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Abstract—Web data are experiencing a proliferation of video
content for mobile platforms. This is accompanied by new
advances in heterogeneous general purpose processor (GPP) cores
embedded in mobile devices which offer a great opportunity to
enhance both performance and energy efficiency of software (SW)
video decoding. On the other hand, hardware (HW) video accel-
erators are more energy-efficient but are not flexible and their
time-to-market is significant. In this context, this paper proposes
a characterization methodology to investigate the performance
and power consumption of two video decoding approaches on
mobile platforms. The first one uses a HW decoder intellectual
property (HDIP) in addition to a GPP (for the control). The
second one is SW-based and uses only a heterogeneous multi-
core GPP. The objective is to study the behavior of both video
decoding approaches by comparing them and to understand
why and in which case it is worth relying on the GPP rather
than the HDIP. We also derive the optimal GPP configuration
(number of cores and their frequency) that minimizes the energy
consumption for a given video bit-stream on a given platform.
The proposed methodology was applied on the HEVC video codec
standard. In some state-of-the-art work figures, the SW video
decoding consumes up to 1000× more energy than HDIPs. Our
results show that, for video resolutions of 1080p and lower and
at the operating system perspective point of view, the HEVC
SW decoding consumes on average less than 4× more energy
(mJ/Frame) than the HW one. Then, the more we scale up
the resolution, the more we get the advantage of using the HW
video decoding. Furthermore, the HEVC HW and SW decoders
consume effectively less than 30% and 50% of the global power
consumption of the tested platforms, respectively.

Index Terms—power consumption, mobile platform, HEVC,
software video decoding, hardware video decoding, heterogeneous
architecture

I. INTRODUCTION

By 2022, online videos will make up more than 82% of all
consumer internet traffic [1]. Smartphones, tablets, and media
players are the major consumers of this multimedia content.
75% of all video plays are on mobile devices [2] of which
80% are equipped with full high definition (1080p) or lower
screen resolutions [3].

In response to the growing need for video applications,
such as Internet streaming, videoconferencing, digital storage
media, and television broadcasting, Moving Picture Experts

Group (MPEG) and ITU-T Video Coding Experts Group
(VCEG) jointly developed the High Efficiency Video Coding
(HEVC) codec standard in 2013. HEVC was released as
the successor to the predominant recommendation ITU-T
Advanced Video Coding (AVC/H.264) [4]. The main purpose
of HEVC is to drop the bandwidth and storage requirements by
roughly 50% with respect to its predecessor. HEVC presents
high performance and efficient coding techniques that are ca-
pable of reducing the bit-rate for ultrahigh-definition (2160p)
resolution videos [5].

These new trends in video application usage combined
with the market explosion of multimedia consumer electronics
raised new challenges for mobile device architecture designers.
Indeed, to fit the important processing requirements of video
applications, such as real-time constraint, processing resources
embedded in these devices tend to be more and more powerful
and complex. One important issue resulting from these new
tendencies in hardware (HW) architecture is an acute increase
in power consumption. For instance, in [6], measurements
show that the smartphone’s battery can entirely be consumed
when decoding a 1080p video sequence in real-time. The video
decoding process is run in GPP by applying the state-of-the-
art HEVC codec for ∼4h. The measurements do not consider
peripherals energy such as that of the display system. This
leads to a forceful decrease in mobile devices autonomy as
the increased power demand could not be compensated by the
improvements in battery technology [7].

For those reasons, energy efficiency has become one of
the most important factors in modern microprocessor design,
especially for video decoding. One proposed solution is the
use of HW video decoding run by a HW decoder intellectual
property (HDIP), such as the HEVC decoder [8] [9]. In
state-of-the-art work, it is widely accepted that the dedicated
processors outperform the general purpose processors (GPPs)
by around 1000× in terms of energy efficiency [10]. This is
achieved thanks to the use of specialized processing units [11]
which eliminate the power consumption related to instruction
decoding and control logic characterizing GPP [12]. As a
consequence, most modern smartphones are equipped with an



HDIP that consumes less energy with respect to the real-time
video decoding constraint [13] [14]. However, HDIPs are not
flexible and are costly to implement, which generate a long
time-to-market for new video codecs [15].

New advances in multi-core GPPs embedded in mobile
devices offer a great opportunity to enhance both the perfor-
mance and energy efficiency of software (SW) video decoding.
In fact, leveraging parallel processing among the available
cores reduces the required operating clock frequency which
decreases drastically the consumed dynamic power [16] [17].
In case of HEVC decoding, this is enabled by virtue of
advanced parallelism schemes supported by this codec [18].
Furthermore, GPPs allow developing and rapidly deploying a
broad range of applications, in particular new video codecs.

With the complex and costly design and integration of
HDIPs into mobile platforms and the advances in energy
efficiency and flexibility of GPPs, we are willing to investigate
to what extent do HW video decoders outperform SW ones.
We also question about their relevance with regards to the
parameters impacting the video decoding process.

Numerous research studies have investigated the HEVC
codec. Some of them studied its complexity without investigat-
ing the impact of the architecture on which the video decoding
process is run [19]. Some others focused on either HW video
decoding [20] or SW video decoding [21]. To the best of our
knowledge, none of these studies tried to shed some light on
the behavior of both video decoding approaches by comparing
them and to understand why and in which case it is worth
relying on the GPP rather than the HDIP.

In this paper, we propose a methodology that allows to char-
acterize and evaluate the performance and energy efficiency
of the two aforementioned approaches of HEVC decoding.
This methodology intervenes at both operating system and
application levels. Hence, for both HW and SW video decod-
ing, we identify the relevant operating system and application
parameters that impact the energy consumption properties.
Then, we evaluate and compare different video decoding
configurations. In addition, our methodology helps to infer the
optimal configuration (number of GPP cores, clock frequency)
that gives the best trade-off between performance and energy
consumption to decode a video sequence on a given platform.

The obtained experimental results revealed that, on the
tested platforms, from the operating system level point of
view, and for 1080p video resolution and lower, SW video
decoding consumes on average less than 4× more power as
compared to HW video decoding. This gap is not as large
as expected, according to the state of the art [10], thanks to
SW parallel processing. This is not true for high video data
rate (bitrate, frame rate, and resolution) where the HW video
decoding offers the best energy efficiency (e.g., a ratio of more
than 10× for video resolution). Thus, the ratio between the
SW and HW HEVC decoding energy as a function of video
resolution is not linear.

The remainder of this paper is organized as follows: Section
II introduces the necessary background on video decoding
energy consumption. Our HEVC decoding performance and
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Fig. 1: HW video decoding diagram [22]

power consumption characterization methodology is described
in Section III. Section IV discusses the experimental evalua-
tion results. Section V reviews studies related to the energy
efficiency of HW and SW video decoding. Finally, conclusions
are given in Section VI.

II. BACKGROUND

This section provides the necessary knowledge to help
understand our contribution. The following topics are mainly
related to energy consumption and parallel video decoding.

For better readability of the paper, all the notations used are
summarized in Table VIII.

A. HW video decoding

In broad terms, an HDIP processes input data to generate
output data. It processes video data asynchronously and uses
a set of input and output buffers. Actually, asynchronously
means that the HDIP receives a video frame to decode at
regular intervals regardless of whether the previous frame was
correctly decoded or not. This means that when receiving a
video bitstream to decode, the video decoding period, Dperiod,
is calculated using the following equation:

Dperiod =
1

video_frame_rate
(1)

where video_frame_rate is the frame rate of the decoded
video sequence. Then, at the beginning of each period, as
shown in Fig.1, the GPP requests (or receives) a reference
of an empty input buffer, fills it up with data, and sends it to
the HDIP for processing. This latter uses the data, transforms
them, and copies the result into one of its empty output buffers.
Finally, the GPP requests (or receives) a filled output buffer,
consumes its content, and releases it back to the HDIP [22].

