in Section 3.

24

50 60 70 80 90 100

0

200

400

600

800

1,000

Processor Utilization (%)

N
u

m
b

er
of

T
as

k
S

et
s

No CRPD

Con-lim
Con

Coff

FS Multiset
FS ECB Only

Figure 7: Schedulability task set coverage

8.1. Schedulability task set coverage790

The objective of this experiment is to evaluate CRPD computation models
in term of schedulability task set coverage. We performed scheduling simula-
tions with randomly generated task sets with three CRPD computation models.
Then, schedulability coverage is computed by taking into account the number
of task sets found schedulable and the number of task sets generated.795

sched coverage =
#task sets schedulable

#generated task sets
% (18)

As scheduling simulation is often used as a baseline to compare different re-
sponse time analysis in previous research work, we also aim to show that Con-lim

achieves a higher schedulability task set coverage comparing to existing CRPD-
aware feasibility tests. In our experiment, first, we generate task sets with the
processor utilization (PU) varying from 50% to 90%. Task set size is fixed to 10800

tasks. Second, we perform scheduling simulation over the feasibility interval to
determine the schedulability of the generated task sets. In addition, in order to
better illustrate the usage of simulation in schedulability task set coverage, we
provide the number of task sets found schedulable by two well-known CRPD-
aware feasibility tests: ECB-Only [2], and Combined Multi-set [10]. They are805

denoted respectively as FS ECB Only and FS Multiset.
The experimental results are shown in Figure 7. Con-lim gives the best

schedulability task set coverage comparing to Coff and Con. If we only account
for task sets with PU > 65, which is the point task sets are becoming unschedu-
lable because of the CRPD effect, the number of schedulable ones found by810

Con-lim, Con, and Coff are 4706, 4432, and 3965 respectively for a total of 6000
generated task sets. The corresponding schedulability task set coverages are
78%, 73%, and 66%.

25

50 60 70 80 90 100
0

100

200

300

Processor Utilization (%)

N
u

m
b

er
of

P
re

em
p

ti
o
n

s

Con-lim
Con

Coff

Figure 8: Average number of preemptions

We also observe that there is a gap between schedulability task set coverage
by scheduling simulation and analytical methods. Our results are compared to815

two CRPD-aware feasibility tests namely ECB-Only [2] and Combined Multi-
set [10]. The evaluation conducted in [10] showed that ECB-Only is the most
pessimistic test while Combined Multiset is the less pessimistic one in term of
schedulability task set coverage.

Analytical methods are more pessimistic than scheduling simulation because820

of the following reason. CRPD-aware feasibility tests in [2, 21, 22, 9, 10] are
designed with two assumptions. For a given task τi, the worst-case response
time Ci is computed by assuming that all jobs of higher priority tasks executing
within Ci preempt τi and CRPD is added for each preemption. The upper-
bound on CRPD has been progressively reduced over the years by accounting for825

nested preemptions and the number of preemptions that have an actual influence
on the response time. Nevertheless, it is still pessimistic as the tests ignore the
observation in [17] that CRPD must be proportional to the executed capacity
of the preempted task. In addition, if a task is released but not yet executed by
the processor, it should not experience CRPD from higher priority tasks, which830

is the case in all CRPD computation models used in our simulations.

8.2. Preemption cost and number of preemptions

Two metrics that we evaluate in this experiment are the number of pre-
emptions and the total preemption cost of three CRPD computation models.
Experiment results are shown in Figures 8 and 9. First, regarding the num-835

ber of preemptions, Con-lim gives the lowest number. The reason is that it is
the least pessimistic CRPD computation model thus task execution time is the
shortest and resulting in less number of preemptions between tasks. Scheduling
simulation with Con-lim provides on average 7% less preemptions compared to

26

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

·104

Processor Utilization (%)

P
re

em
p

ti
o
n

C
o
st

(T
im

e
U

n
it

) Con-lim
Con

Coff

Figure 9: Average total preemption cost

Coff and 3% less preemptions compared to Con. In addition, Con has 4% less840

preemption than Coff.
Second, regarding the total preemption cost, the difference between the three

CRPD computation models are more significant. On average, Con-lim has 50%

less preemption cost than Coff and 30% less than Con. Besides the difference
regarding CRPD computation method between models, this result is also caused845

by our task generation strategy with small offsets. There are more preemptions
that occur when tasks just execute a small proportion of their capacities. This

result shows how CRPD is over-estimated in Coff and Con.

