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Communication
On the proof of recursive Vogler algorithm for multiple knife-edge diffraction

Viet-Dung Nguyen, Member, IEEE, Huy Phan, Ali Mansour, Senior Member, IEEE, Arnaud Coatanhay, Thierry
Marsault

Abstract—We consider the problem of multiple knife-edge
diffraction estimation which is a fundamental task in many
wireless communication applications. So far, one of the most
accurate methods for this problem is the Vogler one whose
recursive implementation is efficient to reduce the high com-
putational complexity of the direct one. However, in the original
report, Vogler only presented the final result of the recursive
algorithm without a rigorous mathematical proof, thus making
the method difficult to understand and implement in practice.
To tackle this shortcoming, we first analyze the mathematical
structure of the problem and then present a formal proof of
the result. To gain intuition of the proof and the key steps, we
provide a simplified study case of four knife-edges. The insight
from our proposed analysis and proof can be used to obtain a
comprehensive interpretation, initiate a practical implementation
and develop new efficient algorithms with similar structure.

Index Terms—Multiple knife-edge diffraction, Vogler method,
recursive algorithm, RF transmission

I. INTRODUCTION

Estimation of diffraction attenuation plays an important
role in many applications of wireless communication. Some
classical ones can be taken into account such as evaluating
propagation loss over irregular terrains [1]–[3] or aeronautical
mobile and ground station interactions [4]. More recently,
diffraction estimation is also used in several emerged ap-
plications, for example, channel modeling at cmWave and
mmWave bands for 5G [5] or influence of vehicles as obstacles
in Vehicular Ad Hoc Networks (VANET) [6]. Generally, to
obtain better accuracy, it is essential to use multiple knife-
edge approximation instead of single one which is simple but
inadequate.

To date, many approaches are proposed in the literature
for calculating the multiple knife-edge diffraction loss. Some
well-known representatives includes: (i) ‘analytical’ methods,
such as the Vogler method and the variants of the uniform
theory of diffraction (UTD) [7]–[13], to name a few; (ii)
graphical-based methods, such as the Bullington method [14],
the Deygout method [15], the Causebrook [16] and Giovanelli
methods [17]. The first group of methods is characterized
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by accurate estimation but high computational complexity
whereas the second group is represented by low computation
complexity but inadequate accuracy. The Vogler method was
developed based on a generalized residual series formula-
tion [18] for electromagnetic waves over a sequence of smooth
cylindrical obstacles. The obtained result of such derivation
has the form of a multiple integral whose computation can be
represented efficiently in terms of series representation. The
Vogler method is the first of its kind allowing to predict a
precise diffraction attenuation value up to ten knife-edges.

In terms of estimation accuracy, the Vogler method stands
out from other methods [19], presenting the ultimate solution
supported by both simulations and real-life measured experi-
ment results [3], [19], [20]. For example, the Vogler method
is also used as the ground truth in a comparative studies
for fifty scenarios reported in [20]. Comparison results of
multiple diffraction models for a digital broadcasting coverage
prediction with different frequencies can be found in [3], [19].

However, the naive implementation of the Vogler algorithm
results in high computational complexity, making it difficult to
use in practice. To overcome this computational challenge, the
recursive version was proposed by Vogler [21] to reduce the
computational time. Unfortunately, this version came without
a rigorous mathematical proof, but only the final result [21],
[22], leading to difficult understanding and implementation.
Thus, we aim to provide insight of the mathematical structure
of this problem to gain a comprehensive interpretation. Our
contributions are threefold. First, we analyze why the Vogler
algorithm can be represented in a recursive manner. Second,
we present a formal proof by induction. Finally, to gain
intuition of the proof, we provide a case study of four knife-
edges.

II. THE VOGLER METHOD

φ1 φ2
φN

. . .

. . .

h0 h1 h2 hN hN+1

r1 r2 rN+1

Fig. 1: Geometry of multiple knife edges.