Furthermore, HDIPs are massively parallel and depend, for
their performance, on the fact that the decoders output video
data in 2D arrays1. Indeed, video decoding functions, in gen-
eral, exhibit massive data parallelism thanks to some schemes
proposed by video codecs. Their architectures have been
optimized for such parallelism. For example, they integrate

12D array: a structure organized as lines (frame height) and columns (frame
width).



extreme multi-threading HW or specific data handling and
memory access optimization HW [23]. The main advantage
of such accelerators is their energy efficiency.

The GPP generally considers the HDIP as an input/output
(I/O) peripheral and communicates with it through I/O opera-
tions. This inter processor communication (IPC) may generate
some overhead [24] [25]. The IPC also includes all other
elements involved in HW video decoding such as memory
transfers. When the HDIP is called to proceed with the de-
coding process, the GPP may enter the idle state and needs to
handle the HW interrupt. This also generates some overhead.

In conclusion, a particular attention should be paid to the
IPC overhead when comparing the performance of the HDIP
with that of the GPP.

B. SW parallel processing

In this section, we describe how the parallelism is exploited
by GPPs, at both architectural and operating system levels,
to improve their energy efficiency. It should be noted that
GPPs are also designed with other parallelism techniques, such
as pipeline and single instruction and multiple data (SIMD)
instruction sets. These techniques are used but not included in
the study scope of this paper.

To understand how architectural strategies can provide high
processing performance at low power levels, it is necessary
to look at the complementary metal oxide semiconductor
(CMOS) circuit dynamic power consumption equation given
by:

Pdyn = Ceff.V
2.f (2)

where Ceff represents the circuit effective capacitance and V
the supply voltage associated to the clock frequency f [16].

Reducing the supply voltage increases the transistor prop-
agation time and thus requires lowering the processing fre-
quency to keep the circuit in a functional stage.

Assuming that the processing time doubles at the frequency
f
2 , let Ev1 and Ev2 be the amounts of energy consumed by
a circuit at the frequencies f

2 and f , respectively. The ratio
between these two amounts is:

Ev1

Ev2

=
Ceff.V

2
1 .

f
2 .2.t

Ceff.V 2
2 .f.t

= (
V1

V2
)2 6 1

where V1 and V2 are the necessary voltages supplied at the
frequencies f

2 and f , respectively. The energy saving is equal
to (100 − (V1

V2
)2 ∗ 100)%.

Therefore, by reducing the power supply voltage to the
lowest level that provides the required performance, we can
significantly reduce energy consumption. This way, dynamic
voltage-frequency scaling (DVFS) is designed to optimize
dynamic energy consumption by scaling down the frequency
when the operating system observes less load to handle by the
GPP.

In order not to decrease the performance when scaling
down the frequency, one may replicate HW, e.g., clocked
at f

2 , at the architecture level. This allows to save energy,
but at the expense of an additional circuit area. This type of

parallelism has shown good performance and energy efficiency
for multimedia applications [26]. This generates an additional
energy overhead due to the duplication of the processing
circuits and the use of multiplexing/demultiplexing circuits in
the architecture [27].

III. METHODOLOGY & SETUP

This section describes our proposed video decoding perfor-
mance and power consumption characterization methodology.
Then, the HW and SW experimental setups as well as datasets
on which the proposed methodology is applied are presented.

A. Overall power model

In our experiments, we measured power to study and
compare the HW and SW video decoding energy consumption.
The power consumption is formulated in Equation (3):

Pglob_dyn = Pglob_idle + P̂glob_active (3)

where Pglob_dyn corresponds to the global platform dynamic
power when running the video decoding process, Pglob_idle

is the global platform power in idle state, and P̂glob_active
is the effective power related to the video decoding. Each
power consumption (idle or active) is composed of two power
components as shown in the following equations2:

Pglob_idle = P̂GPP_idle + P̂Other_idle (4)

P̂glob_active = P̂GPP_active + P̂Other_active (5)

where P̂GPP, and P̂Other are the power consumption of the
GPP and the remaining elements present in the platform,
respectively.

Regarding the dynamic power consumption of the GPP,
P̂GPP_dyn, it is the sum of the active and idle powers. It is
formulated as a function of the number of cores that are in
idle and active states, as given by Equation (6).

P̂GPP_dyn = nbactive ∗ (P̂GPP_1_core_idle + P̂GPP_1_core_active)

+ nbidle ∗ P̂GPP_1_core_idle
(6)

where nbidle and nbactive are the number of cores which are in
idle and active states, respectively, whereas P̂GPP_1_core_idle and
P̂GPP_1_core_active are the power consumption of one GPP core
in idle and active states, respectively3.

Then, the power consumption of one GPP core in idle state,
P̂GPP_1_core_idle, is given by Equation (7). It is deduced by
subtracting the global power consumption when turning on
one GPP core from that when turning on two GPP cores, both
in idle state.

P̂GPP_1_core_idle ≈ Pglob_idle_2_cores − Pglob_idle_1_core (7)

where Pglob_idle_2_cores and Pglob_idle_1_core are the global power
consumption of the platform in idle state when only two

2Throughout the paper, a symbol with circumflex indicates a calculated
power, i.e., deduced from other measured powers.

3In case of a heterogeneous architecture, such as ARM big.LITTLE,
nbidle, nbactive, P̂GPP_1_core_idle, and P̂GPP_1_core_active are, in turn, split into
components related to big and LITTLE cores, respectively.



GPP cores and one GPP core are turned on, respectively. We
suppose that P̂Other_idle_1_core and P̂Other_idle_2_cores are equivalent
and thus the difference is rounded to zero.

Regarding P̂Other, it includes the power consumed by the
HDIP. It also includes the IPC overhead power when perform-
ing HW video decoding. In addition, it includes the power
related to the memory, e.g., the transfers between Random
Access Memory (RAM) and the HDIP internal buffer. P̂Other
includes a small amount of power needed to communicate with
a host personal computer (PC) too, for instance, to receive
video decoding commands. We consider that this amount is
negligible.

P̂Other_idle ratio, r̂p_other_idle, is given by Equation (8). It is
the proportion of the power consumption of all but GPP with
respect to the global dynamic power, Pglob_dyn.

r̂p_other_idle =
P̂Other_idle

Pglob_dyn
∗ 100 (8)

Next, the effective amount of energy consumed for the
video decoding process, Êglob_active, is given by Equation (10).
To evaluate it, we first calculate the video decoding power
consumption, P̂glob_active.

P̂glob_active = Pglob_dyn − Pglob_idle (9)

Êglob_active =
∑

(P̂glob_active ∗ ∆t) (10)

where P̂glob_active is the power consumption of video decoding
at each sampling period of data-logging, and ∆t is the duration
of this period. Note that

∑
∆t is the time spent to decode a

video sequence.
Finally, the ratio between the SW and HW video decoding

energy, r̂sw/hw, is calculated using the following equation:

r̂sw/hw =
Êglob_active_sw

Êglob_active_hw
∗ 100 (11)

where Êglob_active_sw and Êglob_active_hw are the energy consump-
tion of the SW and HW video decoding, respectively.

B. Performance and power consumption characterization
methodology

In this section, we describe in detail the proposed charac-
terization methodology to compare the energy consumption
of the HW and SW video decoding. It is worth mentioning
that the video decoding performance and power consumption
characterization is done independently from the application
design and its intricacies4. Also, the decoded frames are not
displayed5.

Fig.2 depicts an overview of our methodology. The inputs
are the parameters for which the impact is estimated and the

4This means that the study we conducted does not take into account the
details related to HEVC decoding kernels (ex: Entropy decoding, Motion
compensation, etc). We consider the HEVC decoding process as a black
box. Hence, our study does not allow us to say, for instance, that motion
compensation is more optimized on the HDIP than on the GPP and so it
consumes less power on the former. So, we cannot compare between the HW
and SW video decoding power consumption of the video decoding kernels.

