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A Deep Neural Network Model for Hybrid

Spectrum Sensing in Cognitive Radio

A. Nasser, M. Chaitou, A. Mansour, k. C. Yao, H. Charara,

Abstract

Spectrum Sensing (SS) is an essential task of the Secondary User (SU) in a Cognitive Radio system.

SS monitors the Primary User (PU) activity in order to avoid any collision with SU, as the latter should

be silent when PU is active on a given channel. Hybrid SS (HSS) is one of the powerful methods used

to monitor PU activity. It consists of using different detectors together to make a final decision on the

PU status.

In this manuscript, Artificial Neural Networks (ANN) are used to perform HSS. Since our data is

composed from the Test Statistics (TSs) of several detectors, thus it can be modeled as tabular. Fully

Connected Neural Networks (FCNN) become the most suitable ANN model. We applied cutting-edge

techniques in the field of deep learning in order to get the best possible accurate Neural Network (NN)

model in our application. These techniques boil down to: embedding, regularization, batch normalization

and smart learning rate selection. With the help TSs related to several detectors, ANN is trained to

distinguish between two hypotheses, H0: PU is absent and H1: PU is active. Numerical results show

the effectiveness of our proposed ANN-based HSS, as it outperforms the classical ANN-based energy

detector and proves its capability to detect PU signal at very low SNR.
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I. INTRODUCTION

Cognitive Radio has been proposed in order to overcome the spectrum scarcity problem.

Unlicensed, namely known as Secondary User (SU) may opportunistically access the channel

of the licensed user known as Primary User (PU) when the latter is absent [1]. Thus, one of

the most important functions in CR becomes the Spectrum Sensing (SS), which is responsible

to verify the primary channel status whether it is occupied or not. Several detector have been

proposed to perform the SS tasks, such as: Energy Detector (ED), Auto-Correlation Detector

(ACD) and Cyclo-Stationary Detector (CSD) [2].

In classical SS, i.e. signal detection, the SU applies a Test Statistic (TS) on the received signal

and compares it to a predefined threshold in order to make a decision on the PU status. If the TS

is above a certain threshold, then PU is considered as active. In fact, in order to set the optimal

threshold that meets the target detection and false alarm rates, this approach predetermines that

the statistical distribution of TS is known, which is not always possible due to the unstable, and

may be unknown, statistical properties of the noise, the PU signal or the transmission channel.

To overcome the analytic statistical problems of the classical SS and improve its performance,

several published works propose the adoption of the Machine Learning (ML) and the Neural

Networks (NN) techniques in order to make decisions on the PU channel occupancy [3]–[9].

The main aim of the proposed works is to tune ML or NN systems with the statistics of both

hypotheses: the first one is H0 when PU is assumed to be absent, and H1 when PU is assumed

to be active.

In [5], ML techniques such as the K-Means and Support-Vector Machine (SVM) are used

to distinguish between the H0 and H1 hypotheses in a cooperative SS. Two low-dimension

probability vectors related to both H0 and H1 of ED are used in order to train the system. SVM

is used in order to set the threshold curve between H0 and H1 clusters. K-nearest-based ML is

adopted in [10] for a cooperative SS. The related mechanism of the proposed work is divided

into two phases: training and classification. The global decision of the presence/absence taken

at the end of the classification phase of the PU takes into consideration the reliability of each

CR user when reporting to the fusion center during the training phase.

For a local SS, an ensemble classifier is proposed in [11]. The classifier seeks to discriminate
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between H0 and H1 hypotheses by being trained with the extracted cyclic features of PU’s signal

in low SNR conditions. This ensemble classifier is based on decision trees and AdaBoost algo-

rithm. Wideband SS is tackled in [12], where three ML techniques: neural networks, expectation

maximization and k-means are used in order to detect presence of one or multiple primary users

in a wideband spectrum.