8.3. Case study: Mälardalen benchmark suite

In this section, we evaluate the different CRPD computation models using a850

set of programs taken from the Mälardalen [42] benchmark suite. The programs
in this benchmark generally consist of a single path code followed by a main
processing loop. The worst-case execution times and the cache access profiles,
which are detailed in Table 2, are retrieved from [10]. The system was set
up to model an ARM7 processor clocked at 100 MHz with a 2 KB direct-855

mapped instruction cache and a line size of 8 bytes, giving 256 cache sets,
4-byte instructions, and a BRT of 8 µs.

A task set is created from the above data by assigning periods and implicit
deadlines such that all 15 tasks had equal utilization. The periods are generated
by multiplying each execution time by a constant (Ti = c · Ci) so that the860

PU of the task set is varied from 0.5 to 1.0 in step of 0.01. The tasks were
assigned priorities in the rate monotonic priority order. As the exact placement
of UCBs and ECBs is not provided in [10], we made two assumptions. ECBs are

27

Task WCET UCBs ECBs
bs 445 5 35
minmax 504 9 79
fac 1252 4 24
fibcall 1351 5 24
insertsort 6573 10 41
loop3 13449 4 817
select 17088 15 151
qsort-exam 22146 15 170
fir 29160 9 105
sqrt 39962 14 477
ns 43319 13 64
qurt 214076 14 484
crc 290782 14 144
matmult 742585 23 100
bsort100 1567222 35 62

Table 2: Execution times and number of UCBs and ECB of tasks in the Mälardalen benchmark
suite in obtained from [10]

Breakdown Utilization
No CRPD 0.95

Con-lim 0.87
Con 0.85

Coff 0.72

Table 3: Breakdown utilization for different CRPD computation models

computed by assuming that tasks are placed continuously in memory. Then, we
choose to place the UCBs in a continuous group at a random location in each865

task.
The experiment is conducted as follows. We start with a low PU and run

scheduling simulation with CRPD computation models. The PU is increased
up to the point where the task set is not schedulable. It is called the breakdown
utilization [10]; the maximum utilization at which a scaled version of the case870

study task set was deemed schedulable.
The results are provided in Table 3. Our first observation is that the differ-

ence between Con-lim and Con is only 2%. It can be explained by the low cache
reuse factors of programs in the benchmark, which are varied from 0.11 to 0.56

with an average of 0.15. Second, Coff has a remarkable lower breakdown utiliza-875

tion. It shows the pessimism of Coff in case of a significant difference between
the max and the min WCETs and periods. In this case, the large WCET tasks
are preempted often and the CRPD is added even though the preempting tasks
do not evict their UCBs in the cache.

28

1 event SCHED START
2 for each task τi loop
3 τi.cUCB ← τi.UCB
4 ρi ← 0
5 event PREEMPTION
6 τj ← preempting task
7 for each task τi preempted loop
8 τi.cUCB ← Remove(τi.cUCB, τj .ECB)
9 event RUNNING TASK

10 τi ← executing task
11 CRPD ← min((τi.UCB = τi.cUCB),ρi) * BRT
12 ρi ← max((ρi = (τi.UCB = τi.cUCB)),0))
13 τi.cUCB ← τi.UCB
14 ρi ← ρi + 1

Figure 10: Event handlers update

9. CRPD-aware scheduling simulator implementation880

In this section, we present our implementation of our CRPD-aware schedul-
ing simulator in Cheddar [18], an open source scheduling analyzer, which is
freely available for researchers and practitioners. In addition, we provide a per-
formance evaluation in order to discuss some insights regarding the time it takes
to simulate the scheduling with CRPD.885

In Cheddar, an RTES is modeled as a set of hardware and software com-
ponents. Hardware components are processors, cores and cache memories [43].
Software components are tasks and their sets of UCBs and ECBs, which are
called cache access profiles. System models with computed cache access profiles
are loaded into the scheduling simulator. Scheduling simulations can then be890

done and provide various data such as feasibility of the system, worst case re-
sponse times of tasks, number of preemption, CRPD per task, total CRPD, etc.
In Cheddar, we implemented the model of tasks following Con-lim computation
model. A detailed explanation of how Cheddar is extended to systems with
cache can be found at [16].895

The scheduling simulation in Cheddar works as follows. The scheduling is
computed by three successive steps: computing priorities, managing ready tasks
in queues and electing the next task to run. The elected task will receive the
processor for the next unit of time.