In this section the background on the Vogler method will
be presented. We consider the geometry of N knife-edge
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diffraction in Fig. 1 where h0 and hN+1 denote the transmitter
and receiver heights respectively, {hn}Nn=1 are the knife-edge
heights to a reference surface, {φn}Nn=1 are diffraction angles,
and {rn}N+1

n=1 are N + 1 separation distances between knife-
edges. Then the diffraction attenuation, AN , for N knife-edges
is given by [22]

AN =
1

2N
CN exp (σN )

(
2√
π

)N ∫ ∞
β1

· · ·︸ ︷︷ ︸
N−fold

∫ ∞
βN

exp (2f) exp

(
−

N∑
n=1

u2n

)
du1· · ·duN (1)

where

f =


0 for N = 1

N−1∑
j=1

γj for N ≥ 2
(2)

γj = αj (uj − βj) (uj+1 − βj+1) (3)

αj =

[
rjrj+1

(rj + rj+1) (rj+1 + rj+2)

]1/2
,where 1 ≤ j ≤ N − 1

(4)

βj = φj

[
ikrjrj+1

2 (rj + rj+1)

]1/2
,where 1 ≤ j ≤ N (5)

σN =
N∑
n=1

β2
n (6)

CN =


1 for N = 1[

(
∑N+1

n=1 rn)
∏N

n=1 rn∏N
n=1 (rn+rn+1)

]1/2
for N ≥ 2

(7)

with i =
√
−1 being an imaginary number and the wave

number k = 2π/λ.
To calculate (1), the main idea in [22] is that instead of

computing the N -fold integral, we convert such task into
computing N single integrals. To this end, Vogler proposed
to express exp (2f) in terms of power series as:

exp (2f) =
∑∞

m=0

(2f)
m

m!
(8)

Then by exploiting the fact that
2√
π

∫ ∞
β

(u− β)m exp
(
−u2

)
du = m!I (m,β) (9)

where m! refers to the factorial of m and I (m,β) defines the
repeated integrals of the complementary error function [23],
we reach a closed-form solution for AN . The detail calcula-
tions are omitted here and can be found in [21]. The results
are summarized in the following theorem

Theorem 1. For N = 1, equation (1) is reduced to the
standard form of a single knife-edge diffraction:

A1 =
1√
π
exp

(
β2
1

) ∫ ∞
β1

exp
(
−u2

)
du. (10)

For N = 2, we reach a closed-form solution for A2 as follows:

A2 =
1

22
C2 exp (σ2)

∞∑
m=0

Im (11)

where

Im = 2mαm1 m!I (m,β1) I (m,β2) . (12)

For N > 2, a general solution for AN is given by:

AN =
1

2N
CN exp (σN )

∑∞

m=0
Im (13)

where

Im =

2m
m∑

m1=0

· · ·
mN−3∑
mN−2

N∏
i=1

(mi−1 −mi+1)!

(mi −mi+1)!
α
mi−1−mi

i I (ni, βi)

(14)

with, by using notation m0 = m,

ni =


m0 −m1 i = 1

mi−2 −mi 2 ≤ i ≤ N − 1

mN−2 −mN−1 i = N

. (15)

III. ON THE RECURSIVE SOLUTION OF THE VOGLER
METHOD

Many existing studies in the literature highlight the high
complexity of the Vogler method (see [3], [20], [24] and ref-
erences therein). However, the technical report by Vogler [21]
indeed includes a recursive version which provides a faster
solution than the direct implementation. Unfortunately, there
is a lack of a rigorous proof, making such version difficult for
understanding and implementation. To overcome this problem,
we provide here a mathematical proof of this recursive algo-
rithm. We first show that the recursive structure of the Vogler
algorithm stems from the structure of expansion of fm. Then,
we propose a general proof for the recursive algorithm (i.e.,
for N > 2).

To show that the Vogler solution can provide a recursive
structure, we first present the following lemma:

Lemma 1. Assume that f has the following form as by (2)
when N > 1

f =
∑N−1

i=1
γi, (16)

for N ≥ 3, we can represent fm as given by (17) and (18) at
the top of the next page where(

n

k

)
=

n!

