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Abstract This paper tackles the problem of the Opportunistic Spectrum Ac-
cess (OSA) in the Cognitive Radio (CR). The main challenge of a Secondary
User (SU) in OSA is to learn the availability of existing channels in order
to select and access the one with the highest vacancy probability. To reach
this goal, we propose a novel Multi-Armed Bandit (MAB) algorithm called
ε-UCB in order to enhance the spectrum learning of a SU and decrease the
regret, i.e. the loss of reward by the selection of worst channels. We corroborate
with simulations that the regret of the proposed algorithm has a logarithmic
behavior. The last statement means that within a finite number of time slots,
the SU can estimate the vacancy probability of targeted channels in order to
select the best one for transmitting. Hereinafter, we extend ε-UCB to consider
multiple priority users, where a SU can selfishly estimate and access the chan-
nels according to his prior rank. The simulation results show the superiority
of the proposed algorithms for a single or multi-user cases compared to the
existing MAB algorithms.

Keywords Opportunistic Spectrum Access · Cognitive Networks · Multi-
Armed Bandit · Single or Multi-Users · Priority Access

1 Introduction

Opportunistic Spectrum Access (OSA) in the Cognitive Radio (CR) has been
seen as a suitable solution to improve the spectrum efficiency. Several studies,
initiated by the Federal Communications Commission (FCC) in the United
States (US), have recently shown that the frequency bands are not well used.
On the one hand, the demand of mobile and wireless networks, have experi-
enced unprecedented advancement since 1990’s, which makes the frequency
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2 Mahmoud Almasri1 et al.

bands more and more crowded. On the other hand, many simulations con-
ducted in several regions in the US showed that 60 % of the frequency bands
are not well used [1].
In OSA, two categories of users are considered: a Primary User (PU) who has
an exclusive license to use its frequency band at any time, and a Secondary
User (SU), unlicensed user, who can access the frequency band in an oppor-
tunistic manner. At each time slot, the SU tries to search and access the vacant
frequency let unused by the PU without causing any harumful intereference
to the latter. Due to the hardware limitation, the high cost of energy detection
and the delay, a SU is not able to sense all available frequency bands at the
same time. Then, under a constraint detection (one channel/slot), a SU should
decide which channel to select and transmit its data once the targeted channel
is free. Otherwise, it should wait for another slot to choose another channel. 
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Fig. 1: Vacancy of licensed channels

In our work, we seek to enhance the licensed spectrum efficiency by help-
ing the SU to find the best channel with the highest availability probability
(i.e. the first channel in Fig.1). Indeed, this channel, on the one hand, can
increase the transmission time and rate of the SU. On the other hand, access-
ing the best channel in the long-term may decrease the interference with the
PU because this channel is not often used by this latter. In order to learn the
vacancy probability of channels and thus reach the best one, we formulate our
problem as the Multi-Armed Bandit (MAB) problem. After this formulation,
we propose a novel MAB algorithm called e-Upper Confidence Bound (e-UCB)
in order to help a SU making a decision. Hereinafter, we extend the proposed
MAB algorithm to consider the multiple user case in which a policy called
ALL-Powerful Learning (APL) is proposed. With a priority access, APL allows
the SUs to learn collectively the vacancy probability of channels without any
cooperation or prior knowledge about the vacancy probability of channels.
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2 Multi-Armed Bandit Problem

Due to its generic nature, the MAB problem attracts more and more the atten-
tion in several fields including wireless channel access, jamming communica-
tion or object tracking. The classical MAB problem can be expressed as follows:
An agent pulls one arm at each time slot and receives a fixed reward trying to
maximize its long-term payoff. The main goal of the agent is to find the best
arm with the highest expected reward. At each time, the agent has the choice
to pull the current best arm (exploitation) or to try another arm in order to gain
more (exploration). This problem is referred to the exploration-explotoitation
dilemma in the MAB problem. Generally, a given policy can be considered as
optimal when it balances between the exploration and the exploitation phases.

2.1 MAB Algorithms for a Single Agent

To solve the exploration-exploitation dilemma, different learning algorithms
have been suggested in the literature, such as: e-greedy [2], Upper Confidence
Bound (UCB) [3], Thompson Sampling (TS) [4], EXP3 [5], etc. Recently, the
OSA is formulated as a MAB problem in order to help a SU makes a de-
cision1. Subsequently, the MAB algorithms can be considered as a suitable
solution for OSA. Indeed, the MAB algorithms are widely used to learn the va-
cancy probabilities of licensed channels according to the behavior of primary
users. One of the simplest algorithm is referred to e-greedy firstly proposed
in [2]. A recent version of e-greedy is proposed in [6] in order to achieve a
better performance compared to several previous versions (see algorithm
1). Like several MAB algorithms, e-greedy contains two phases completly
separated: exploration and exploitation. During the exploration phase, the
user chooses a random channel in order to learn the vacancy probability of
channels, while in the exploitation phase, the user usually selects the chan-
nel with the highest expected reward Xi(Ti(t)). The authors of [6] have also
investigated the analytical convergence of the e-greedy and it have shown
that the regret (i.e. the loss of reward by selecting worse channels) achieves
a logarithmic asymptotic behavior. Upper Confidence Bound (UCB) repre-
sents the widely mentionned MAB algorithm in the literature and was first
introduced in [3]. Several versions of UCB have been proposed to achieve
a better performance compared to the classical one, such as: UCB1, UCB2,
UCB-tuned, Bayes-UCB, Kullback-Leibler UCB (KL-UCB) [6–9]. In [6], the

1 A SU in the context of OSA can be considered as an agent in the classic MAB problem, and
the frequency channels become equivalent to different arms
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authors proposed a simple and widely used version of UCB, called UCB1.