The scheduling simulator records and handles different events raised during900

the simulation, such as task releases, task completions and shared resources
lockings or unlockings. The result of the scheduling analysis is the set of events
produced during the simulation.

We now explain the updates made to the scheduling simulator regarding
Con-lim computation model. The pseudo code of the event handlers is written905

in Figure 10. The notation τi.cUCB represents the set of UCBs of task τi in the
cache. It is computed from a system model during the simulation. The function
Remove() at line 8 is used to remove an element from this set.

29

0 0.5 1 1.5 2

·109

5

10

15

20

Simulation Interval (Time Unit)

C
o
m
p
u
ta
ti
o
n
T
im

e
(s
)

Con-lim

Figure 11: Computation time when simulation interval increases. Task set size = 10

At the start of the scheduling simulation, a sched start event is raised.
The WCET of a task is assumed to include the intrinsic cache block reloading910

time when a task is executed non-preemptively. On event sched start, the
set of UCBs of a task is assumed to be filled.

When a preemption occurs, a preeemption event is raised and the sim-
ulator computes the evicted UCBs of preempted tasks using the ECBs of the
preempting task. The scheduler keeps track of the number of UCBs for each915

task.
When a task executes, a running task event is raised. The scheduler first

checks whether all the UCBs of this task are loaded in the cache. If so, the task
continues its execution. If not, the task reloads the evicted UCBs. The CRPD
is added to the remaining capacity of the task itself. In our implementation,920

CRPD is not added to the capacity of the preempted tasks at the preemption
point but at the instant at which those tasks resume their execution. In addition,
we also update the ρi parameter regarding the number of evicted UCBs.

Two experiments are performed to evaluate the performance of our schedul-
ing simulator in terms of computation time, which is the time it takes to run925

the simulation. Theses experiments are conducted on a PC with an Intel Core
i7-8650U (1.90GHz Ö 8) processor, having 16 GBs of memory, and running
Ubuntu 18.04.4.

9.1. Simulation interval

In the first experiment, we fix the number of tasks in a task set at 10 tasks930

and increase the simulation interval from 0 to 231 units of time by steps of
5 · 106. For each value of simulation interval, a new task set is generated. For
each task set, the processor utilization is varied from 50% to 90%. As the
data points obtained are scattered, we choose to only display the result with

30

0 20 40 60 80 100

10

12

14

16

18

Number of Tasks

C
o
m

p
u

ta
ti

o
n

T
im

e
(s

)
Con-lim

Con

Coff

Figure 12: Computation time when task number increases. Simulation interval = 2.000.000
units of time

Con-lim. The result in Figure 11 shows that the maximum computation time935

is less than 25 seconds. However, we can see that the computation time does
not increase linearly with the simulation interval. An explanation is that the
processor utilization is also an important factors to the computation time. The
simulation of task sets with low processor utilizations generates less events and
thus requires less computation time.940

9.2. Number of tasks

In the second experiment, we increase the number of tasks from 10 to 100 in
increments of 5 and perform simulation over 2.000.000 units of time. The pro-
cessor utilisation is fixed at 70% for the generated task sets. For each number of
tasks, 20 task sets are generated and computation time is taken by the average.945

The result in Figure 12 shows that computation time increases from 10 to 18
seconds for Con-lim. Compared to the previous experiment, we can see that the
increase in simulation time with regard to the number of tasks is higher than
the simulation time.

We also observe that the computation time of Con-lim is similar to Con,950

with an average difference of 0.39 second. The computation time of Coff is
significantly less than the other two when the number of tasks is high. The
maximum difference is 2.87 seconds, and the average difference is 1.17 seconds.