(n− k)!k!
(19)

denotes the binomial coefficient.

Proof. See Appendix A.

The non-recursive version of the Vogler algorithm is ob-
tained by substituting (18) and (8) into (1) and then computing
the integral to achieve (14). The main drawback of this version
is that, considering two successive terms, Im and Im+1, the
computation of Im+1 requires recalculating completely the
sub-calculations in Im, thus omitting the recursive structure
of (17). By the recursive structure, we mean that fm can be
represented in an abstract form as follows

fm (γ1, · · · , γN−1) = ψ(m, γ1, ψ(m1, γ2, ψ (· · · ,
ψ (mN−3, γN−2, γN−1) · · · )) (20)
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fm =
m∑

m1=0

(
m

m1

)
γm−m1
1


m1∑
m2=0

(
m1

m2

)
γm1−m2
2

. . .
 mN−3∑
mN−2=0

(
mN−3

mN−2

)
γ
mN−3−mN−2

N−2 γ
mN−2

N−1


︸ ︷︷ ︸

1stterm




︸ ︷︷ ︸

(N−3)ndterm︸ ︷︷ ︸
(N−2)ndterm

(17)

or

fm = m!
m∑

m1=0

m1∑
m2=0

· · ·
mN−3∑
mN−2=0

N−1∏
i=1

γ
mi−1−mi

i

(mi−1 −mi)!
(18)

where

0 ≤ mN−2 ≤ · · · ≤ m1 ≤ m, (21)

ψ (m, a, b) =

m∑
i=0

(
m

i

)
bm−iai, (22)

Theorem 2. (Recursive computation of Im [22]): Let

C (N − 1,mN−2,mN−3)

= (mN−3)!α
mN−2

N−1 I (mN−3, βN−1) I (mN−2, βN ) .
(23)

Then, given the following notation

i = mN−L, j = mN−L−1, k = mN−L−2

2 ≤ L ≤ N − 2, N ≥ 4

and the recursive relationship

C (N − L, j, k)

=

j∑
i=0

(k − i)!
(j − i)!

αj−iN−LI (k − i, βN−L)C (N − L+ 1, i, j) ,

(24)

the recursive computation of Im is given by

Im = 2m
m0∑
m1=0

αm−m1
1 I (m−m1, β1)C (2,m1,m) . (25)

Proof. See Appendix B.

IV. CASE STUDY OF FOUR KNIFE-EDGES (N = 4)
To simplify the discussion and illustrate the main idea,

we present here a case study of N = 4. We note that by
substituting (8) into (1), AN can be rewritten as

AN =
1

2N
CN exp (σN )

∑∞

m=0
Im (26)

where

Im =

(
2m

m!

)(
2√
π

)N
×
∫ ∞
β1

· · ·
∫ ∞
βN

fm exp

(
−

N∑
n=1

u2n

)
du1 · · · duN ,

(27)

Since we aim to obtain a recursive formula for Im, by
substituting (17) into (27), Im for N = 4 is given by

Im =(
2m

m!

)(
2√
π

)4

×
∞∫
β1

∞∫
β2

∞∫
β3

∞∫
β4

(
m∑

m1=0

(
m

m1

)
γm−m1
1

m1∑
m2=0

(
m1

m2

)
γm1−m2
2 γ3

m2

)

× exp

(
−

4∑
n=1

u2n

)
du1 · · · du4. (28)

Using (3) and the definition of binomial coefficients (19), we
can expand Im as follows

Im =(
2m

m!

)(
2√
π

)4
∞∫
β1

∞∫
β2

∞∫
β3

∞∫
β4

m∑
m1=0

m!

(m−m1)!m1!
αm−m1
1 (u1 − β1)m−m1(u2 − β2)m−m1

×
(( m1∑

m2=0

m1!