In order to enhance the accuracy of the ML system in making decision on the PU status,

Hybrid SS (HSS) has been proposed [6], [7]. HSS consists of making a sensing decision based

on several detectors instead of considering only one as per the classical SS. In [6], [7], Artificial

Neural Network (ANN) have been applied in order to perform a HSS. ANN is trained using the

TSs of two detectors related to H0 and H1 (in [6] ED and Cyclostationary Detector (CSD) are

used and in [7] ED and likelihood ratio statistics are used).

The strength of the HSS consists on compensate the weak points of a given detector by the

advantages of the another one. For instance, ED suffers from the noise uncertainty at low SNR,

which is overcome by ACD. In return, ACD is adversely impacted by the low oversampling rate

of the PU signal, while ED is not affected by this issue. A HSS scheme is proposed in [13],

where ED and CSD are adopted. First, ED is evaluated to verify whether primary user is present

or not. The CSD is used when energy detector is not sure about the presence or absence of PU.

[14] and [15] exploit the ED and the Waveform Detector (WFD) which is coherent detector that

is based on the correlation of the received PU signal with a known reference of this signal. An

optimal hybrid detector based on ED and WFD is derived as a linear combination of an energy

detection metric and a coherent correlation metric.

However, the classical dealing with the HSS requires the knowledge of some statistical features

of the combined detectors. This may be hard to obtain since the PU signal’s statistical parameters

are not always known/available. This fact makes the numerical techniques such as NN an efficient

solution. In return, even when NN was used in literature, the hybridization was limited to two

detectors as in [6], [7], which does not reflect the real potential of such technique.

In this paper, we present a more general study on the performance of the HSS by admitting

up to six different detectors. ANN are trained by the TSs of the detectors using data related to

H0 and H1. A discussion on the performance is presented according to several criterion related

to the ANN itself and the number of detectors to be combined in HSS. Regarding the ANN

system, a discussion on the number of layers and the number of nodes in each layer is detailed
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showing the effect of them on the accuracy of the decision on the PU channel status. For the

adopted detectors, the performance is evaluated based on the Probability of Detection, PD, and

the False Alarm Rate (FAR). In addition, the impact of the number of combined detectors in

HSS on the performance is detailed.

The remaining of this paper is organized as follows. In section II, our system model on

the PU signal and the noise is presented. The data model, the neural network model, and the

discrimination process between the two hypotheses H0 and H1 are given in section III. Numerical

results and discussions are provided in section IV. Finally section V concludes our work.

II. SYSTEM MODEL

The decision in SS is binary where two hypotheses must be distinguished H0 and H1:H0 : PU is absent

H1 : PU is active
(1)

The measured TS value leads SU to decide on the PU activity by comparing TS to a predefined

threshold.

Accordingly, two classes of TS values have to be defined: H0-class and H1-class related to the

hypotheses H0 and H1 respectively. In fact, H0-class only depends on the system parameters

such as the noise and the hardware imperfections, in other words it is independent from the PU

signal since the received signal r(n) can be presented as follows:r(n) = w(n) under H0

r(n) = s(n) + w(n) under H1

(2)

where w(n) stands for an Additive White Gaussian Noise (AWGN) and s(n) is assumed to be

the received PU signal to be detected.

For HSS, the SU evaluates a m× 1-dimension vector V related to m detectors.

V = [TD1 , TD2 , ..., TDm ]
tr (3)

where the upper script tr stands for the transpose operation, TDi
is the TS related to the detector

Di, i ∈ [1,m]. Each TS is a mathematical application applied on r(n). For instance, ED evaluates

the sum of squares of the samples of r(n), whereas ACD stands for the correlation between

r(n) and a shifted version of itself, and so on. In classical SS, SU may evaluate only one TS
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related to a given detector. This TS is compared to a threshold to take a decision on PU status.

However, in HSS, a vector of TSs related to several detectors are evaluated and combined in

order to examine the PU channel status. In our work, this ANN is used to combine the data of

these detectors and exploit them in outcome a final decision on PU.

III. THE DATA MODEL

In this section we present the details about our dataset and the ANN model used in order to

combine the evaluated TSs of the adopted detectors. By training the ANN system with hybrid

data, we use such system to make a decision on the PU status.