The reason is that Coff does not require the simulator to keep track of the UCBs
in the cache during simulation.955

To sum up, in this section, we provide a performance evaluation of a CRPD-
aware scheduling simulator by showing the computation time needed for a long
period of simulation and a large number of tasks. Besides the two parameters,
the computation time can also be affected by the number of preemptions because

31

preemptions generate additional events that must be handled by the simulator.960

However, the number of additional events are not significant comparing to the
simulation period. For instance, the experiment in Section 8 shows a variation
from 130 to 365 preemptions for a simulation period of 500,000 units of time.

10. Conclusion

In this article, we presented an improved CRPD computation model called965

Con-lim. We investigated two issues regarding sustainability and feasibility in-
terval of scheduling simulation with this model. We have proved that scheduling
simulation with Con-lim is sustainable with regard to the capacity parameter.
It allows us to use scheduling simulation to verify the schedulability of periodic
tasks. However, with sporadic tasks, scheduling simulation has been proved to970

be non-sustainable and can only be used to detect the non-sustainability but
not to guarantee the schedulability.

Experiments with synthetic task sets have shown that Con-lim results in 78%
schedulability task set coverage, which is 5% higher than Con and 12% higher

than Coff. In addition, scheduling simulation with Con-lim is less pessimistic in975

terms of number of preemptions, 7% less than Con and 3% less than Coff, and

preemption cost, 50% less than Con and 30% less than Coff. CRPD computation
models presented in this article have been implemented in Cheddar scheduling
simulator.

As the architecture model used in this work is limited to L1 instruction980

cache, which is quite simple comparing to the ones supported in static analysis,
future extensions must be implemented. The main challenge of taking into
account the more complex cache architectures is to prove that we can preserve
a feasibility interval and sustainable scheduling. Future work includes relaxing
the assumption on the eviction of UCBs at the end of task execution to reduce985

the pessimism in our simulation by allowing PCB-based WCET reductions. In
addition, we want to relax the assumption about a constant value for BRT as the
difference between the best-case and the worst-case could be large in multi-core
processors. Finally, a long-term objective is to address the case of multi-core
processors. It requires us to take into account an additional effect named cache990

related migration delay and techniques to manage a shared cache amongst cores.

Acknowledgment

The authors would like to thank Sebastian Altmeyer for providing the im-
plementation in C of the Combined Multi-set approach. This work and Ched-
dar are supported by Brest Métropole, Ellidiss Technologies, Région Bretagne,995

CD du Finistère and Campus France PESSOA programs number 27380SA and
37932TF.

32

Annex

10.1. Proof of Theorem 1

In this section, we prove Theorem 1 by induction.1000

� Base case: we assume τi starts at t0 and executes non-preemptively in
interval [t0, t0 +∆0) then is preempted at t0 +∆0 by higher priority tasks.
Then, it resumes later at time t1 and execute non-preemptively in interval
[t1, t1 +∆1). Later, it is preempted at time t1 +∆1 and resumes at time t2.
In the first interval, τi starts from an empty cache. In the second interval,1005

τi can have UCBs in the cache at time t1. We need to prove the following
equations:

γt1i ≤ ∆0 (19)

γt1i + γt2i ≤ ∆0 + ∆1 (20)

Equation 19 means that the CRPD computed at time t1, which is γt1i , is
less than the executed capacity of τi at time t1, which is ∆0. Equation 20
means that the total CRPD computed at time t1 and t2 is less than the1010

executed capacity of τi at time t2, which is ∆0 + ∆1.