(m1 −m2)!m2!
αm1−m2
2 (u2 − β2)m1−m2

αm2
3 (u3 − β3)m1(u4 − β4)m2

))
× exp

(
−

4∑
n=1

u2n

)
du1 · · · du4. (29)

Using (23), we can write

C (3,m2,m1) = m1!α
m2
3 I (m1, β3) I (m2, β4) (30)

which represents the first coefficient needed to compute the
recursive form. Then, we can rewrite Im as

Im =

(
2m

m!

)(
2√
π

)∫ ∞
β1

m∑
m1=0

m!

(m−m1)!
αm−m1
1

× (u1 − β1)m−m1C (2,m1,m) exp
(
−u21

)
du1 (31)
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where

C (2,m1,m) =
m1∑
m2=0

(m−m2)!

(m1 −m2)!
αm1−m2
2 I (m−m2, β2)C (3,m2,m1) .

(32)

Finally, by computing the integral of (31), we achieve

Im =

(
2m

m!

) m∑
m1=0

m!αm−m1
1

×

[
2√
π

∫ ∞
β1

(u1 − β1)m−m1

(m−m1)!
exp

(
−u21

)
du1

]
C (2,m1,m)

= 2m
m∑

m1=0

αm−m1
1 I (m−m1, β1)C (2,m1,m) (33)

which is the exact result of the Theorem 2 for N = 4.

V. CONCLUSION

In this communication, we have introduced a rigorous
proof for the recursive Vogler algorithm after analyzing its
mathematical structure. A case study of four knife-edges is
also presented in a ‘closed form’ to bring intuition of the key
steps. Our study can provide a deep overview of the problem
and clarify the algorithm derivation. Moreover, we could use
the insight from the proof to develop an efficient recursive
algorithm for the multiple bridged knife-edge diffraction prob-
lem [25]. The recursive Vogler algorithm can also be used
to generate faster training dataset for function approximation-
based methods [24], [26] proposed to bring a better trade-off
in terms of the accuracy and the computational complexity.
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APPENDIX

A. Proof of Lemma 1
We obtain the first form (17) by applying the binomial

theorem N − 2 times to fm(
N−1∑
i=1

γi

)m
=

m∑
m1=0

(
m

m1

)
γm−m1
1

(
N−1∑
i=2

γi

)m1

(
N−1∑
i=2

γi

)m1

=

m1∑
m2=0

(
m1

m2

)
γm1−m2
2

(
N−1∑
i=3

γi

)m2

...
(γN−3 + (γN−2 + γN−1))

mN−4 =
mN−4∑
mN−3=0

(
mN−4

mN−3

)
γ
mN−4−mN−3

N−3 (γN−2 + γN−1)
mN−3

(γN−1 + γN−2)
mN−3 =

mN−3∑
mN−2=0

(
mN−3

mN−2

)
γ
mN−3−mN−2

N−2 γ
mN−2

N−1

To achieve the second form (18), we observe that, by re-
arranging the summation and the coefficients, (17) can be
rewritten as

fm =
m∑

m1=0

m1∑
m2=0

· · ·
mN−3∑
mN−2=0

N−1∏
i=1

(
mi−1
mi

)
γ
mi−1−mi

i

(34)

where we used the notation mi = 0, i ≥ N − 1. Note that,

N−1∏
i=1

(
mi−1
mi

)
=
N−1∏
i=1

mi−1!

mi!

N−1∏
i=1

1

(mi−1 −mi)!
(35)

and, using again the notation m0 = m,

N−1∏
i=1

mi−1!

mi!
=
m0!

m1!

m1!

m2!
· · · mN−2!

mN−1!
=

m0!

mN−1!
= m! (36)

then, we obtain the desired result

fm = m!
m∑

m1=0

m1∑
m2=0

· · ·
mN−3∑
mN−2=0

N−1∏
i=1

γ
mi−1−mi

i

(mi−1 −mi)!
.

This concludes the proof.