5The display system study is beyond the scope of this paper.
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Fig. 2: The proposed characterization methodology overview

output is the consumed power measured. Our objective is to
study and compare, by measurement, the energy consumption
of two video decoding approaches: HW and SW6. For that
purpose, we vary and study the impact of several parameters
triggered at two hierarchical levels: (i) operating system, and
(ii) application.

We note that the architecture is the same throughout the
experiments: an HDIP in addition to a GPP (referred to as
GPP–HDIP, in this paper), for the HW video decoding, and a
heterogeneous GPP for the SW one.

1) Operating system level: The objective of this level
is first to study the behaviors of the HW and SW video
decoding power consumption by varying parameters triggered
at the operating system level. The second objective is to
compare the energy consumption of these two approaches
of video decoding. This helps to understand and assess the
performance and power consumption of the video decoding at
the application level. The measured video decoding power is
given by Equation (3). The study at this level can be divided
into the three following steps.

a) Idle state: The objective of this study is to assess
the power when the two video decoding platforms are in idle
state. This step is mandatory since the two video decoding
approaches are run on two different processor types.

In case of HW video decoding platform, only one GPP
core is used. On this platform, we show how much the GPP
one core idle power, P̂GPP_1_core_idle of Equation (7), represents
against that of the global platform, Pglob_idle of Equation (4),
by comparing them. The GPP core frequency is fixed and
clocked at the frequency that allows it to launch the target ap-
plication (video decoding application)7. Concerning the HDIP
clock frequency, it is managed dynamically internally and is
considered as a black box since we do not have access to its
driver to handle it.

On the SW video decoding platform, all the GPP cores are
used. On this platform, we show how much the GPP idle

6Throughout the paper, the two video decoding approaches refer to: HW
and SW video decoding.

7Below this frequency threshold, the system will reach the application
launch timeout and the frequency is automatically scaled up by the operating
system (OS).



power, P̂GPP_idle of Equation (6), represents against that of
the global platform, Pglob_idle of Equation (4), by comparing
them. Then, we illustrate the impact of scaling down the GPP
frequency and build an interval of power consumption values
of the GPP in idle state. For that, the GPP is clocked at its
minimum and then its maximum frequency.

The measurements done in idle state are used to deduce
the effective video decoding energy consumption, according
to Equation (10).

b) HW video decoding: The aim of this step is threefold.
First, we need to identify the periods where the GPP-HDIP
units are in doze mode8 and when they are performing
the video decoding process. Here, Pglob_dyn is evaluated and
compared to Pglob_idle, according to Equation (3). For that,
a set of video sequences are decoded to analyze the HW
video decoding power consumption by zooming in one second
of decoding time9. This time duration is chosen to evaluate
the video bitrate and frame rate which are quality of service
(QoS) metrics in video decoding applications. Regarding the
video resolution, it does not change during the video decoding
execution. Second, we want to constitute a set of reference
HW video decoding energy values. This set is used to evaluate
the SW video decoding energy consumption, using Equation
(11), by comparing them. Third, we investigate the P̂Other
ratio, using Equation (8), which includes the IPC of the video
decoding process.

c) SW video decoding: The goal of this step is to
understand how the parallelism on a heterogeneous multi-
core GPP architecture influences the video decoding energy
consumption. This helps to find the optimal configuration
(number of GPP cores, clock frequency) that satisfies the
video decoding real-time constraint and diminishes the energy
consumption.

Here, we investigate Êglob_active which is calculated using
Equation (10). This value is divided by the video sequence
number of frames to obtain the average energy/frame. For that,
a set of video sequences are decoded. The clock frequency at
which the GPP cores are operating is varied. For simplicity,
all GPP cores are clocked at the same frequency until the
maximum value supported by every core is reached. Beyond
this frequency, the high-performance core frequencies continue
to be scaled until their maximum supported value, whereas
the remaining cores are clocked at their maximum supported
frequency.

Then, for each clock frequency, the number of GPP cores
is also varied from one to the number of available cores by
considering all combinations. Actually, we vary the number of
idle and active cores as defined in Equation (6). For instance, in
a big.LITTLE SoC of eight GPP cores (4×big + 4×LITTLE),
using five active cores gives four different combinations that
can be evaluated, see Table I.

8doze mode: idle state concept used in Android OS
9The duration of 1 s is a snapshot. Both HW and SW video decoding are

done for the entire video duration. Furthermore, before to start decoding, the
platform is put to idle state for 10 s.

TABLE I
Five heterogeneous GPP cores combinations

Combination Number of big cores Number of LITTLE cores
a 4 1
b 3 2
c 2 3
d 1 4

Next, for each combination of the number of cores, only
the one which consumes the minimum energy (mJ/Frame) is
selected in order to compare it to the energy consumption of
the HDIP. Finally, the average energy, decoding frame rate
(fps), and GPP utilization are calculated as a function of the
number of GPP cores and their clock frequencies.

After that, the P̂Other ratio is evaluated using Equation (8).
P̂Other corresponds to the remaining elements present in the
SW video decoding platform. Finally, we compare the SW
video decoding energy to that of the HW video decoding by
calculating the ratio between them, using Equation (11).

2) Application level: The objective of this level is to
explore how the video parameters (bitrate, frame rate, and
resolution) affect the video decoding energy consumption. For
that, a set of video sequences encoded at different bitrates,
frame rates, and resolutions, from 720p to 2160p through
1080p and 1600p, are decoded. Then, the overall energy
consumption, Êglob_active, is calculated using Equation (10).
Finally, this value is divided by the video sequence number
of frames to obtain the average energy/frame. After that, we
aim at finding the video decoding approach suited for each
parameter value, e.g., which video decoding approach (HW
or SW) is suited for a video resolution (720p, 1080p, etc).

C. Experimental setup

1) HW setup: In our work, we characterized the HEVC
decoding performance and power consumption on three mobile
platforms: Snapdragon 810 development board (APQ 8094)
[28], Odroid-xu3 [29], and Qualcomm Robotics RB3 [30]. The
first one is used to perform the HW video decoding and the
second one for the SW video decoding. A different platform is
used for the SW video decoding because the first one does not
allow to control the GPP frequency. Then, the last platform
(RB3) supports both HW and SW video decoding. We describe
below the HW and SW setups used in our experiments.

a) Snapdragon 810 development board: is equipped
with Snapdragon 810 ARM SoC made of 20 nm process
technology. This SoC is featuring an ARM64-v8a octa-core
big.LITTLE architecture (4× Cortex-A57 high performance
cores and 4×Cortex-A53 power-efficient cores). Cortex-A57
and Cortex-A53 clusters operate at a range of frequencies
of 384 MHz to 1.95 GHz and 384 MHz to 1.552 GHz,
respectively. The Snapdragon 810 SoC integrates a 2160p
(a.k.a. 4k) HEVC HW decoder. Android debug bridge (adb)
tool was used to communicate with this platform via a USB
connection.



b) Odroid-xu3: has a smart-phone-like architecture. It is
based on the Samsung Exynos 5422 ARM SoC made of 32
nm process technology. Exynos 5422 is featuring an ARMhf
octa-core big.LITTLE architecture (4× Cortex-A15 high per-
formance out-of-order cores and 4× Cortex-A7 power-efficient
in-order cores). Cortex-A15 and Cortex-A7 clusters operate at
a range of frequencies of 200 MHz to 2.0 GHz and 200 MHz
to 1.5 GHz, respectively. Secure shell (ssh) protocol was used
to communicate with this platform via an Ethernet connection.

c) Qualcomm Robotics RB3 development platform: is
equipped with Qualcomm SDA845 SoC made of 10 nm
process technology. This SoC is featuring a custom 64-bit
ARM v8-compliant octa-core architecture (8 Qualcomm Kryo
385 CPU cores: 4× high performance cores and 4× power-
efficient cores). The high performance and power-efficient
cores operate at a range of frequencies of 825 MHz to 2.803
GHz and 300 MHz to 1.766 GHz, respectively. The SDA845
SoC integrates a 2160p@60fps (a.k.a. 4k) HEVC HW decoder.
Ssh protocol was used to communicate with this platform via
an Ethernet connection.