We start by proving that γt1i ≤ ∆1. Considering the preemption cost when
τi resumes at time t1, by applying Equation 7, we have:

γt1i = min(|UCBi −UCBt1−1
i |, ρt1−1

i) · BRT (21)

Because τi is not executed in the interval [t0 + ∆, t1 − 1), by applying
Equation 9, we have:

ρt1−1
i = ρt0+∆0

i = min(|UCBi|, ρt0i +

⌊
∆0

BRT

⌋
) (22)

In Equation 22, ρt0i is the number of UCBs loaded into the cache at time
t = 0 for τi. As we do not take into account PCBs and assume that
ρt0i = 0, we have:

ρt1−1
i = min(|UCBi|,

⌊
∆0

BRT

⌋
) (23)

By replacing ρt1−1
i in Equation 21 with Equation 23, we have:

γt1i = min(|UCBi −UCBt1−1
i |,

⌊
∆0

BRT

⌋
) · BRT (24)

33

We can deduce that:

γt1i ≤
⌊

∆0

BRT

⌋
· BRT ≤ ∆0 (25)

Next, we prove that γt1i + γt2i ≤ ∆0 + ∆1. Considering the preemption
cost when τi resumes at time t2, by applying Equation 7, we have:

γt2i = min(|UCBi −UCBt2−1
i |, ρt2−1

i) · BRT (26)

Because τi is not executed in the interval [t1 + ∆1, t2 − 1), by applying
Equation 9, we have:

ρt2−1
i = ρt1+∆1

i = min(|UCBi|, ρt1i +

⌊
∆1

BRT

⌋
) (27)

Applying Equation 8 to compute ρt1i , we have:

ρt1i = max(0, ρt1−1
i − |UCBi −UCBt1−1

i |) (28)

At this step, there are two cases. We have either ρt1i = 0 or ρt1i =1015

ρt1−1
i − |UCBi −UCBt1−1

i |.

Case 1: assume that ρt1i = 0, by replacing ρt1i = 0 in Equation 27 and
then ρt2−1

i in Equation 26, we have:

γt2i = min

(
|UCBi −UCBt2−1

i |,
⌊

∆1

BRT

⌋)
· BRT (29)

From Equation 29, we can deduce that:

γt2i ≤
⌊

∆1

BRT

⌋
· BRT (30)

Then, from Equation 30 and 21, we can deduce that:

γt1i + γt2i ≤
(⌊

∆0

BRT

⌋
+

⌊
∆1

BRT

⌋)
· BRT ≤ ∆0 + ∆1 (31)

Case 2: assume that ρt1i = ρt1−1
i −|UCBi−UCBt1−1

i |, by replacing ρt1−1
i

with the value computed in Equation 23, we have:

ρt1i = min
(
|UCBi|,

⌊
∆0

BRT

⌋)
− |UCBi −UCBt1−1

i | (32)

34

By replacing ρt1i in Equation 27 to deduce the bound on ρt2−1
i and then

using this bound in Equation 26, we have:

γt2i ≤
(⌊

∆0

BRT

⌋
− |UCBi −UCBt1−1

i |+
⌊

∆1

BRT

⌋)
· BRT (33)

From Equation 21, we can deduce that:

γt1i ≤ |UCBi −UCBt1−1
i | · BRT (34)

Taking the sum of the two equations, we can eliminate |UCBi−UCBt1−1
i |

and conclude that:

γt1i + γt2i ≤
(⌊

∆0

BRT

⌋
+

⌊
∆1

BRT

⌋)
· BRT ≤ ∆0 + ∆1 (35)

The base case is proved, we now prove the step case of the induction proof.1020

� Step case: assume that we have:

n∑
x=1

γtxi ≤
n−1∑
y=0

∆y (36)

we have to prove that:

(

n∑
x=1

γtxi) + γ
tn+1

i ≤ (

n−1∑
y=0

∆y) + ∆n (37)

Considering the preemption cost when τi resumes at time tn+1, by apply-
ing Equation 7, we have:

γ
tn+1

i = min(|UCBi −UCB
tn+1−1
i |, ρtn+1−1

i) · BRT (38)

Because τi is not executed in the interval [tn + ∆n, tn+1− 1), by applying
Equation 9, we have:

ρ
tn+1−1
i = ρ

tn+∆

i = min(|UCBi|, ρtni +

⌊
∆n

BRT

⌋
) (39)

Applying Equation 8 to compute ρtni , we have:

ρtni = max(0, ρtn−1
i − |UCBi −UCBtn−1

i |) (40)

35

At this step, there are two cases. We have either ρtni = 0 or ρtni =
ρtn−1
i − |UCBi −UCBtn−1

i |.