Algorithm 1: e-greedy Algorithm
Input: C, H, n,

1 C: number of channels,
2 H: exploration constant,
3 n: total number of slots,
4 Parameters: Ti(t),
5 Ti(t): number of times the channel is sensed up to time t,
6 χ: a uniform random variable in [0,1],

Output: Xi(Ti(t)),
7 Xi(Ti(t)): the expected reward depends on Ti(t),
8 foreach t = 1 to n do
9 if χ < min{1, H

t } then
10 SU makes a random action at,
11 else
12 at = maxi Xi(Ti(t)),
13 Ti(t) + +,
14 Xi(Ti(t)) = 1

Ti(t)
∑t

τ=1 Si(τ),

15 % Si(τ) is the observed state from channel i at τ,
16 % Si(τ) = 1 if the ith channel is vacant and 0 otherwise,

The importance of UCB1 can be justified by the fact, that this version
achieves a trade-off between the optimality and the complexity. In UCB1, each
channel has assigned an index Bi(t, Ti(t))) and at each time slot the user selects
the channel with the highest index (see algorithm 2). The index Bi(t, Ti(t))
consists basically of two important factors: Xi(Ti(t)) and Ai(t, Ti(t))) that
represent respectively the exploitation (or the expected reward) and the explo-
ration phases. The assigned index of each channel may be defined as follows:

Bi(t, Ti(t)) = Xi(Ti(t)) + Ai(t, Ti(t)) (1)

where the exploitation and the exploration factors can be expressed as:

Xi(Ti(t)) =
1

Ti(t)

t

∑
j=1

ri(j) (2)

Ai(t, Ti(t)) =

√
α ln(t)
Ti(t)

(3)
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Algorithm 2: UCB1 Algorithm
Input: α, C, n,

1 α: exploration-exploitation factor,
2 C: number of channels,
3 n: total number of slots,
4 Parameters: Ti(t), Xi(Ti(t)), Ai(t, Ti(t)),
5 Ti(t): number of times the ith channel is sensed up to t,
6 Xi(Ti(t)): the exploitation contribution of ith channel,
7 Ai(t, Ti(t)): the exploration contribution of ith channel,

Output: Bi(t, Ti(t)),
8 Bi(t, Ti(t)): the index assigned for ith channel,
9 foreach t = 1 to C do

10 SU senses each channel once,
11 SU updates its index Bi(t, Ti(t)),

12 foreach t = C + 1 to n do
13 at = arg maxi Bi(t− 1, T(t− 1)),
14 Ti(t) + +,
15 Xi(Ti(t)) = 1

Ti(t)
∑t

τ=1 Si(τ),

16 % Si(τ) is the observed state from channel i at τ,
17 % Si(τ) = 1 if the channel i is vacant and 0 otherwise,

18 Ai(t, Ti(t)) =
√

α ln(t)
Ti(t)

,

19 Bi(t, Ti(t)) = Xi(Ti(t)) + Ai(t, Ti(t)),

After a certain number of time slots, the exploitation factor of the ith chan-
nel Xi(Ti(t)) will be very close to its availability, µi. On the other hand, the
importance of the exploration factor is to learn the vacancy probability of
channels by reinforcing the algorithm to examinate the states of all available
channels.

At the initialization period (i.e. from 1 up to the number of channels C),
the user selects each channel once to have a prior information about the
availability of channels. After this period, the user selects the channel that has
the highest index Bi(t, Ti(t)):

at = arg max
i

Bi(t, Ti(t)) (4)

In [6], the authors suggest the upper bound of the sum of regret (i.e. the
loss of reward by selecting the worst channels) and they also show that the
regret achieves a logarithmic asymptotic behavior. Subsequently, after a finite
number of time slots, the user distinguishes the optimal channel and can then
always select this channel.

Thompson Sampling algorithm (TS), another important MAB algothim,
represents one of the earliest MAB algorithms [4]. As in UCB1, each channel
has assigned an index Bi(t, Ti(t)) and at each time slot the agent selects the
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channel with the highest index Bi(t, Ti(t)):

Bi(t, Ti(t)) =
Wi(t, Ti(t)) + a

Wi(t, Ti(t)) + Zi(t, Ti(t)) + a + b
(5)

where Wi(t, Ti(t)) and Zi(t, Ti(t)) represent respectively the success and
failure access; a and b are constant numbers. Besides its performance compared
to other MAB algorithms [7, 10, 11], TS was till recently largely ignored in the
literature by the Machine learning community. The rejection of TS is due to
the fact that this algorithm is proposed without any analytical proof. Recently,
TS attracts more and more the attention and several works investigated the
proof of its convergence [12, 13, 25].