B. Proof of Theory 2

First, we denote the following set of integrals

I1 =

(
2√
π

)2
∞∫

βN−1

∞∫
βN

mN−3∑
mN−2=0

(
mN−3

mN−2

)
γ
mN−3−mN−2

N−2

× γmN−2

N−1 exp
(
−
(
u2N−2 + u2N−1

))
duN−2duN−1, (37)

I2 =

(
2√
π

)3
∞∫

βN−2

∞∫
βN−1

∞∫
βN

mN−4∑
mN−3=0

(
mN−4

mN−3

)
γ
mN−4−mN−3

N−3

× (γN−2 + γN−1)
mN−3 exp

(
−

N∑
i=N−2

u2i

)
duN−2 · · · duN ,

(38)
...

In =

(
2√
π

)n+1
∞∫

βN−n

· · ·
∞∫

βN

mN−n−2∑
mN−n−1=0

(
mN−n−2
mN−n−1

)

× γmN−n−2−mN−n−1

N−n−1

(
N−1∑
i=N−n

γi

)N−n−1

× exp

(
−

N∑
i=N−n

u2i

)
duN−n · · · duN ,

...

IN−2 =

(
2√
π

)N−1 ∞∫
β2

· · ·
∞∫

βN

m∑
m1=0

(
m

m1

)
γm−m1
1

×

(
N−1∑
i=2

γi

)m1

exp

(
−

N∑
i=2

u2i

)
du2 · · · duN . (39)
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We notice that, the following relationships hold:

In =
2√
π

∞∫
βN−n

mN−n−2∑
mN−n−1=0

(
mN−n−2
mN−n−1

)
× γmN−n−2−mN−n−1

mN−n−1
In−1 exp

(
u2N−n

)
duN−n (40)

for 2 ≤ n ≤ N − 2, and

Im =

(
2m

m!

)
2√
π

∞∫
β1

IN−2 exp
(
−u21

)
du1, (41)

stemming from definitions of In and Im.
Our main idea is to find a general formula for In. Then it is

straightforward to obtain Im through (41). To this end, we will
provide a general formula for In and prove it by induction.
In particular, our proof can be divided into three steps:
• Step 1: We compute I1
• Step 2: We provide a general formula of In for 2 ≤ n ≤
N − 2. We show that this formula is true by induction

• Step 3: We show that the results of Theorem 2 are
consequences of Step 2, thus concluding the proof.

Now we provide the technical details.
Step 1: We compute I1
First, from (3) and (19), we note that

γ
mN−3−mN−2

N−2 γ
mN−2

N−1 =

× αmN−3−mN−2

N−2 (uN−2 − βN−2)mN−3−mN−2α
mN−2

N−1

× (uN−1 − βN−1)mN−3(uN − βN )
mN−2 (42)

Then by substituting (42) into (37), we obtain

I1 =

mN−3∑
mN−2=0

(mN−3)!

(mN−3 −mN−2)!
α
mN−3−mN−2

N−2

× (uN−2 − βN−2)mN−3−mN−2C (N − 1,mN−2,mN−3)
(43)

where

C (N − 1,mN−2,mN−3)

= (mN−3)!α
mN−2

N−1 I (mN−3, βN−1) I (mN−2, βN ) .
(44)

Step 2: We provide formula of In for 2 ≤ n ≤ N − 2 and
show that this formula is true by induction.
To this end, we introduce the following lemma

Lemma 2. For 2 ≤ n ≤ N − 2, In is given by

In =

mN−n−2∑
mN−n−1=0

(mN−n−2)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

× (uN−n−1 − βN−n−1)mN−n−2−mN−n−1 (45)
× C (N − n,mN−n−1,mN−n−2) (46)

where

C (N − n,mN−n−1,mN−n−2) =
mN−n−1∑
mN−n=0

(mN−n−2 −mN−n)!