Case 1: we assume that ρtni = 0, from Equation 38, we can deduce that:

γtn+1
i ≤

⌊
∆n

BRT

⌋
· BRT (41)

From Equation 36, which is the assumption of the step case, and Equation
41, we can deduce that:

(

n∑
x=1

γtxi) + γ
tn+1

i ≤ (

n−1∑
y=0

∆y) + ∆n (42)

Case 2: we assume that ρtni = ρtn−1
i − |UCBi − UCBtn−1

i |. We can

successively deduce that ρtn−1
i = min

(
|UCBi|, ρtn−2

i +

⌊
∆n−2

BRT

⌋)
. By

applying this deduction successively until ρt0i , we have

ρ
tn+1−1
i ≤

n−1∑
x=0

⌊
∆x

BRT

⌋
−

n−1∑
x=0

|UCBi −UCBtx
i |+

⌊
∆n

BRT

⌋
(43)

By replacing the value of ρ
tn+1−1
i in Equation 38, we can deduce that:

γ
tn+1

i ≤
(

n−1∑
x=0

⌊
∆x

BRT

⌋
−

n−1∑
x=0

|UCBi −UCBtx
i |+

⌊
∆n

BRT

⌋)
· BRT (44)

From Equation 7, we can also deduce that:

n∑
x=1

γtxi ≤
n−1∑
x=0

|UCBi −UCBtx
i | · BRT (45)

From Equation 44 and Equation 45, we can compute (
∑n

x=1 γ
tx
i) + γ

tn+1

i ,1025

eliminate
∑n−1

x=0 |UCBi −UCBtx
i | and deduce Equation 42, which is what

we want to prove.

References

References1030

[1] J. Krodel, Commercial Off-the-shelf Real-time Operating Systems and Ar-
chitectural Considerations, Office of Aviation Research, Federal Aviation
Administration, 2004.

36

[2] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, A. Wellings, Adding
instruction cache effect to schedulability analysis of preemptive real-time1035

systems, in: Proceedings of the 2nd IEEE Real-Time Technology and Ap-
plications Symposium (RTAS), 1996, pp. 204–212.

[3] R. Pellizzoni, M. Caccamo, Toward the predictable integration of real-time
COTS based systems, in: 28th International Real-Time Systems Sympo-
sium (RTSS), IEEE, 2007, pp. 73–82.1040

[4] S. Planning, The economic impacts of inadequate infrastructure for soft-
ware testing, National Institute of Standards and Technology.

[5] J. Goossens, E. Grolleau, L. Cucu-Grosjean, Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor plat-
forms, Real-Time Systems 52 (6) (2016) 808–832. doi:10.1007/1045

s11241-016-9256-1.
URL https://hal.inria.fr/hal-01419704

[6] A. Burns, S. Baruah, Sustainability in real-time scheduling, Journal of
Computing Science and Engineering 2 (1) (2008) 74–97.

[7] J. Goossens, R. Devillers, The non-optimality of the monotonic priority as-1050

signments for hard real-time offset free systems, Real-Time Systems 13 (2)
(1997) 107–126.

[8] G. Phavorin, P. Richard, J. Goossens, T. Chapeaux, C. Maiza, Scheduling
with preemption delays: anomalies and issues, in: Proceedings of the 23rd
International Conference on Real Time and Networks Systems, ACM, 2015,1055

pp. 109–118.

[9] J. Staschulat, R. Ernst, Scalable precision cache analysis for preemptive
scheduling, ACM SIGPLAN Notices 40 (7) (2005) 157–165.

[10] S. Altmeyer, R. I. Davis, C. Maiza, Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems,1060

Real-Time Systems 48 (5) (2012) 499–526.

[11] W. Lunniss, S. Altmeyer, R. I. Davis, A comparison between fixed priority
and edf scheduling accounting for cache related pre-emption delays.

[12] M. González Harbour, J. Gutiérrez Garćıa, J. Palencia Gutiérrez,
J. Drake Moyano, Mast: Modeling and analysis suite for real time ap-1065

plications, in: Real-Time Systems, 13th Euromicro Conference on, 2001.,
IEEE, 2001, pp. 125–134.