Algorithm 3: Thompson Sampling Algorithm
Input: C, n,

1 C: number of channels,
2 n: total number of slots,
3 Parameters: Si(t), Ti(t), Wi(t, Ti(t)), Zi(t, Ti(t)),
4 Si(t): state of the selected channel, equal one if the channel is free and

0 otherwise,
5 Ti(t): number of times the ith channel is sensed by SU,
6 Wi(t, Ti(t)): success access of the ith channel,
7 Zi(t, Ti(t)): failure access of the ith channel,

Output: Bi(t, Ti(t)),
8 Bi(t, Ti(t)): index assigned for the ith channel,
9 foreach t = 1 to n do

10 at = arg maxi Bi(t, Ti(t)),
11 Observe the State Si(t),
12 Wi(t, Ti(t)) = ∑n

t=0 Si(t)1at=i,
13 % 1at=i: equals 1 if the user selects the ith channel and 0 otherwise,
14 Zi(t, Ti(t)) = Ti(t)−Wi(t, Ti(t)),

15 Bi(t, Ti(t)) =
Wi(t,Ti(t))+a

Wi(t,Ti(t))+Zi(t,Ti(t))+a+b

After a finite number of time slots, the vacancy probability of the ith channel
µi becomes very close to Bi(t, Ti(t)). By choosing the channel with the highest
index, the user usually selects the optimal channel.

2.2 Multiple Agents under Random or Priority Access

In the previous section, we investigated the well-known MAB algorithms,
initially proposed for a single user, to help a SU making a decision. However,
in OSA, several SUs may exist in the network and a decision making, then an
appropriate action taken by a SU may affect the actions and the decisions of
all other users. In order to help a SU to make a good decision without harming
the transmission of others, several algorithms have been proposed. These
algorithms can be classified into three main categories:
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1. Centralized algorithms: in which the decision is made at the network-level.
2. Semi-distributed algorithms that represent the medley among the central-

ized and distributed algorithms in which the decision is often made at the
network-level.

3. Distributed algorithms: In this type of algorithms, a SU makes its own
action in a competitve manner without interacting with others. Although
the competitve access can increase the number of collisions among users
but also the complexity of the system will decrease compared to the co-
operative access. Indeed, in the latter case, the decision made by a SU not
only depends on its own observations, but also on the decision of other
users. So that, the users would interact with each other in order to make a
good decision.

In our work, we focus on the competitve access in which a novel distributed
algorithm for the piority access is proposed. By taking into account the priority
access, the authors of [14] proposed the Selective Learning of the kth largest
expected reward (SLK) policy, based on UCB1. SLK has been shown as an
efficient policy for the priority access. However, the number of users must be
fixed and known by each user. Similarly to SLK, the authors of [15] proposed
the kth−MAB for the priority access, where each user has a prior knowledge
about its prior rank. In kth−MAB, the time is slotted and each slot is divided
into multi sub-slots depending on the users priority ranks. For instance, the
slot of SUU is divided into U sub-slots in order to find the Uth best channel
and transmit its own data via this channel. Therefore, for a large number of
users, the transmission time is insufficient for the high ranking users, which
consists a major limitation of this algorithm.

For the random access, several learning policies can be found in the lit-
erature where the SU selects randomly its channel. For instance, the authors
of [16] proposed the Musical chair policy where each user selects a random
channel up to a fixed time T0 in order to estimate the channels availabilities
and the number of users, U, in the network. After T0, each user should select
a random channel in the set {1, ..., U}.

3 Problem Formulation

3.1 Single User Case

First, let us consider a SU is trying to access C available channels ordered by
their vacancy probabilities, i.e. µ1 > µ2 > . . . > µC, and let Γ =

(
µi
)

being the
vacancy probability vector initially considered as an unknown to the SU. A
main target of SU is to provide an information about the vector Γ in order to
access the best channel µ1. Accessing this channel increases the trasnmission
time and rate of the SU. At each time slot, the SU can select one channel and
transmits its data if this channel is free; otherwise, it should wait to the next
slot to select another channel. Each channel can be seen in two binary states
Si(t): Si(t) = 1 if the selected channel is free, and 0 otherwise. Without any
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loss of generality, the obtained reward ri(t) from the ith channel selected at
any time t may equal to its binary state, i.e. ri(t) = Si(t). Let us define the
memory for storing and accessing the ith channel up to time t by Ti(t). We
should notice that ri(t) and Ti(t) have important roles to estimate the expected
reward obtained from the ith channel up to t.
A SU should select a given policy that can maximize its long-term expected
reward. In order to evaluate the performance of a given policy β, let us define
the regret corresponding to the reward loss by the selection of the worse
channels as follows:

R(n, β) = nµ1 − E
[ n

∑
t=1

µ
β
i (t)

]
(6)

where n denotes the total number of slots and µ
β
i (t) represents the vacancy

probability of the selected channel at time t using a policy β, and E[.] stands
for the mathematical expectation.