A. Dataset

The data consists of two categories according to the two hypotheses H0 and H1. The data was

generated corresponding to the TSs of six detectors: ED [16], ACD [17], Maximum Eigenvalue

detector (EVM) [18], Maximum-Minimum Eigenvalue detector (EVMM) [18], Cumulative Power

Spectral Density Detector (CPSD) [19] and Goodness-of-Fit detector (GoF) [20]. The data

respects an AWGN noise and a 16-QAM modulated PU signal with an oversampling rate Ns = 4.

The TSs related to the adopted detectors are given in the Appendix A. Our dataset, as depicted

by fig. 1, consists of seven features which are {ED, ACD, EVM, EVMM, CPSD, GoF, SNR}

and a label. The label values are 0 under hypothesis H0 and 1 under H1. Fig. 1 presents a

description of the dataset. In particular, the dataset contains 9× 106 rows. Our choice to include

the SNR into the set of features is an important issue. Indeed, this prevents building a separate

neural network model (NN model) and from training it over each SNR value.

We splitted the dataset randomly into 80% training set and 20% validation set. Fig. 2 illustrates

the count of rows with H0 and H1 respectively (i.e. labels 0 and 1) in the validation set. It can

be observed that the data is uniformly distributed among all SNR values. This also applies to

the training set.

In order to carefully analyse the data may look in depth, we picked out 1000 random samples

from the validation dataset and we plot the scattering of two detectors: ED and ACD as depicted

in fig. 3. The H1 data drifts away from the H0 data class as the SNR increases. H0 data keeps

the same place in the space of the scattering for all SNR values because it is only related to

the noise. However, low SNR values (i.e. -21 dB) makes the discrimination between H0 and
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Fig. 1. Dataset description: 9× 106 rows; 7 features (6 detectors and SNR); the label has two possible values: 0 for hypothesis

H0 and 1 for hypothesis H1. The mean, min, max, standard deviation and percentiles (25%, 50% and 75%) of the features and

the label are also presented.

Fig. 2. Histogram of Dataset to show the distribution of the data over the hypotheses H0 and H1. These two hypotheses are

uniformly considered in our simulations with respect to various SNR values.
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Fig. 3. The Scattering of (ξ, α) for N=1500 samples, 10000 trials and different values of SNR.

H1 a tough task due to the huge mix-up of H0 and H1 related data (see Fig. 3). However, at a

relatively good SNR value (i.e. 6dB), the classification becomes an easy task.

The data input of the model is a batch of 64 rows (see section IV-A for a discussion on the

batch size). Fig. 4 illustrates the first 10 rows of a batch drawn randomly from the dataset.

Fig. 4. 10 rows from a batch

We iterate on the training set by selecting a batch on each step and we fed it as an input to

Algorithm 1. After completing a whole pass on the training set, we switch to the validation set

and we apply Algorithm 2 in order to assess the accuracy of the model. This completes one

epoch. This procedure can be repeated until getting an acceptable value of the accuracy (e.g. an

accuracy value > 95%).
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B. The neural network model

Since our data is in tabular form, we select a Fully Connected Neural Network (FCNN). A

FCNN consists of one input layer, several hidden layers and one ouput layer. The features’ set

is the input layer for our model. The output layer will simply consist of two nodes because we

are trying to predict whether a row of features’ values belongs hypothesis H0 or H1. That is,

the values of the two output nodes will be two probability values that sum to one. It remains to

specify the number of hidden layers, i.e. the ones between the input and output layers,

The number of hidden layers and the number of nodes in each layer, are considered as hyper-

parameters and can be tweaked. Two layers are considered. The first layer with 1000 nodes and

the second one with 500 nodes. We give a discussion of the model parameters’ tweaking in

section IV-A.