[13] R. Urunuela, A. Deplanche, Y. Trinquet, Storm, a simulation tool for real-
time multiprocessor scheduling evaluation, in: Proceeding of the 15th Con-
ference on Emerging Technologies and Factory Automation (ETFA), IEEE,1070

2010.

37

https://hal.inria.fr/hal-01419704
https://hal.inria.fr/hal-01419704
https://hal.inria.fr/hal-01419704
https://hal.inria.fr/hal-01419704
https://hal.inria.fr/hal-01419704
http://dx.doi.org/10.1007/s11241-016-9256-1
http://dx.doi.org/10.1007/s11241-016-9256-1
http://dx.doi.org/10.1007/s11241-016-9256-1
https://hal.inria.fr/hal-01419704

[14] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, M. Qamhieh, et al.,
Yartiss: A tool to visualize, test, compare and evaluate real-time scheduling
algorithms, in: Proceedings of the 3rd International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems, 2012, pp.1075

21–26.

[15] M. Chéramy, P.-E. Hladik, A.-M. Déplanche, S. Dal Zilio, Simulation of
real-time scheduling algorithms with cache effects, in: 6th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems, 2015.1080

[16] H. N. Tran, F. Singhoff, S. Rubini, J. Boukhobza, Cache-aware real-time
scheduling simulator: Implementation and return of experience, ACM
SIGBED Rev. 13 (1) (2016) 22–28. doi:10.1145/2907972.2907975.
URL http://doi.acm.org/10.1145/2907972.2907975

[17] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, G. Buttazzo, Optimal1085

selection of preemption points to minimize preemption overhead, in: 23rd
Euromicro Conference on Real-Time Systems (ECRTS), IEEE, 2011, pp.
217–227.

[18] F. Singhoff, J. Legrand, L. Nana, L. Marcé, Cheddar: a flexible real time
scheduling framework, ACM SIGAda Ada Letters 24 (4) (2004) 1–8.1090

[19] G. Phavorin, Hard real-time scheduling subjected to cache-related preemp-
tion delays, Ph.D. thesis (Sept 2016).

[20] G. Phavorin, P. Richard, J. Goossens, C. Maiza, L. George, T. Chapeaux,
Online and offline scheduling with cache-related preemption delays, Real-
Time Systems (2017) 1–38.1095

[21] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, C. S. Kim, Analysis of cache-related preemption delay in fixed-
priority preemptive scheduling, IEEE Transactions on Computers 47 (6)
(1998) 700–713.

[22] H. Tomiyama, N. D. Dutt, Program path analysis to bound cache-related1100

preemption delay in preemptive real-time systems, in: Proceedings of the
eighth international workshop on Hardware/software codesign, ACM, 2000,
pp. 67–71.

[23] W. Lunniss, S. Altmeyer, C. Maiza, R. I. Davis, Integrating cache related
pre-emption delay analysis into EDF scheduling, University of York, York,1105

UK, Technical Report YCS-2012-478.

[24] P. M. Yomsi, Y. Sorel, Extending rate monotonic analysis with exact cost
of preemptions for hard real-time systems, in: 19th Euromicro Conference
on Real-Time Systems (ECRTS), 2007, IEEE, 2007, pp. 280–290.

38

http://doi.acm.org/10.1145/2907972.2907975
http://doi.acm.org/10.1145/2907972.2907975
http://doi.acm.org/10.1145/2907972.2907975
http://dx.doi.org/10.1145/2907972.2907975
http://doi.acm.org/10.1145/2907972.2907975

[25] J. Y.-T. Leung, J. Whitehead, On the complexity of fixed-priority schedul-1110

ing of periodic, real-time tasks, Performance evaluation 2 (4) (1982) 237–
250.

[26] S. Altmeyer, R. Douma, W. Lunniss, R. I. Davis, On the effectiveness of
cache partitioning in hard real-time systems, Real-Time Systems (2015)
1–46.1115

[27] G. Gebhard, S. Altmeyer, Optimal task placement to improve cache perfor-
mance, in: Proceedings of the 7th ACM & IEEE international conference
on Embedded software, 2007, pp. 259–268.