3.2 Multi-User Case

In this section, we consider U SUs trying to access licensed bands containing C
channels in an opportunistic manner. Since a SU can access only one channel
at each time slot, then it should make a suitable decision and choose an
appropriate channel (e.g. the channel with the highest vacancy probability).
When several SUs existing in the spectrum, the main challenge for them is to
learn collectively the vacancy probability of channels as mush as possible in
order to access the best ones. Moreover, the number of collisions among users
should be under a certain limit. Then, let us define the regret for multiple
users that depends not only on the access of worse channels but also on the
collision among users:

R(n, U, β) = n
U

∑
k=1

µk −
n

∑
t=1

E
[
Sβ(t)

]
(7)

where µk represents the vacancy probability of the kth optimal channel; Sβ(t)
represents the global reward obtained by all users at time t using a given
policy β. Sβ(t) can be defined as follows:

Sβ(t) =
U

∑
j=1

C

∑
i=1

Si(t)Ii,j(t) (8)

where Si(t) stands for the state of the ith channel at time t 2 (i.e. Si(t) = 1 if the
channel selected by a SU is free at time t, otherwise Si(t) = 0); Ii,j(t) indicates
that no-collision occured in the ith channel by the user j at time t (i.e. Ii,j(t) = 1

2 The variable Si(t) may also represent the reward of the ith channel at slot t.
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if the jth user is the sole occupant of channel i and 0 otherwise). Finally, we
introduce in the equation below a simple definition of the regret that can be
affected by the channel occupancy and the collision among users up to time n:

R(n, U, β) = n
U

∑
k=1

µk −
U

∑
j=1

C

∑
i=1

Pi,j(n)µi (9)

where Pi,j(n) = ∑n
t=1 E

[
Ii,j(t)

]
represents the expectation of times when the

user j is the only occupant of the channel i up to n, and the mean of reward
can be given by:

µi =
1
n

n

∑
t=1

Si(t)

4 Distributed Learning e-UCB

In this section, we propose a novel learning algorithm called e-UCB, based
on UCB and e-greedy, to tackle the OSA problem and help a SU to find an
opportunity in the frequency band. Here, it is worth mentioning that the
well-known MAB algorithms that address the OSA problem are based or
insipred either by UCB or e-greedy [14, 17–21]. Hereinafter, we extend e-UCB
to consider the multiple SUs case in which a novel comptetive policy for the
priority access is proposed. This policy does not require any cooperation or
prior knowledge about the vacancy probabilities of channels. The proposed
policy may achieve better performance compared to recent works that consider
the priority access.

4.1 Learning MAB algorithm for a Single User

In order to learn the vacancy probabilities of channels and then access the best
one, all suggested MAB algorithms have two phases that can be overlapped:
exploration and exploitation. For their simplicity and optimality, UCB1 and
e-greedy are widely suggested in the literature to solve the OSA problem.
Besides the optimality achieved by UCB1 and e-greedy compared to other
MAB algorithms, the two algorithms suffer from some drawbacks. On the
one hand, in UCB1 the exploration phase, Ai(t, Ti(t)), has the same impact
over time which may cause an additional increase of the regret. Nevertheless,
the importance of the exploration factor should be only during the learning
phase when gathering information about the vacancy probability of channels.
Thus, the big challenge is to restrict the exploration factor Ai(t, Ti(t)) after the
learning period while giving an additionel weight to the exploitation factor
Xi(Ti(t)). On the other hand, due to the random selection in e-greedy during
the exploration phase, the user may access many bad channels. Subsequently,
the regret may increase significantly. Due to the random access in the multi-
user case, a large number of collisions may occur among users and many
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transmission periods will be lost. Our e-UCB can solve the main drawbacks of
UCB1 and e-greedy, where the user accesses the channel that has the highest
index Bi(t, Ti(t)) if χ < εt; otherwise, the user selects the best channel with
the highest vacancy probability Xi(Ti(t)) (see algorithm 4).

Algorithm 4: e-UCB Algorithm
Input: C, H, α, n,

1 C: number of channels,
2 H and α: represent the exploration-exploitation factors,
3 n: total number of slots,
4 Parameters: χ, εt, Ti(t), Xi(Ti(t)), Ai(t, Ti(t))
5 χ: random variable in [0,1] generated at time t,
6 εt: decreasing number with respect to time ∈ [0, 1],
7 Ti(t): number of times the ith channel is sensed up to t,
8 Xi(Ti(t)): exploitation contribution of ith channel,
9 Ai(t, Ti(t)): exploration contribution of ith channel,

Output: Bi(t, Ti(t)),
10 Bi(t, Ti(t)): index assigned for ith channel,
11 Initialization
12 foreach t = 1 to C do
13 SU senses each channel once,
14 SU updates Bi(t, Ti(t)), Xi(Ti(t)), Ai(t, Ti(t)),

15 foreach t = C + 1 to n do
16 if χ < εt, then
17 at = arg maxi Bi

(
t− 1, Ti(t− 1)

)
,

18 else
19 at = arg maxi Xi

(
Ti(t− 1)

)
,

20 Ti(t) + +,
21 SU updates Bi(t, Ti(t)), Xi(Ti(t)), Ai(t, Ti(t))

Hereinafter, we show that the upper bound of regret of e-UCB achieves a
logarithmic asymptotic behavior. Then, after a finite number of time slots, the
user can learn the vacancy probabilities of channels and may select always the
best one, µ1.
Due to the hardware constraints, we suppose that the user can sense only one
channel at each time slot, then: ∑C

i=1 Ti(n) = n. The regret for a single user in
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eq. (6) can be expressed as follows:

R(n, β) = nµ1 −
C

∑
i=1

E[Ti(n)]µi

=
C

∑
i=1

E
[
Ti(n)

]
µ1 −

C

∑
i=1

E
[
Ti(n)

]
µi

=
C

∑
i=1

E
[
Ti(n)

]
∆i (10)

where E[.] is the expectation and ∆i = µ1 − µi.
According to e-UCB, the user selects the ith channel once during the initial-

ization phase and every time this channel has the highest index (see eq. (4));
therefore, Ti(n) can be written as follows:

Ti(n) = 1 +
n

∑
t=C+1

1{at=i} (11)

where 1{at=i} equals 1 if at = i and 0 otherwise. Up to time n, the user may
select each channel at least l times; then, according to eq. (11), Ti(n) can be
bounded as follows:

Ti(n) ≤ l +
n

∑
t=C+1

1{at=i;Ti(t−1)≥l} (12)

In e-UCB, the user may select the ith non-optimal channel either in the ex-
ploration or exploitation phases. Therefore, let Mi and Ni be the events that
the user selects the ith channel during the exploration and exploitation re-
spectively, and let D be the event that Ti(t− 1) ≥ l. In this case, Ti(n) can be
expressed as follows:

Ti(n) ≤ l +
n

∑
t=C+1

1{Mi(t);D} +
n

∑
t=C+1

1{Ni(t);D} (13)

In the above equation, the second and third terms follow the Bernoulli distri-

bution
(

i.e. E[X] = p[X = 1] where X is a random variable in {0, 1}
)

. In this

case, the expectation of Ti(n) can be written as:

E[Ti(n)] ≤ l +
n

∑
t=C+1

p{Mi(t); D}︸             ︷︷             ︸
A

+
n

∑
t=C+1

p{Ni(t); D}︸            ︷︷            ︸
B

(14)

According to e-greedy, the user selects the ith channel during the explo-
ration phase if at (t − 1), Bi(t− 1, Ti(t− 1)) > B1(t− 1, T1(t− 1)). Subse-
quently, A can be expressed as follows:

A = p
{

χ < εt; Bi(t− 1, Ti(t− 1)) ≥ B1(t− 1, T1(t− 1)); D
}

(15)
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The event χ < εt in the above equation is independent of the selection proce-
dure. Then, we obtain:

A = p{χ < εt} × p
{

Bi(t− 1, Ti(t− 1)) ≥ B1(t− 1, T1(t− 1)); D
}

(16)

As χ is uniformly distributed in [0, 1], and 0 ≤ εt ≤ 1, then p{χ < εt} = εt.
So, we get:

A ≤ 2H × t−2α+1

Proof in appendix A

where H and α are constant numbers. According to Cauchy theorem [22],
a series of the form ∑n

t=1 t−2α+1 can converge if α > 1. Let α = 2 (in order to
achieve a balance between the exploration and the exploitation phases), then
we obtain:

n

∑
t=C+1

A ≤ 2H ×
n

∑
t=1

t−3 ≤ π2H
3

(17)

Let us seek an upper bound of B in eq. (14) that referred to the the probability
to access the ith channel during the exploitation phase. Indeed, during the
exploitation phase, the user may select the ith channel at time slot t, whereas
Xi(Ti(t− 1)) > X1(T1(t− 1)) at t− 1. Then, we get the following inequality:

B = p
{

χ ≥ εt; Xi(Ti(t− 1)) ≥ X1(T1(t− 1)); D
}

(18)

As the two events χ ≥ εt and Xi(Ti(t− 1)) ≥ X1(T1(t− 1)) are independent,
we obtain:

B =
(
1− εt

)
× p

{
Xi(Ti(t− 1)) ≥ X1(T1(t− 1)); D

}
(19)

The probability in the above equation can be bounded as follows:

p
{

Xi(Ti(t− 1)) ≥ X1(T1(t− 1)); D
}
≤ Y + Z (20)

where Y = p
{

Xi(Ti(t− 1)) ≥ a; D
}

, Z = p
{

X1(T1(t− 1)) ≤ a; D
}

, and a is a
constant number that can be chosen as: a = µ1+µi

2 = µ1 − ∆i
2 = µi +

∆i
2 .