As a subtle point, notice that the SNR has discrete values, hence it is considered as a

categorical variable as opposite to the six detector variables which are continuous. It is a common

behaviour to use embedding [21] in the case of a categorical variable since it leads to improve

the model accuracy. The embedding process is shown in fig. 5. In this figure, we take a one-hot

encoded vector [21] of SNR concatenated with a bias (i.e. a real value which will be learnt

by the NN) which yields a vector of length 10. This vector is mapped to a vector of length 6,

called the embedding vector. The embedding vector dimension is a hyper-parameter and can be

tweaked (section IV-A). A bias is added because this is required by the embedding process. We

concatenate this 6−D vector with the six detectors (eq. 3) in order to produce the input layer of

the FCNN (fig. 5). Then, we add two hidden layers with [1000, 500] nodes and an output layer

with 2 nodes.

For the performance metrics, we select the binary negative log likelihood (NLL) loss function

[22] because the type of our problem is binary classification.

A brief explanation of the NLL loss function is given hereinafter: Let us take a features’ row

from the dataset. The ground truth label (or target) of this row is 0 or 1 (e.g. the first row in

fig. 4, has a ground truth label = 0). After SNR embedding and concatenation with the other

features as explained before, we get a vector x of dimension (12, 1) (the input layer in fig. 5).

Call the output layer ŷ = [ŷ0, ŷ1]
tr where ŷi, i = 0, 1 is the probability of getting Hi, i = 0, 1

as prediction and the upperscript tr is the transpose operator. We encode the ground truth label

using one-hot encoding [21]. That is, label 0 is encoded as vector y = [1, 0]> whereas label 1
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Fig. 5. The NN model archirecture: On the left we see the embedding layer. The output of the embedding layer, which is a

vector of 6 real values, is concatenated to the vector of 6 detectors (6 real values) in order to produce the input layer of the

NN (a vector of 12 real values). Then we add sequentially: Hidden Layer 1 (a vector of 1000 real values), Hidden Layer 2 (a

vector of 500 real values) and the output layer (a vector of 2 real values).

Fig. 6. The NN model details: we begin by an embedding layer transforming a list of 10 values (i.e. 9 SNR values and a bias

(see fig. 5)) to a vector of 6 real values. Then we apply batch normalisation to it and we concatenate it with the 6 detectors’

values. Then we apply sequentially two hidden layers and on each layer we apply ReLU, batch normalisation and dropout.

Finally, we add the output layer.
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is encoded as y = [0, 1]tr. That is y = [y0, y1] where y0 = 1 if label = 0 and y0 = 0 if label =1.

Note that, y1 = 1− y0. The binary NLL loss function for this row (e.g. row 1) is expressed as:

L1 = −y0 log(ŷ0)− (1− y0) log(1− ŷ0)

For a batch of 64 rows, the loss function becomes:

L =
64∑
n=1

−yn0 log(ŷn0)− (1− yn0) log(1− ŷn0)/64 (4)

where yn0 (resp. ŷn0) is the encoded label value (resp. predicted probability) of row n of the

batch. During the training phase (Algorithm 1) the model will try to minimize the loss function.

During the validation phase (Algorithm 2), the loss is also calculated. In addition, we get the

confusion matrix and we will derive from it the model accuracy. Furthermore, we well obtain

two other important metrics which are the detection probability and the false alarm rate (these

two also are derived from the confusion matrix). An example is given in fig. 7 where the True

Positive TP = 898399, the False Positive FP = 62934,the False Negative FN = 2246 and

the True Negative TN = 836421. Hence, we get the accuracy as :TP+TN
P+N

= 0.9637 (P +N is

the total count of the validation set which is 1800, 000). Consequently, the Detection Probability

PD can be evaluated as: PD = TP
TP+FP

= 0.9345 and the False Alarm Rate FAR is: FAR =

FN
FN+TN

= 0.002678.