[28] W. Lunniss, S. Altmeyer, R. I. Davis, Optimising task layout to increase
schedulability via reduced cache related pre-emption delays, in: Proceed-1120

ings of the 20th ACM International Conference on Real-Time and Network
Systems, 2012, pp. 161–170.

[29] R. J. Bril, S. Altmeyer, M. M. van den Heuvel, R. I. Davis, M. Behnam,
Integrating cache-related pre-emption delays into analysis of fixed priority
scheduling with pre-emption thresholds, in: 2014 IEEE Real-Time Systems1125

Symposium, IEEE, 2014, pp. 161–172.

[30] A. Burns, Preemptive priority-based scheduling: An appropriate engineer-
ing approach, in: Advances in Real-Time Systems, chapter 10, Prentice
Hall, 1994, pp. 225–248.

[31] M. Chéramy, A.-M. Déplanche, P.-E. Hladik, Simulation of Real-Time Mul-1130

tiprocessor Scheduling with Overheads, in: International Conference on
Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH 2013), Reykjavik, Iceland, 2013, pp. 5–14.

[32] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in
a hard-real-time environment, Journal of the ACM (JACM) 20 (1) (1973)1135

46–61.

[33] R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger, Evaluation techniques
for storage hierarchies, IBM Systems journal 9 (2) (1970) 78–117.

[34] S. Altmeyer, C. Maiza Burguière, Cache-related preemption delay via useful
cache blocks: Survey and redefinition, Journal of Systems Architecture1140

57 (7) (2011) 707–719.

[35] N. Audsley, A. Burns, R. Davis, K. Tindell, A. Wellings, Real-time system
scheduling, Springer Berlin Heidelberg, 1995.

[36] A. Burns, A. Wellings, Concurrent and Real-Time Programming in Ada,
Cambridge University Press, 2007.1145

[37] H. Theiling, C. Ferdinand, R. Wilhelm, Fast and precise WCET prediction
by separated cache and path analyses, Real-Time Systems 18 (2-3) (2000)
157–179.

39

[38] J. Staschulat, S. Schliecker, R. Ernst, Scheduling analysis of real-time sys-
tems with precise modeling of cache related preemption delay, in: Proceed-1150

ings of the 17th Euromicro Conference on Real-Time Systems (ECRTS),
2005, pp. 41–48.

[39] W. R. E. Lunniss, Cache related pre-emption delays in embedded real-time
systems, Ph.D. thesis, University of York (2014).

[40] N. C. Audsley, Optimal priority assignment and feasibility of static priority1155

tasks with arbitrary start times, in: Technical Report YCS 164, Dept.
Computer Science, University of York, UK, 1991.

[41] E. Bini, G. C. Buttazzo, Measuring the performance of schedulability tests,
Real-Time Systems 30 (1-2) (2005) 129–154.

[42] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The mälardalen WCET1160

benchmarks: Past, present and future, in: 10th International Workshop
on Worst-Case Execution Time Analysis (WCET 2010), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

[43] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li, H. N. Tran,
L. Lemarchand, P. Dissaux, J. Legrand, Cheddar architecture description1165

language, Lab-STICC technical report.

40

	Introduction
	Related Work
	Analytical-based approaches
	Scheduling simulation based approaches

	Formalization of CRPD-aware scheduling simulation
	Formalization of CRPD computation models
	Coff: an offline CRPD computation model
	Con: an online CRPD computation model

	Con-lim - an improved online CRPD computation model
	Limitations of previous CRPD computation models
	Con-lim: an improved CRPD computation model

	Sustainability analysis of scheduling simulation with Con-lim
	Reduced capacity
	Larger period
	Larger relative deadline
	Summary

	Feasibility interval of scheduling simulation with Con-lim
	Synchronous periodic tasks
	Asynchronous periodic tasks

	Pessimism of scheduling simulation with Con-lim
	Schedulability task set coverage
	Preemption cost and number of preemptions
	Case study: Mälardalen benchmark suite

	CRPD-aware scheduling simulator implementation
	Simulation interval
	Number of tasks

	Conclusion
	Proof of Theorem 1