2) Power consumption evaluation: In our experiments,
N6705A DC Power Analyzer is used to measure power. The
power measured by this tool is given by Equation (3). The
power analyzer powers a device under test and samples the
overall voltage and current simultaneously at 25 KHz. It is
connected to the HW video decoding platform.

In the case where the platform has on-board sensors, such as
the SW video decoding platform (Odroid-xu3), Open-PEOPLE
[31] is used as it measures PGPP_idle and PGPP_active, from
Equation (3), separately from the rest of the components
power10.

Then, to measure the power consumption of the video
decoding process, we first start the power consumption data-
logging, followed by putting the system in idle state. After
that, the video decoding application is launched. Finally, once
the decoding is finished, the system goes back to idle state. The
data-logging duration, TM , is hence given by the following
equation:

TM = Tidle_1 + (TL + TD) + Tidle_2 (12)

where TM is the measurement time, Tidle_1 is the time spent
in idle state before video decoding, TL is the application
launching time, TD is the decoding time, and Tidle_2 is the
time spent in idle state after video decoding. Note that TD is
calculated before doing measurements and it includes only the
decoding time, i.e., TL is not included, and Tidle_2 is obtained
using dedicated graphical software, e.g., matlab.

This method allows distinguishing the part which corre-
sponds to the video decoding process from that corresponding
to the system in idle state. Furthermore, the energy consumed
while launching the application is eliminated.

10PGPP_idle and PGPP_active are, in case of SW video decoding, without
circumflex because they are directly measured by the Open-PEOPLE platform.

TABLE II
Videos dataset characteristics

Parameter Value
Resolution 720p, 1080p, 1600p, and 2160p
Frame rate 10, 15, 20, 25, 30, and 50 fps

Mode Random Access
Profile Main

3) SW setup: As operating system (OS), Android 6.0
(Marshmallow, under Linux kernel 3.10.84) for Snapdragon
810, as the only supported OS on this platform, Ubuntu 16.04
(Linux kernel 4.14.176+) distribution for Odroid-xu3, and
Debian-based Linaro Linux 10.3 (Linux kernel 5.4.0) for RB3
were used. The kernel of Odroid-xu3 OS was rebuilt to enable
the userspace governor and global task scheduling (GTS). GTS
permits to Exynos 5422 to utilize all eight cores simulta-
neously to manage computationally intensive tasks such as
HEVC decoding. The userspace governor allows changing the
GPP frequency on-the-fly from the user space. This governor
was also enabled on the Snapdragon 810 platform.

Concerning HEVC decoding, a simple Android application
that leverages the HEVC HDIP available on the Snapdragon
810 platform was developed using Mediacodec application
programming interface (API). On the other hand, Open-HEVC
software [32] is compiled on Odroid-xu3 and RB3 with NEON
optimizations enabled. Ffmpeg software [33] was used with
v4l2 library to leverage the HEVC HDIP available on the RB3
platform.

The raw video sequences were encoded using ffmpeg soft-
ware. For analysis purposes, a bash script was developed for
Odroid-xu3. In this script, data were read from /proc/pid/stat
to retrieve and calculate the GPP utilization.

Finally, for accuracy purposes, the experiments were done
three times and then averaged. Furthermore, the cache memory
was flushed at the beginning of each experiment in order to
clean the memory from the temporary data used in previous
experiments.

4) Videos dataset: In our work, two datasets were used.
The first dataset was proposed by the joint collaborative team
on video coding (JCT-VC) [34] as the reference common test
sequences for HEVC. It contains a set of videos representing
different scenarios and profiles. The second one represents
some well-known video sequences, e.g., jellyfish [35] dataset
and others [36]. The common characteristics of these video
sequences are summed up in Table II.

In our work, we studied only the common parallelism
scheme for all videos which is frame-by-frame. For other
parallelism schemes, Wavefront Parallel Processing (WPP)
and Tiling, the decoding process depends on the coding
parameters.

5) Methodology summary: Finally, the proposed video de-
coding performance and power consumption characterization
methodology is summarized in Table III.



TABLE III
The proposed video decoding performance and power consumption characterization methodology summary

HW video decoding SW video decoding

Architecture GPP+HDIP (referred to as GPP—HDIP) GPP

Operating system level (studied
parameters) - Number of GPP cores and GPP cores

frequencies

Application level (studied
parameters) Bitrate, frame rate, and resolution

HW setup

Snapdragon 810: an octa-core big.LITTLE architecture (4×
Cortex-A57 high performance cluster and 4×Cortex-A53

power-efficient cluster)

Odroid-xu3: and octa-core big.LITTLE
architecture (4× Cortex-A15 high performance

cluster and 4×Cortex-A7 power-efficient
cluster)

Qualcomm RB3: 8 Qualcomm Kryo 385 CPU cores (4x high performance cores and 4x power-efficient cores)

Power consumption evaluation
platform N6705A Power Analyzer Open-PEOPLE

Measured powers Pglob_idle and Pglob_dyn of Equation (3)

Calculated powers/energies

P̂glob_active of Equation (3)

P̂GPP_dyn of Equation (6)

P̂GPP_1_core_idle of Equation (7)

Êglob_active of Equation (10)

OS Android 6.0 (Marshmallow) with userspace governor enabled Ubuntu 16.04 with userspace governor and
GTS enabled

SW setup
On Snapdragon 810: an Android application that leverages

HEVC HDIP using “Mediacodec” API
On both platforms (Odroid-xu3 and RB3):

Open-HEVC with NEON optimizations
enabled

On Qualcomm RB3: ffmpeg (hevc_v4l2m2m)

Videos dataset JCT-VC, Jellyfish, and some well-known video sequences on the web. See their characteristics in Table II

IV. RESULTS & ANALYSIS

In this section, we describe and analyze the obtained results
of the HEVC decoding performance and power consumption
characterization. According to our proposed methodology, the
results are presented in two sections, operating system level
and then application level.

A. Operating system level

1) Idle state: The first step of this level aims at studying
the idle power consumption on two tested platforms: (i) the
HW video decoding platform (Snapdragon 810), and (ii) the
SW video decoding platform (Odroid-xu3). For the former, we
show the GPP–HDIP power consumption and then compare
it to that of the global platform. Regarding the latter, we
show the GPP power consumption and then compare it to
that of the global platform. In addition, the GPP is clocked
at its minimum and then its maximum frequency. Finally, we
compare the idle power of the two platforms. These results
are shown in Fig.3.

a) HW video decoding platform doze power consump-
tion: On Android systems, if a user leaves a device unplugged

and stationary for a period of time, with the screen off, the
device enters doze mode. In the studied example, Snapdragon
810 consumes Pglob_idle, on average 2.01 Watts, according to
Equation (3). Periodically, the system exits doze mode for
a short time to let the applications complete their deferred
activities [37]. This is illustrated by the regular peaks in both
HW video decoding platform doze power consumption curves
in Fig.3.