Let us first consider, the first term of eq. (20):

Y =
n

∑
y=l

p
{

Xi(Ti(t− 1)) ≥ µi +
∆i
2

; Ti(t− 1) = y
}

=
n

∑
y=l

p
{

Xi(y) ≥ µi +
∆i
2

; Ti(t− 1) = y
}

≤
n

∑
y=l

p
{

Xi(y) ≥ µi +
∆i
2
}

(21)
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Using the Chernoff-Hoeffding theorem in [23]3, we can upper bound the
above equation as follows:

Y ≤
n

∑
y=l

exp−
2∆2

i y2

4y ≤ n exp
−l∆2

i
2 (22)

According to the proof provided in appendix A, we consider l = d 4α ln(n)
∆2

i
e

where α = 2. So, we get:

Y ≤ n exp−4 ln n =
1
n3 (23)

The upper bound of Z can be expressed as:

Z ≤ 1
n3 (24)

Proof in appendix B

Based on eq (14), (17), (19), (23) and (24), E[Ti(n)] can be upper bounded by:

E[Ti(n)] ≤
8 ln n

∆2
i

+
π2H

3
+

2
n3 (25)

From the above inequation, we conclude that the user plays each arm no more
than 8 ln n

∆2
i

plus a constant number. Finally, based on eq (10) and (25), the regret

of e-UCB, R(n, e-UCB), can be upper bounded by the following equation:

R(n, e-UCB) ≤ 8 ln n
C

∑
i=2

1
∆i

+
(π2H

3
+

2
n3

) C

∑
i=1

∆i (26)

4.2 ε-UCB for the Multi-Priority Access

In our work, we are interested in the priority access where the SUs should
access the channels based on their priority ranks. Our goal is to ensure that
the U users are accessing separately the U-best channels without any prior
information on best channels.

3 According to [23], Chernoff-Hoeffding theorem is defined as follows: Let X1, ..., Xn be random

variables in {0, 1}, and E[Xt] = µ, and let Sn = ∑n
i=1 Xi . Then ∀ a ≥ 0, p{Sn ≥ nµ + a} ≤ exp

−2a2
n

and p{Sn ≤ nµ− a} ≤ exp
−2a2

n .
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Based on our policy, All-Powerful Learning (APL), proposed in [26], we
extend ε-UCB to consider multiple SUs (see algorithm 5).

Algorithm 5: ε-UCB for multiple users
Input: k, C, H, α, n,

1 k: indicates the kth user,
2 C: is the number of channels,
3 H and α: represent the exploration and the exploitation factors,
4 n: total number of slots,
5 Parameters: χk, ξk(t), εt, Xi,k(t), Ai,k(t)
6 χk: a random variable in [0,1] generated by the k-th user,
7 ξk(t): indicates a collision for the kth user at time t,
8 εt: a decreasing number with respect to time ∈ [0, 1],
9 Xi,k(t): the exploitation contribution of ith channel for the k-th user,

10 Ai,k(t): the exploration contribution of ith channel for the k-th user,
Output: Bi,k(t),

11 Bi,k(t): the index assigned of ith channel for the k-th user,
12 Initialization
13 foreach t = 1 to C do
14 SUk senses each channel once,
15 SUk updates Bi,k(t), Xi,k(t), Ai,k(t),
16 SUk generates a rank in the set {1, ..., k},
17 foreach t = C+1 to n do
18 if χk < εt then
19 SUk senses a channel in its index Bi,k(t) according to its rank,
20 if ξk(t) = 1, then
21 SUk regenerates its rank in the set {1, ..., k},
22 else
23 SUk keeps its previous rank,

24 else
25 SUk senses the channel that has the kth expected of reward,

26 SUk updates Bi,k(t), Xi,k(t), Ai,k(t),

According to APL, each user has a fixed rank, k ∈ {1, ..., U}, and its target
remains to access the kth best channel. In addition, we consider the competitive
priority access, where users selfishly estimate the availability probability of
channels.

In a classical priority access, each channel has assigned an index and the
highest priority user SU1 should sense and access the channel with the highest
index, i.e. µ1, at each time slot. Indeed, the best channel, after a finite number
of time slots, will be corresponding to the highest index. As for the second
priority user, SU2, he should avoid the best channel and try to access the
second best channel, µ2. To reach its goal, SU2 should sense the first and
second best channels at each time slot in order to estimate their vacancy
probabilities and then access the second best channel when available. For
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the Uth SU, it should estimate the vacancy probability of all the first U best
channels at each time slot to access the Uth best one. Therefore, the complexity
of the hardware is increased, and we conclude that a classical priority access
represents a costly and impractical method to settle down each user to its
dedicated channel.
Our algorithm ε-UCB, based on APL, can overcome this limitation by making
each user generate a rank around its prior rank if χk (a random variable
generated by the kth user) < εt in order to have information about the channels
availability. In this case, SUk can scan the k best channels and its target is the
kth best one. However, if the generated rank of SUk is different than k, then
he accesses a channel of the set µ1, µ2, ..., µk−1 and he may collide with a
higher priority user, i.e. SU1, SU2, ..., SUk−1. After each collision, the user can
regenerate its rank to access its assigned channel; Otherwise, he retains its
rank. On the other hand, after the learning period when χk > εt, the kth user
may have a good estimation about the availability probability and should
access the channels according to its rank, i.e. the kth best channel.