The details of the model are described in fig. 6. First, an embedding layer is constructed as

discussed before. Then, we apply a regularization technique called Dropout 1 [23]. Dropout

consists of dropping a percentage of a layer nodes randomly in the training process. This

percentage is determined by the value p in fig. 6. For the embedding layer, we put p = 0,

that means we do not drop any node since the number of nodes in this layer is too small (6

nodes). Normalization is also an important procedure in FCNN, which is normally used in order

to avoid the cases where the NN parameters vanish or explode. Batch normalization [24] is

very efficient and hence we applied it to all the layers except the output. Equation 5 is the core

operation in batch normalization.

y =
x− E(x)√
V ar(x) + ε

∗ γ + β (5)

x represents a batch, E(x) and V ar(x) are the mean and the variance of x respectively, ε is

added to ensure numerical stability, and β and γ (affine= True) are two learnable parameters.

1Regularization is used in order to give the model the ability to generalize on unseen datasets.
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Fig. 7. An example of the confusion matrix on the validation set showing the actual and predicted values, where 0 (resp. 1)

represents H0 (resp. H1)

Also by default, during training this layer keeps running estimates of its computed mean and

variance (track running stats= True), which are then used for normalization during evaluation.

The running estimates are kept with a default momentum of 0.1 2. After normalization, a linear

layer is added (eq. 6):

y = W tr.x+ b (6)

where W is a learnable parameter matrix, x is the batch, . is the dot product and b is a learnable

bias vector. For instance, the first linear layer model connects the input layer (12 nodes) to the

first hidden layer (1000 nodes) as shown in fig. 5. Given a batch size = 64, hence the dimension

of matrix W becomes (12, 1000), whereas the dimensions of x are (12, 64) and those of b are

(1000, 64).

After adding the linear layer, we introduce a non-linearity by applying an activation function.

In our case, it is the ReLU (Rectified Linear Units) function [25]. ReLU is simply max(0, y),

to get rid of negative values.

2Momentum is a hyperparameter, i.e. it can be tweaked. However, the value of 0.1 is generally adopted in the literature [24]
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As mentioned before, the model contains two phases: training and validation (see Algorithms

1 and 2). Note that the backward pass is applied during the training phase only; Where the

parameters of the model are updated in order to minimize the loss function. The validation

phase, however, contains only a forward pass. Note also the Dropout is turned off during the

validation.

Algorithm 1 The training algorithm
INITIALIZATION

- Select initial values: learning rate (α = 10−5), batch size = 64, num epochs=1.

for epoch in num epochs do

for mini-batch x in training set do

FORWARDS PASS

- Add an embedding layer for SNR

- Concatenate the output of the embedding layer with the values of the six detectors

(fig. 5)

- Starting from the input layer (fig. 5), apply in sequence: eq. 5, then ReLU, then eq. 6

and Dropout(p) to do a forward pass trough the network.

BACKWARDS PASS

- Calculate the loss function according to eq. 4

- layers ← [output layer, hidden layer 2, hidden layer 1]

for layer in layers do

- Compute the derivatives of the loss function with respect to the weight matrix W

and bias vector b connecting it to the previous layer

- Update the weights and biases according to mini-batch gradient descent [26]:

W ← W − α ∗ dloss
dW

b← b− α ∗ dloss
db

end for

end for

Calculate the average loss value (i.e. training epoch loss)

end for
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Algorithm 2 The validation algorithm
for epochs in num epochs do

for mini-batch x in validation set do

FORWARDS PASS

- Add an embedding layer for SNR

- Concatenate the output of the embedding layer with the values of the six detectors

(fig. 5)

- Starting from the input layer (fig. 5), apply in sequence: eq. 5, then ReLU, then eq. 6

to do a forward pass trough the network.

- Calculate the loss function according to eq. 4

end for

- Calculate the average loss value (i.e. validation epoch loss)

- Calculate the confusion matrix

end for

IV. RESULTS

A. Model tweaking

We tested several model architectures with various numbers of layers and different number

of nodes per layer.