Fig.3 additionally plots the GPP one core power consump-
tion at doze mode (without P̂Other_idle). The GPP one core
consumes P̂GPP_1_core_idle, on average 0.22 Watts, according to
Equation (7). Compared to the global platform doze power,
one can observe that the P̂Other_idle component, which is the
difference between Pglob_idle and P̂GPP_1_core_idle in Fig.3, con-
stitutes a huge part of the global power consumption. Indeed,
it is about 88%.

b) SW video decoding platform idle power consumption:
On Linux-like systems (on Odroid-xu3 platform in our case),
the idle state is managed by wait for interrupt (WFI) ARM
instruction. WFI disables most of the clocks of the GPP. This
corresponds to a low-power state of the processor. In this



Fig. 3: HW video decoding platform (Snapdragon 810) versus
SW video decoding platform (Odroid-xu3) idle power

state, the SW video decoding platform consumes Pglob_idle,
according to Equation (3). This results in on average 2.49
Watts and 3.46 Watts for the minimum and maximum GPP
clock frequency, respectively. It should be noted that the WFI
power consumption is different from the GPP static power
[38].

Fig.3 additionally plots the GPP power consumption in idle
state (without P̂Other_idle). The GPP consumes P̂GPP_idle, on
average 0.13 Watts and 0.82 Watts for the minimum and
maximum GPP clock frequency, respectively, according to
Equation (6). Compared to the global idle power, one can
observe that the P̂Other_idle component, which is the difference
between Pglob_idle and P̂GPP_idle in Fig.3, constitutes a huge
part of the global power consumption. Actually, it is about
94% and 76% for the minimum and maximum GPP clock
frequency, respectively.

As explained in Section II-B, idling at low clock frequency
allows the processor to consume significantly less power. For
instance, on the SW video decoding platform (Odroid-xu3),
clocking the GPP cores at their minimum frequency would
allow to gain, at the operating system level, approximately
84% of power compared to the state where the cores are
clocked at their maximum frequency, see Fig.3. This is be-
cause, in idle state, the clock tree system is still consuming
power. Therefore, it should be scaled at low frequency to save
power.

Summary: In case of HW video decoding platform (Snap-
dragon 810), P̂GPP_1_core_idle represents on average 0.22 Watts,
according to Equation (7), whereas Pglob_idle represents on
average 2.01 Watts, according to Equation (3). Therefore,
P̂Other_idle constitutes on average 88% of the global platform
power.

On the SW video decoding platform (Odroid-xu3), accord-
ing to Equation (6), the GPP idle power values interval is
on average between 0.13 Watts and 0.82 Watts. The interval
boundaries correspond to the power at the minimum and
maximum GPP clock frequency, respectively. Thus, we can
save around 84% of power by scaling down the GPP frequency
from maximum to minimum. On the other hand, P̂Other_idle

constitutes about 90% and 85% of the global platform power
for the minimum and maximum GPP clock frequency, respec-
tively.

2) HW video decoding: We describe here the HEVC
HW decoding power consumption using the GPP–HDIP on
the Snapdragon 810 platform. We investigate Pglob_dyn and
Pglob_idle values of Equation (3). We then assess the impact
of P̂Other, which includes the IPC between the HDIP and
other elements participating to the video decoding process, on
the power consumption, using Equation (8). For that, Kimono
video test sequence, which possesses the characteristics given
in Table II (resolution is 1080p), is decoded as an example.
The video decoding process is done in real-time. Other tested
video sequences showed similar behaviors.

Fig.4a shows the complete data-logging of the HW video
decoding power consumption. It includes the different parts
of Equation (12). We noted that the launching time is not
negligible in case of the Android platform.

Fig.4b depicts the HW video decoding power consumption,
Pglob_dyn, compared to doze power, Pglob_idle, using Equation
(3), during one second. Given that the video example (Ki-
mono) duration is 4 seconds, the position of the snapshot
shown in Fig.4b is from 1 to 2 seconds of the video. Fig.4c
depicts a zoom on decoding two frames to show the different
video decoding phases. The HW video decoding (Pglob_dyn)
consumes, in this example, on average 2.75 Watts while the
doze power (Pglob_idle) represents on average 2.01 Watts.

In Fig.4b, one can observe that the HDIP enters doze mode
whenever it finishes decoding before the end of the video
decoding period, see Section II-A, in order to save power.
The presence and the duration of doze mode after the frame
decoding depend on the frame complexity. For instance, in the
example shown in Fig.4c, we can observe two doze intervals
of 7.5% and 2.5% of the video decoding period, respectively.
The ARM wake-up is represented by the power level transition
after the doze mode level. The GPP then sends the parameters
(next frame to decode) to the HDIP and triggers a HW video
decoding function.

The frame processing period is composed of two intervals:
(i) the decoding of the frame and (ii) doze mode whenever
the decoding is finished before the next period starts. Fig.4c
shows an example where the HDIP finished decoding a frame
before the end of the frame processing period. This is due to
the high performance of the HDIP which is designed to decode
2160p (a.k.a. 4K) video content. Moreover, One can observe
that, at doze mode, the HDIP is still consuming power. This is
because the HDIP is not shut off when it is waiting for the next
frame to decode from the GPP. The doze mode interval, when
it is present, is so short that entering in a deeper sleep mode
would have hurt the performance [39]. Therefore, in case of
HW video decoding, P̂HDIP is never equal to zero, according
to Equation (3).

The frame decoding process is done by the HDIP which
is handled, by the GPP, as an I/O operation. This brings an
overhead due to GPP–HDIP communication, e.g., HW inter-
rupt handling, and the communication with other processing



(a) HW video decoding power consump-
tion complete data-logging

(b) Zoom on 1 second of HW video decod-
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Fig. 4: HEVC HW decoding power consumption (platform: Snapdragon 810, video sequence: Kimono, bitrate: 1831 Kbps,
frame rate: 25 Hz, resolution: 1080p)

elements involved in the video decoding process. The overhead
leads to extra performance and energy costs. Indeed, according
to Equation (8), P̂Other represents more than 75% of the global
power. Therefore, the GPP–HDIP consumes, in this study
example, about less than 25% of the HW video decoding
global power consumption.

Summary: To sum up, as the HDIP (on the Snapdragon
810 platform) is designed for high data rate processing, in
order to save power, it spends a proportion of time at doze
mode whenever it finishes decoding a frame before the next
video decoding period starts. The presence and the duration
of doze mode after the frame decoding depend on the frame
complexity. On average, it represents 5.8% of the video de-
coding period over all the decoded frames. Nevertheless, P̂Other
constitutes an enormous power consumption part of the HW
video decoding global power, on average more than 70%. This
part includes the IPC between the HDIP and other processing
elements involved in video decoding, such as memory. This
decreases substantially the energy efficiency of the HW video
decoding. Indeed, on average less than 30% of the global
power is consumed by the GPP–HDIP.

3) SW video decoding: In this step, we analyze the HEVC
SW decoding energy consumption using a heterogeneous GPP
on the Odroid-xu3 platform. We investigate Êglob_active given
by Equation (10) by deducing PGPP_active, see Footnote (10),
from Equation (3). We vary the number of cores and their
operating frequencies. We then assess the impact of P̂Other,
which corresponds to the power consumed related to the
remaining elements present in the platform, such as memory,
on the global platform power consumption using Equation (8).
Finally, we compare the SW video decoding energy consump-
tion to that of the HW video decoding by calculating the ratio
between them, r̂sw/hw, using Equation (11). For that, Kimono
video test sequence, which possesses the characteristics given
in Table II (resolution is 1080p), is decoded as an example.
The decoding process is done in real-time, so, the fps is
bounded to the frame rate at which the video is encoded (25
Hz). The video sequence frames are decoded in parallel, thanks
to the frame-by-frame parallelism scheme. The experiments
were conducted on other video sequences as well and they all
showed similar behaviors.

Fig.5a, Fig.5b, and Fig.5c show the energy, the fps, and
the GPP utilization behaviors with respect to the number of
processing cores and their operating frequencies, respectively.
The energy is calculated using Equation (10) and is given
in mJ/Frame. At first sight, one may notice that the energy
does not always grow as the number of cores and their clock
frequencies increase as explained in this section.