5 Simulation and Results

In our simulation, we consider three main scenarios: In the first one, a SU tries
to learn the vacancy of channels in order to access the best one, i.e. that has the
highest availability probability. We evaluate the performance of e-UCB with
respect to well-known versions of MAB algorithm: TS, UCB1 and e-greedy. In
a second scenario, we consider 4 SUs trying to learn collectively the vacancy
of channels with a low number of collisions. It has been shown that, based on
our policy APL, the users reach their dedicated channel faster than several
existing algorithms while decreasing the total regret. Let us initially consider
a SU accessing channels with the following availability probabilities:

Γ = [0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1]

and trying to reach the best channel, i.e. µ1 = 0.9. Fig. 2 represents the regret
of e-UCB compared to TS, UCB1 and e-greedy over 1000 Monte Carlo runs.
The simulation outcomes are presented with a shaded region enveloping
the average regret. As we can see, the regret of the 4 MAB algorithms TS,
e-UCB, UCB1 and e-greedy has a logarithmic asymptotic behavior in function
of the number of slots. Moreover, for 1000 simulations, e-UCB produces a
lower regret compared to UCB1 and e-greedy while TS achieves the best
performance.
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Fig. 2: e-UCB compared to TS, UCB1 and e-greedy

In our simulation, we also use the percentage accessing the best channel
by the user, PBest, given by:

PBest = 100×
n

∑
t=1

1(at=µ1)

t

where 1(a=b) =

{
1 if a = b
0 otherwise

In Fig. 3, PBest shows three parts:

1. The first part, from slot 1 to C, represents the initialization part where the
SU should access each channel once in order to get some information about
the vacancy of channels.

2. The second part, from slot C+1 to around 2000, represents the adaptation
phase.

3. In the last part, the user converges asymptotically towards the optimal
channel µ1.

In the adaptation part, e-greedy achieves the worst results compared to
other MAB algorithms. While in the convergence part, e-greedy can reach the
best channel faster than UCB1. However, e-greedy spends more time to gather
more information about the vacancy of channels in the exploration phase, then
it exploits efficiently the obtained information to reach the best channel. While
UCB1 seems to have a balance between its exploration-exploitation phases at
any given time up to the total number of slots, n. The same figure shows that
TS achieves the best performance followed by our proposed e-UCB, e-greedy,
and UCB1.



Distributed Competitive Decision Making Using Multi-Armed Bandit Algorithms 17

100 101 102 103 104 105

Number of slots

0

20

40

60

80

100
P

er
ce

n
ta

g
e 

o
f 

ti
m

es
 t

o
 a

cc
es

s 
th

e 
b

es
t 

ch
an

n
el

Thompson Sampling

e-UCB

UCB1

e-greedy

Adaptation ConvergenceInitialization

Fig. 3: The percentage of times where the user selects its optimal channel using the 4 MAB
algorithms

Fig. 4: e-UCB, TS, UCB1 with APL compared to SLK and Musical Chair

According to many recent works, the performance of TS seems to exceed
that of the state-of-the-art MAB algorithms. Its performance is widely sug-
gested for a single user and several studies found an upper bound for its
optimal regret. Despite its optimal convergence to the best channel for a single
user, TS may not achieve a better result for multiple users as shown in Fig. 4.
In fact, in the multi-user case, the performance for a given MAB algorithm
not only depends on the access of worse channels but also on the number
of collisions among users. The access of worse channels and the number of
collisions are mainly related to the exploration impact. Similarly, the effect
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Fig. 5: The percentage of times where each SUk selects its optimal channel using e-UCB, TS, UCB1
based on the APL policy

of the exploration factor should be restricted, as does our proposed e-UCB,
after the learning period where the user collects sufficient information about
the availability of channels; while in the case of TS, the exploration factor still
has the same impact all the time, which basically produces a large number
of collisions compared to e-UCB. That explains why, for multiple users using
APL, e-UCB attains a lower regret and gives a good result compared to TS.

Fig. 5 depicts the percentage to access the best channels by each SU using
our policy APL. After estimating the availabilities of the communication
channels, and based on APL, the targets of users SU1, SU2, SU3 and SU4 are
to access the 4 best channels (i.e. µ1 = 0.9, µ2 = 0.8, µ3 = 0.7 and µ4 = 0.6).
If two or more users access the same channel, a collision occurs and all the
collided users receive zero reward. The percentage of times that the user SUk
accesses successfully its dedicated channel up to time n using our policy APL
is defined as follows:

Pk(n) =
1
n

n

∑
t=1

1(at=k) (27)

According to Fig. 5, the users may reach their dedicated channels quickly
compared to TS or UCB1.



Distributed Competitive Decision Making Using Multi-Armed Bandit Algorithms 19

6 Conclusion

In this study, we propose a novel MAB algorithm called e-Upper Confidence
Bound (e-UCB) in order to help a single SU to learn Opportunistic Spectrum
Access (OSA) channels. We also evaluate the performance of e-UCB compared
to the well-known Multi-Armed Bandit (MAB) algorithms, such as: Thompson
Sampling (TS), UCB1 and e-greedy. In order to tackle the problem of OSA
with several Secondary Users (SUs), we extend e-UCB based on our novel
All-Powerful Learning (APL) policy for the priority access. This policy allows
several SUs to learn collectively the available channels without any coop-
eration or prior knowledge about the vacancy probabilities of the channels.
We should notice that the priority access is not widely considered in the lit-
erature, meanwhile SLK is one of rare policy with priority access and it is
based on UCB1 algorithm. We also compare the extended e-UCB to recent
existing policies such as: SLK and Musical Chair. In future works, we plan
to undertake more comprehensive simulations based on e-UCB and APL; we
will also investigate the analytical upper bound of e-UCB with APL.