Accuracy

1 layer, 7

nodes

1 layer, 20

nodes

2 layers,

[5,5] nodes

2 layers,

[1000, 500]

nodes

0.83 0.84 0.87 0.96

TABLE I

ACCURACY AS FUNCTION OF DIFFERENT MODEL ARCHITECTURES

The results reported in table I are after one epoch of training, since the accuracy was almost

independent from the number of epochs. We conducted our experiments on a cloud AWS

(Amazon Web Service) machine equipped with a k80 GPU (12GB integrated RAM; 5.6 TFLOPS

[27]). It is clear that increasing the number of layers and the number of nodes per layer leads

to better accuracy. However, we did not notice an accuracy improvement with a number of
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layers more than two. Also, we increased the number of nodes to the maximum value allowed

by the machine RAM. In addition to the number of layers and the number of nodes, there

are other hyperparameters to tweak. The most important one is the learning rate. We applied

the methodology suggested in [28] in order to select a learning rate which minimizes the loss

function. The result is illustrated in fig. 8. We obtained this figure by applying algorithm 1 on

a small percentage of the training set (5% in our case).

Fig. 8. Selection of the learning rate.

According to [28], the learning rate should be selected from the decreasing zone in fig. 8.

That is, in the range [10−5, 10−1]. In our experiments we used the value 10−5.

Other parameters are: batch size, momentum, epsilon, dropout probability and the length of

the embedding vector.

For the batch size, we selected a value of 64 (a larger value can be used but this requires more

RAM). For the embedding vector length, the best practice [21] is to reduce the dimension of the

categorical input vector (SNR vector in fig. 5). Hence, any value less than 9 is acceptable. In our

experiments, we fixed this value to 6. For the remaining parameters, we used momentum = 0.1 (

[26]), epsilon = 10−5 (this should be a number close to 0 [24]) and dropout probability p = 0.001

for the hidden layer 1 and p = 0.01 for the hidden layer 2 (p should be a small percentage of the

nodes’ layer). With these parameters, we obtained a high accuracy value (0.96) for the model

architecture with 2 layers, [1000, 500] nodes. Also, as illustrated in fig. 9, validation and training

losses are very close which means that our model does not over-fit, i.e. it can generalize well

to any dataset.
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Fig. 9. The loss value as function of the processed batches.

B. Sensing Performance evaluation

In this section, we present results obtained from our model. We emphasize on two performance

measures: the probability of detection (PD) and the false alarm rate (FAR). Our dataset contains

six detectors which are: ED, ACD, EVM, EVMM, CPSD and GoF. We may present results for

any combination among these detectors; However this will be a time consuming. Instead, we

take the following set of combinations where ED is common in all the adopted combinations:

{ED, ED −EVM, ED −EVM −GoF, ED −EVM −GoF −EVMM, ED −EVM −

GoF − EVMM − CPSD, all detectors}. Our assumption comes form the fact that ED is the

classical detector in SS and is widely considered as the reference one, thus ED is common in

all the considered combinations.

Fig. 10 shows the evolution of PD and FAR of ANN-based HSS detector in terms of SNR for all

the adopted combinations. Noting that adopting ED solely reflects the classical case when ANN

is used to train/validate only one detector, thus it can be considered as the reference of the non-

HSS. However, for the combination ED−EVM , PD increases from 0.6 at SNR = -24 dB to a

value greater than 0.95 at SNR of -12 dB. This evolution of PD is accompanied with a decrease

of FAR from 0.06 at SNR = -24 dB to a value less than 0.1 at -12 dB. On the other hand, for

the ANN-based ED (no HSS is adopted) PD increases from 0.65 to 0.85 for the SNR range [-

24 ; -12] dB, while FAR presents very high values compared to ED−EVM on such SNR range.

Furthermore, Fig. 10 shows that PD increases with the number of used detectors, whereas
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FAR decreases with the number of used detectors. When three detectors are used, i.e. ED −

EVM −GoF , PD achieves 0.92 at -12 dB and FAR becomes less than 0.06 for the same SNR.

These two performance indicators, PD and FAR, become respectively higher than 0.95 and less

than 0.001 when six detectors are used. This fact reflects the efficiency of the hybrid sensing in

terms of both protecting PU form the interference (when PD is high) and exploiting the available

spectrum resources (when FAR is low).