The curve, in Fig.5a, revealed that the overall HEVC decod-
ing energy consumption changes drastically as the number of
GPP cores and their frequencies change. In fact, whatever the
GPP clock frequency is, decoding with only one core (mono-
threading) consumes the most energy (mJ/Frame) since the
GPP usage percentage is more than 90%, see Fig.5c. Then,
the more we add GPP cores, the less we occupy them and the
less energy (mJ/Frame) the video decoding process consumes.
This is the case because the load is balanced among the GPP
cores and so they have less load to deal with. In addition, the
cores that are not involved in the video decoding process are
put into idle state and thus consume a few amount of energy.

In the presented results, following our methodology de-
scribed in Section III-B1c, from one to four cores, only
LITTLE cores configurations are selected. None of these
configurations allows HEVC real-time decoding. One should
add more GPP cores to satisfy this constraint. At this point,
all configurations from five GPP cores at 1.2 GHz and above
can perform HEVC real-time decoding, see Fig.5b. We notice
that the configurations with two, three, and four big cores
were able to reach the real-time capability. However, they were
not selected because they consume a huge amount of energy
(mJ/Frame) compared to the best configuration that will be
discussed later.

Different five GPP cores configurations (in a heterogeneous
big.LITTLE architecture), clocked at 1.2 GHz, give different
energy consumption results. Using four big cores and one
LITTLE core would result in real-time video decoding but
consume a huge amount of energy (mJ/Frame). Then, every
time we take off one big core and replace it with one
LITTLE core, the energy consumption (mJ/Frame) decreases,
see Fig.6. Therefore, the setup that allows to reach the real-
time video decoding while consuming the least amount of
energy (mJ/Frame) is the configuration (d) in Table I: using



(a) Energy as a function of the number of
active cores and the processing frequencies

(b) Frame rate as a function of the number
of active cores and the processing frequen-
cies

(c) GPP utilization as a function of the
number of active cores and the processing
frequencies

Fig. 5: HEVC SW decoding evaluation (platform: Odroid-xu3, video sequence: kimono, bitrate: 1831 Kbps, frame rate: 25
Hz, resolution: 1080p)
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Fig. 6: Five cores configurations energy consumption

one big core and four LITTLE cores at 1.2 GHz. This
configuration is the optimal one, offering the best trade-off
between performance and energy consumption (mJ/Frame).
It would save, at the operating system level, around 29% of
energy (mJ/Frame) compared to the first configuration (a).

This gain is not so high because of the GPP cores hetero-
geneity. One source of energy inefficiency appears when a big
core finishes decoding a frame and waits a long time before a
LITTLE core finishes its task. This creates a substantial over-
head due to the inter-communication between heterogeneous
GPP cores.

We recall that energy is given by Equation (10). Using one
to four GPP cores, the fps increases (so the video decoding
time decreases) as we increase the number of active cores,
see Fig.5b (one to four cores). On the other hand, as it is
stated in Section II-B, the parallelism decreases the consumed
energy. This explains the decrease in the energy consumption
(mJ/Frame) when decoding with one to four LITTLE cores.
By adding more GPP cores, five to eight cores, the energy
consumption (mJ/Frame) increases as the number of cores
increases, see Fig.5a. There are two things which can explain

that increase. First, the video decoding process time is constant
since the real-time video decoding is reached using five cores.
Second, the power is growing more and more every time we
add a big core. This results in an increase of the overall energy
consumption. As a consequence, increasing the number of
GPP cores does not always increase the energy efficiency.

Furthermore, the frame decoding process is done by GPP
which is situated in a SoC. The SoC, in turn, is connected
to other elements in the device to function. This brings an
overhead due to the GPP communication with other elements
involved in video decoding. The overhead leads to extra
performance and energy costs. Indeed, P̂Other_idle represents,
in this study example, on average 2.33 Watts, deduced using
Equation (7), while the SW video decoding global power
represents on average 3.91 Watts, according to Equation (3).
So, P̂Other represents more than 59% of the global power.
Therefore, the SW video decoding GPP power represents, in
this study example, on average less than 41% of the SW video
decoding global power consumption.

The objective of the last step is to highlight the impact of the
parallelism on the SW video decoding energy consumption. It
consists in summing up the results by comparing the HEVC
SW to HW decoding in terms of energy efficiency.

Table IV presents the energy consumption of both HEVC
HW decoding, using GPP–HDIP, and HEVC SW decoding,
using different GPP configurations (one to five GPP cores)
on the big.LITTLE heterogeneous architecture. Among all
configurations, only those which ensure the real-time video
decoding constraint are selected, except the first configuration
(1 GPP core) which cannot, in any case, satisfy this constraint.
The configurations six to eight GPP cores are excluded as
the optimal configuration is reached using five GPP cores, as
explained before.

The results in Table IV show that varying the number of
cores can save the energy consumption considerably. Using
one core not only consumes the largest amount of energy (a
ratio of more than 5×) but also the real-time constraint is not
satisfied. Then, when two big cores are decoding, the video is



TABLE IV
HEVC HW (on the Snapdragon 810 platform) versus SW

(on the Odroid-xu3 platform) video decoding energy
consumption

Decoding Sw (#big : #LITTLE) HW

Config
1

GPP
core
(0:1)

2
GPP
cores
(2:0)

3
GPP
cores
(3:0)

4
GPP
cores
(4:0)

5
GPP
cores
(1:4)

GPP–
HDIP

r̂sw/hw 5.38 4.93 4.93 4.88 1.66 1

decoded without any missed frame, i.e., in real-time. However,
it still drains the battery autonomy. Adding more big cores
(using three or four cores) does not change drastically the
energy consumption since the fps is bounded at the frame
rate at which the video sequence is encoded and is reached
in the last setup (two big cores). Finally, the configuration
with five cores offers the best trade-off between performance
and energy efficiency. It actually diminishes the SW video
decoding energy consumption and gets it the closest to that of
the HW video decoding (a ratio of less than 2×). Beyond five
cores, the energy (mJ/Frame) increases as explained earlier in
this section.

Summary: For energy-efficient SW video decoding design,
under real-time constraints and the GPP cores heterogeneity,
the parallelism should be used with precaution. In the pre-
sented example, the configuration which gives the best trade-
off between performance and energy (mJ/Frame) is using five
GPP cores at 1.2 GHz. Moreover, decoding at this configu-
ration would save, at the operating system level, around 29%
of energy (mJ/Frame) compared to the configuration with four
big cores and one LITTLE core.

Moreover, the results showed that the most energy-efficient
point to do HEVC SW real-time decoding is none of the
standard setting points: {freq_min, freq_max, nb_cores_min,
nb_cores_max}. Furthermore, our experiments revealed that
minimizing the processing frequency is not the most energy-
efficient strategy because the execution time is increased.
These results are also reported in [40]. Finally, to do SW video
decoding, the GPP consumes effectively on average less than
50% of the SW video decoding global power consumption.
This overhead includes the inter processor communication
between the GPP and other components involved in video
decoding, such as memory.

B. Application level

At this level, we evaluate the influence of the video bitrate,
frame rate, and resolution on the HEVC decoding energy
consumption executed on mobile platforms. The video decod-
ing consumed energy is calculated using Equation (10) and
is given in mJ/Frame. Kimono video sequence is taken as
an example to vary bitrate (at 1080p resolution), frame rate
(at 1080p resolution), and resolution. Experiments were con-
ducted on other video sequences as well and the curves show

similar behaviors. Video sequences were decoded: (i) in SW
using a heterogeneous GPP (on the Odroid-xu3 platform) at
the optimal configuration (number of cores, clock frequency)
that offers the best trade-off between performance and energy
consumption, and (ii) in HW using the GPP–HDIP (on the
Snapdragon 810 platform).