Appendix A

In this Appendix, we investigate the upper bound of the term A = εt × Prob
in e-UCB where Prob can be expressed as follows:

Prob ≤ P
{

Bi(t− 1, Ti(t− 1)) ≥ B1(t− 1, T1(t− 1)); Ti(t− 1) ≥ l
}

The index of the i-th channel Bi(t, Ti(t)) is the sum of the exploration factor,
Xi(Ti(t)), and the exploitation factor, Ai(t, Ti(t)):

Bi(t, Ti(t)) = Xi(Ti(t)) + Ai(t, Ti(t)) (28)

Then, we obtain:

Prob ≤ P
{

X1(T1(t− 1)) + A1(t− 1, T1(t− 1)) ≤

Xi(Ti(t− 1)) + Ai(t− 1, Ti(t− 1)) and Ti(t− 1) ≥ l
}

(29)

By taking the minimum value of X1(T1(t− 1)) + A1(t− 1, T1(t− 1)) and the
maximum value of Xi(Ti(t− 1)) + Ai(t− 1, Ti(t− 1)) at each time slot, we
can upper bound Prob by the following equation:

Prob ≤ P

{
min

0<S1<t

[
X1(S1)+ A1(t, S1)

]
≤ max

l≤Si<t

[
Xi(Si)+ Ai(t, Si)

]}
(30)
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where Si ≥ l to fulfill the condition Ti(t− 1) ≥ l. Then, we obtain:

Prob ≤
t−1

∑
S1=1

t−1

∑
Si=l

P

{
X1(S1) + A1(t, S1) < Xi(Si) + Ai(t, Si)

}
(31)

The above probability can be upper bounded by:

Prob ≤
t−1

∑
S1=1

t−1

∑
Si=l

P
{

X1(S1) + A1(t, S1) ≤ µ1

}
+

P
{

µ1 < µi + 2Ai(t, Si)
}
+

P
{

Xi(Si) + Ai(t, Si) ≥ µi + 2Ai(t, Si)
}

(32)

Using the ceiling operator de, let l = d 4α ln(n)
∆2

i
e, where ∆i = µ1 − µi and

Si ≥ l, then the inequality µ1 < µi + 2Ai(t, Si) in eq (32) becomes false, in fact:

µ1 − µi − 2Ai(t, Si) = µ1 − µi − 2

√
α ln(t)

Si

≥ µ1 − µi − 2

√
α ln(n)

l
≥ µ1 − µi − ∆i = 0

Based on eq (32), we obtain:

Prob ≤
t−1

∑
S1=1

t−1

∑
Si=l

P
{

X1(S1) ≤ µ1 − A1(t, S1)

}
+ P

{
Xi(Si) ≥ µi + Ai(t, Si)

}
(33)

Using Chernoff-Hoeffding bound4 [23], we can prove that:

P
{

X1(S1) ≤ µ1 − A1(t, S1)
}
≤ exp

−2
S1

[
S1

√
α ln(t)

S1

]2

= t−2α (34)

P
{

Xi(Si) ≥ µi + Ai(t, Si)
}
≤ exp

−2
Si

[
Si

√
α ln(t)

Si

]2

= t−2α (35)

4 According to [23], Chernoff-Hoeffding theorem is defined as follows: Let X1, ..., Xn be random
variables in [0,1], and E[Xt] = µ, and let Sn = ∑n

i=1 Xi . Then ∀ a ≥ 0, we have P{Sn ≥ nµ + a} ≤
exp

−2a2
n and P{Sn ≤ nµ− a} ≤ exp

−2a2
n .
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The two inequations above and inequation (33) lead us to:

Prob ≤
t−1

∑
S1=1

t−1

∑
Si=l

2t−2α ≤ 2t−2α+2 (36)

Finally, we obtain:

A ≤ H
t
× 2t−2α+2 = 2H × t−2α+1 (37)
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Appendix B

This appendix stands for finding an upper bound of Z that contributes to
finding an upper bound of e-UCB:

Z = p
{

X1(T1(t− 1)) ≤ a; Ti(t− 1) ≥ l
}

(38)

where a is a constant number that can be chosen as follows: a = µ1+µi
2 = µ1 −

∆i
2 = µi +

∆i
2 , and ∆i = µ1 − µi . After the learning period where Ti(t− 1) ≥ l,

we have: T1(t− 1) >> Ti(t− 1). Then Z can be upper bounded by:

Z ≤p
{

X1(T1(t− 1)) ≤ a; T1(t− 1) ≥ l
}

(39)

≤
n

∑
z=l

p
{

X1(T1(t− 1)) ≤ µ1 −
∆i
2

; T1(t− 1) = z
}

≤
n

∑
z=l

p
{

X1(z) ≤ µ1 −
∆i
2
}

(40)

Using the Chernoff-Hoeffding [23], we can upper bound the above equation
as follows:

Z ≤
n

∑
z=l

exp−
2∆2

i z2

4z ≤ n exp
−l∆2

i
2 (41)

According to the proof provided in appendix A, we have l = d 4α ln(n)
∆2

i
e where

α = 2. So, we obtain:

Z ≤ n exp−4 ln n =
1
n3 (42)
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