However, for very low SNR, i.e. -24 dB, PD is above 0.825 with a FAR less than 0.001, which

reveals the high robustness of such a hybrid detector in achieving good performance when the

other techniques fail.

In Fig. 11, we present the average values of PD and FAR over all SNRs. The average could

be interpreted as the robustness of the proposed technique in terms of SNR. In fact, the data

corresponding to H0 are noise-only related and not impacted by the SNR, thus their detectors

scattering remains stable in the space independently of the SNR. On the another hand, the data

under H1 is PU signal dependent, and subsequently it is related to the SNR of the received

PU signal. Hence, the performance analysis presenting the average PD and FAR gives us an

in-depth view on the efficiency of the proposed technique to distinguish between H0 and H1,

for wide range of SNR ([-24 ; 0] dB). For the case where no HSS is used, i.e. only ED is used,

thre average PD is around 0.84 for an average FAR of 0.25 as shown in Fig. 11 respectively.

In contrast, for HSS when the number of used detectors increases the average PD increases

accordingly, whereas the average FAR decreases. An average PD higher than 0.93 is observed

when more than 3 detectors are used, while an almost zero FAR is obtained.

V. CONCLUSION

In this paper, we presented Hybrid Spectrum Sensing (HSS) technique using Artificial Neural

Network (ANN). Instead of using one detection method as per the classical spectrum sensing,

several Test Statistics (TSs) of several detectors are combined using ANN. ANN system is

trained with the TSs of the used detectors for the noise-only case and for the case where PU is

active. The numerical results corroborate the efficiency of the proposed HSS compared to the

non hybrid detection technique, where ANN is trained with the TS on only one detector. In

addition, the results proved that the detection outcome becomes more reliable as the number of

detectors increases.
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(a) The evolution of PD in terms of SNR

(b) The evolution of FAR in terms of SNR

Fig. 10. Evaluation of PD and FAR in terms of SNRs.

APPENDIX A

MATHEMATICAL FORMULAE OF ADOPTED DETECTORS

Energy Detector (ED) is defined as the sum of the square modulus of the received signal:

TED =
1

N

N∑
1

|r(n)|2 (7)

where N is the number of received samples.

Autocorrelation Detector (ACD) consists of evaluating the inter-sample correlation of the received

signal, and is defined as follows:

TACD =
1

NsNTED

Ns−1∑
l=1

Re

{ N∑
n=1

r(n)r∗(n− l)
}

(8)
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(a) Average detection probability

(b) Average False Alarm Rate

Fig. 11. The average PD and FAR for the SNR range [-24 ; 0] dB for the used combination in the proposed ANN-based HSS

technique.
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where ∗ stands for the congugate operation, Ns is the number of samples per symbol and σ2
w is

the AWGN noise variance.

The CSPD detector evaluates the non-flatness of the noise in frequency domain and is given by

[19, eq. 26]:

TCPSD =
2

N2σ2
w

N/2∑
k=1

(
N

2
− k + 1

)
|R(m)|2 + |R(−m+ 1)|2

2
(9)

where R(m) is the discrete Fourrier transform of r(n).

EVM consists of finding the maximum eigenvalue of the covariance matrix R∇ of ∇(n) which

is a set of shifted versions of r(n).

TEVM = λmax = ||λ1, λ2, ..., λL||∞ (10)

where λi, i ∈ [1, L] is the ith eigenvalue of R∇, L is related to the number of shifted versions

of r(n), and || · ||∞ is the ∞ norm.

Similarly to EVM, EVMM is evaluated based on the ratio of the maximal eigenvalue to the

minimal eigenvalue of R†:

TEVMM =
λmax

λmin

(11)

where λmin = min{λ1, λ2, ..., λL}

Finally, TGoF consists of detecting the presence of PU signal by determining whether the

received samples are drawn from the noise distribution with a Cumulative Distribution Function

F [29]:

TGoF = −
N∑
n

[
log(F{r(n)})
N − n+ 1/2

+
log(1− F{r(n)})

n− 1/2

]
(12)
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