1) Varying video bitrate: Fig.7a depicts the impact of the
video bitrate parameter on the HW and SW video decoding
energy consumption (mJ/Frame), Êglob_active of Equation (10).

The energy consumption (mJ/Frame) is almost steady in
case of HW video decoding. Indeed, increasing the bitrate does
not change a lot the energy consumption. The HDIP always
tries to supply the necessary resources to avoid the energy
over-consumption.

In case of SW video decoding, the energy (mJ/Frame)
increases as the video bitrate grows up. By definition, the
bitrate is the amount of data required to decode a single
second of video. So, the higher the bitrate, the higher the
video visual quality and thus the more bandwidth it requires.
Therefore, this leads to more data volume to process and then
more GPP usage. For instance, in Fig.7a, decoding the 9283
Kbps video sequence would increase the energy consumption
(mJ/Frame) on average by 3.08× compared to the 1434 Kbps
video sequence.

2) Varying video frame rate: Fig.7b depicts the impact
of the video frame rate parameter on the HW and SW
video decoding energy consumption (mJ/Frame), Êglob_active of
Equation (10).

First of all, when changing the video frame rate, the
resulting video bitrate changes accordingly, i.e., the video
bitrate increases with the frame rate.

In case of HW video decoding, the energy consumption
(mJ/Frame) increases every time we increase the video frame
rate. The reason is that the higher the frame rate, the more
memory transfers are needed in order to copy encoded and
decoded frames from and to memory. And so, the more
I/O operations we get. Therefore, more consumed energy
(mJ/Frame).

In the presented example, the increase is very slight. This
shows that the HDIP is not scalable, i.e., the increase in
energy (mJ/Frame) is not remarkable. Indeed, in the study
example shown in Fig.7b, the video sequence encoded at 30
Hz would need on average 1.34× more energy (mJ/Frame) to
be decoded than another one encoded at 10 Hz. The reason is
that the HDIP is designed, i.e., optimized for high data rate
(4K content) in terms of energy efficiency (mJ/Frame).

In case of SW video decoding, the energy (mJ/Frame)
increases as the video frame rate grows up. This increase
can be explained by the high data rate resulting when we
increase the video frame rate. Actually, increasing the video
frame rate means that the GPP should do more job in the same
unit of time, i.e., the number of frames decoded per second.
In addition, to do more job, the GPP number of cores and
frequencies should be scaled accordingly. Therefore, the GPP
consumes more power. For instance, in Fig.7b, decoding the
video sequence encoded at 30 Hz would increase the energy
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(a) HEVC decoding energy when varying
video bitrate (frame rate: 25 Hz, resolu-
tion: 1080p)
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(b) HEVC decoding energy when varying
video frame rate (resolution: 1080p)
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(c) HEVC decoding energy when varying
video resolution (frame rate: 25 Hz)

Fig. 7: HEVC HW vs SW video decoding energy consumption (Video sequence: kimono, QPs: 21 to 37, PSNRs: 22.97 to
43.8, platforms: Snapdragon 810 and Odroid-xu3)

TABLE V
HW video decoding power consumption percentage,

(1 − r̂p_other) using Equation (8)

Resolution 720p 1080p 1600p 2160p

Hw decoding (%) 23 24 33 41

consumption (mJ/Frame) on average by 2.72× compared to
that encoded at 10 Hz. The more we increase the frame rate,
the more energy (mJ/Frame) is needed for GPP to decode a
video sequence.

3) Varying video resolution: Fig.7c depicts the impact of
the video resolution parameter on the HW and SW video
decoding energy consumption (mJ/Frame), Êglob_active of Equa-
tion (10).

In case of HW video decoding, scaling the video resolution
from 720p to 2160p through 1080p and 1600p would consume
only 1.43×, 1.94× and 2.14× more energy (mJ/Frame),
respectively. This is because the HDIP is designed for 2160p
(a.k.a. 4K) video content. In addition, this shows that, as we
concluded, the HDIP did not implement mechanisms that adapt
the energy consumption when decoding low resolution videos.

On the other hand, our experiments revealed that the video
resolution impacts substantially the effective power consumed
by the GPP–HDIP when performing the HW video decoding
process. While this power represents on average 23% of the
global power consumption for 1080p resolution and lower, it is
getting more significant when increasing the video resolution.
Table V sums up the GPP–HDIP HW video decoding power
consumption percentage with respect to the global platform
one as a function of video resolution.

Clearly, for the HW video decoding, the more the video
resolution the more we get the advantage of the HDIP power
efficiency. As the HDIP is designed for 2160p video content,
when processing less data, e.g., 720p content, there are fewer
resources (memory size, number of parallel thread cores, etc)

TABLE VI
Energy consumption ratio as a function of video resolution,

see Equation (11), on Snapdragon 810 and Odroid-xu3

Resolution 720p 1080p 1600p 2160p

r̂sw/hw 1.15 2.18 4.59 7.4

involved in the video decoding process. Furthermore, these
unused resources are still consuming power, which leads to
substantial energy overhead.

Things look different when it comes to the SW video
decoding. As expected, the energy consumption (mJ/Frame)
of a mobile device depends heavily on the video resolution.
However, the scaling is not always linear. For instance, playing
back a 1080p video sequence would consume on average
1.64× more energy (mJ/Frame) than a 720p video sequence.
Above this resolution, the ratio increases drastically: 7.76×
and 13.76× for 1600p and 2160p resolutions, respectively.

Table VI depicts the ratio between the HEVC SW and HW
video decoding energy, calculated using Equation (11), as a
function of the video resolution. Compared to the state-of-
the-art study where it is widely accepted that the dedicated
processors outperform the GPPs by around 1000× in terms of
energy efficiency, for low video resolutions (720p and 1080p),
from the operating system level point of view, the gap is not
as high as that of the state-of-the-art work (a ratio of less than
3×). However, for high video resolutions, the GPP–HDIP offer
the best performance in terms of energy efficiency (a ratio of
more than 7×). The more we increase the video resolution, the
more we get the advantage of the HW video decoding energy
efficiency.

Summary: As a conclusion, the video resolution impacts
differently the HW and SW video decoding (on the Snap-
dragon 810 and Odroid-xu3 platforms, respectively). Scaling
the video resolution from 720p to 2160p through 1080p and
1600p would increase the energy by 1.43×, 1.94× and 2.14×



in case of the former and 1.64×, 7.76× and 13.76× in case
of the latter. Therefore, the more we increase video resolution,
the more we get the advantage of the HW video decoding.

Bitrate, frame rate, and resolution metrics represent a strong
constraint for the video decoding process as it should be
respected in a unit of time, e.g., bits per second, to guarantee
a smooth video play-back. Therefore, the processing resources
should all be involved in order to satisfy this constraint even
at the cost of energy over-consumption. This means that the
OS should give the video decoder a high priority to utilize
the GPP. It is applicable to all processing resources required
to perform the video decoding: memory (DRAM, cache, and
HDD), buses, etc, as well.

The video frame rate and resolution parameters are highly
correlated with the video bitrate. For instance, when we change
the resolution of a given video sequence, to keep its frame
rate, the bitrate should be scaled accordingly. The higher the
video resolution, the higher the bitrate. Similarly, the higher
the frame rate, the higher the bitrate. Therefore, Fig.7a, Fig.7b,
and Fig.7c show similar behaviors.

Finally, we concluded that, on the tested platforms, the
frame rate parameter has a similar impact on the video decod-
ing power consumption as that of the bitrate and resolution
parameters. This allows, for instance, to interchange these
parameters when we want to model the energy consumption
of the video decoding process.

C. Results generalization

In this section, we present the results obtained when per-
forming experiments, at the application level, on the same
platform (RB3) for both HW and SW video decoding.

Fig.8a, Fig.8b, and Fig.8c show the video decoding energy
consumption (mJ/Frame), Êglob_active of Equation (10), when
varying the video bitrate, frame rate, and resolution param-
eters, respectively. Actually, Fig.8 presents the results of the
same measures as Fig.7 but on a different platform (RB3).
It plots the results of HW and SW video decoding energy
consumption (mJ/Frame) on the same platform (RB3).

Compared to the results obtained in Fig.7, one can note
that they show a similar trend of the energy consumption
(mJ/Frame). This can also be confirmed by Table VII which
presents the results of the same measures as Table VI but on
a different platform (RB3). We think that the difference of
ratios might be explained by the fact that RB3 consumes a
substantial amount of static power as it is equipped with a
SoC fabricated at a lower technology process (10 nm) than
that of the Snapdragon 810 and Odroid-xu3 platforms [41].
Unfortunately, our measurement system does not allow to
estimate this power.

V. RELATED WORK

Various studies have been conducted on video decoding
power consumption for previous and current codec standards.
A large proportion of these studies addressed the earlier video
codec standard H.264 (a.k.a. AVC). The authors in [39] gave
a comprehensive and comparative study of the performance

TABLE VII
Energy consumption ratio as a function of video resolution,

see Equation (11), on RB3

Resolution 720p 1080p 1600p 2160p

r̂sw/hw 2.65 3.93 8.57 10.6

and energy consumption of AVC decoding applications on
embedded heterogeneous platforms containing a GPP and a
DSP. In [27], the authors showed how using pipelines and
parallelism in CMOS circuits enhances energy efficiency.

The HEVC decoding process has been the interest of
multiple studies on different platforms. On a heterogeneous
ARM big.LITTLE architecture, Raffin et al. [42] proposed
strategies which make profit of data and task-level parallelism
as well as a new frequency control system. These strategies
aim at optimizing the HEVC SW decoding power consump-
tion. In addition, HEVC has been profiled on both ARM
and x86 architectures to study its complexity [19]. It was
shown that 480p30 decoding on mobile devices is feasible
within reasonable bitrate ranges. Unfortunately, the impact
on power consumption was not investigated. Furthermore, in
[9], M. Tikekar et al. proposed architectural optimizations for
an HEVC HW decoder on an application-specific integrated
circuit (ASIC) test chip. These optimizations showed very low
power consumption. However, the study did not investigate
SW video decoding. In addition, HEVC has also been opti-
mized on DSPs and then compared to the GPP [43]. Nonethe-
less, on the one hand, the video decoding power consumption
was not investigated. On the other hand, the DSP processor is
not relevant in our study. In [20], Christian Herglotz and André
Kaup investigated the energy an HEVC HW decoder needs
for decoding and displaying an HEVC-coded bit-stream. The
results are used to establish a model capable of estimating the
HEVC HW decoding energy consumption. In [21], the authors
studied the complexity of different modules of HEVC and their
energy consumption. The authors proposed some techniques
for the HEVC decoding process in order to optimize its energy
consumption on a mobile device. The authors did not compare
the energy efficiency to that of a dedicated HW decoder.

In this context, our study comes to investigate the HEVC
decoding performance and power consumption on mobile
devices. We analyzed two approaches of video decoding: HW
using the GPP–HDIP, and SW using a heterogeneous GPP. The
objective is to compare the behavior of power consumption of
both kinds of platforms to understand to what extent and in
which cases GPP–HDIP decoding is much better than GPP
decoding. To the best of our knowledge, there is no previous
work that compared HW and SW HEVC decoding power
consumption on mobile platforms.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we proposed a characterization methodology
to evaluate the HEVC decoding performance and energy
consumption. We investigated, by measurement, the HEVC
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Fig. 8: HEVC HW vs SW video decoding energy consumption (Video sequence: kimono, QPs: 21 to 37, PSNRs: 22.97 to
43.8, platform: RB3)

decoding in both implementation approaches: HW, using the
GPP–HDIP, and SW, using only a heterogeneous GPP proces-
sor. We studied the performance as well as the power/energy
consumption of HEVC decoding by varying metrics triggered
at operating system and application levels.

First, the proposed video decoding characterization method-
ology allows to find the best trade-off between performance
and energy consumption.

Second, the energy consumption of a mobile device depends
on the video parameters (bitrate, frame rate, and resolution).
While in case of HW video decoding situation, the three
parameters are less crucial. However, when it comes to the
SW video decoding, we are being confronted with high energy
consumption when scaling up the video quality parameters
(bitrate, frame rate, and resolution).

Third, we showed that, for low resolutions (720p and 1080p)
and on the tested platforms, the SW video decoding consumes,
at the operating system level, less than 4× more energy than
that of the HW one. As a consequence, in more than 80%
of mobile devices use cases that are equipped with 1080p
or lower screen resolution, the SW video decoding can be
an acceptable solution. This is because the HDIP seems very
costly regarding the energy efficiency it presents for low video
resolutions, in addition to its lack of flexibility. However, the
HW video decoding stays more suited for high video bitrate,
frame rate, and resolution parameters. The more we increase
the video data rate, the more we get the advantage of the HW
video decoding energy efficiency.

Finally, on the tested platforms, from the operating system
level point of view, the power required for the video decoding
process does not dominate the global power consumption of
the platform. Actually, the video decoding process consumes
effectively on average less than 30% and 50% of the global
power consumption in case of HW and SW video decoding,
respectively. The rest of the power includes the inter processor
communication between the video decoder (GPP–HDIP or
GPP), memory transfers, and other elements involved in video
decoding. Therefore, the HDIP, when integrated in a SoC, is

not so efficient and thus more efforts should be done to deal
with this drawback.

We aim, in our future work, at proposing an online HEVC
decoding scheduling. One may also expect to further reduce
the gap between the HW and SW HEVC decoding if more
advanced optimizations are used.
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TABLE VIII
Annex: Notations used in the paper

Notation Description Measured or calculated

Pglob_dyn The global dynamic power of a platform Measured

Pglob_idle The global idle power of a platform Measured

Pglob_idle_2_cores The global power consumed by a platform when only 2 GPP cores are on Measured

Pglob_idle_1_core The global power consumed by a platform when only 1 GPP core is on Measured

P̂glob_active The global active power of a platform Calculated

P̂GPP_idle The power consumed by GPP in idle state Calculated

P̂HDIP_idle The power consumed by HDIP in idle state Calculated

P̂Other_idle The power consumed by the remaining elements, in the platform, in idle state Calculated

P̂GPP_active The power consumed by GPP in active state Calculated

P̂HDIP_active The power consumed by HDIP in idle state Calculated

P̂Other_active The power consumed by the remaining elements, in the platform, in active state Calculated

r̂p_other The ratio of P̂_Other with regards of the global power of a platform Calculated

Êglob_active The energy related to GPP–HDIP or GPP when running decoding process Calculated

r̂sw/hw The ratio between the SW (GPP) and HW (GPP–HDIP) video decoding energy consumption Calculated

Êglob_active_hw The energy related to the active component in case of HW video decoding Calculated

Êglob_active_sw The energy related to the active component in case of SW video decoding Calculated

P̂GPP_HDIP_idle The power consumed by GPP–HDIP in idle state Calculated

P̂Other_idle_2_cores
The power related to other components in a platform, in idle state, when only 2 GPP cores

are on Calculated

P̂Other_idle_1_core
The power related to other components in a platform, in idle state, when only 1 GPP core is

on Calculated

P̂HDIP_idle_2_cores The power consumed by HDIP in idle state when only 2 GPP cores are on Calculated

P̂HDIP_idle_1_core The power consumed by HDIP in idle state when only 1 GPP core is on Calculated

D_period The duration of period -

∆t
The duration of data-logging period. Note that

∑
∆t is the time spent to decode an entire

video sequence -