(mN−n−1 −mN−n)!
α
mN−n−1−mN−n

N−n ×

I (mN−n−2 −mN−n, βN−n)C (N − n+ 1,mN−n,mN−n−1) .
(47)

Proof. We show that, this formula is true for n = 2. Then we
assume that (46) holds. Subsequently we prove that it is also
true for In+1. Due to (40), we can rewrite (38) as:

I2 =
2√
π

∞∫
βN−2

mN−4∑
mN−3=0

(
mN−4
mN−3

)
γ
mN−4−mN−3

N−3

× I1 exp
(
−u2N−2

)
duN−2. (48)

By substituting (43) into (48) and compute the integral to the
variable uN−2, we have

I2 =

mN−4∑
mN−3=0

(mN−4)!

(mN−4 −mN−3)!
α
mN−4−mN−3

N−3

× (uN−3 − βN−3)mN−4−mN−3C (N − 2,mN−3,mN−4)
(49)

where

C (N − 2,mN−3,mN−4)

=

mN−3∑
mN−2=0

(mN−4 −mN−2)!

(mN−3 −mN−2)!
α
mN−3−mN−2

N−2

× I (mN−4 −mN−2, βN−2)C (N − 1,mN−2,mN−3) .
(50)

Now, assuming that (46) holds. We show that it is also true
for In+1. In fact, because of (40), we have

In+1 =
2√
π

∞∫
βN−n−1

mN−n−3∑
mN−n−2=0

(
mN−n−3
mN−n−2

)
× γmN−n−3−mN−n−2

mN−n−2
In exp (uN−n−1) duN−n−1.

(51)

Substituting (46) into (51) and computing the integral to
uN−n−1 yield

In+1 =

mN−n−3∑
mN−n−2=0

(mN−n−3)!

(mN−n−3 −mN−n−2)!

× αmN−n−3−mN−n−2

N−n−2 (uN−n−2 − βN−n−2)mN−n−3−mN−n−2

×
mN−n−2∑
mN−n−1=0

(mN−n−3 −mN−n−1)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

× C (N − n,mN−n−1,mN−n−2)

×
[

2√
π

∞∫
βN−n−1

(uN−n−1 − βN−n−1)mN−n−3−mN−n−1

(mN−n−3 −mN−n−1)!

× exp (uN−n−1) duN−n−1

]
=

mN−n−3∑
mN−n−2=0

(mN−n−3)!

(mN−n−3 −mN−n−2)!
α
mN−n−3−mN−n−2

N−n−2

× (uN−n−2 − βN−n−2)mN−n−3−mN−n−2

× C (N − n− 1,mN−n−2,mN−n−3) (52)
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where

C (N − n− 1,mN−n−2,mN−n−3)

=

mN−n−2∑
mN−n−1=0

(mN−n−3 −mN−n−1)!

(mN−n−2 −mN−n−1)!
α
mN−n−2−mN−n−1

N−n−1

× I (mN−n−3 −mN−n−1, βN−n−1)

× C (N − n,mN−n−1,mN−n−2) . (53)

Thus, the formula (46) holds by induction, concluding the
proof.

Step 3: We show that the results of Theorem 2 are conse-
quences of Step 2, thus concluding the proof.
By using the relationship (41) and (47) with n = N − 2, we
obtain

Im = 2m
m∑

m1=0

αm−m1
1 C (2,m1,m)

×
[

2√
π

∞∫
β1

(u1 − β1)m−m1

(m−m1)!
exp

(
−u21

)
du

]

= 2m
m∑

m1=0

αm−m1
1 I (m−m1, β1)C (2,m1,m). (54)

Moreover, let

m0 = m,

i = mN−L, j = mN−L−1, k = mN−L−2

2 ≤ L ≤ N − 2, N ≥ 4.

The following expression holds

C (N − L, j, k)

=
j∑
i=0

(k−i)!
(j−i)!α

j−i
N−L (2/

√
π) I (k − i, βN−L)C (N − L+ 1, i, j).

(55)

This is a consequence from the proof of Lemma 2 (i.e.,
it holds by induction) on the recursive relationship of
C (N − 1,mN−2,mN−3) , C (N − 2,mN−3,mN−4) , · · · ,
C (N − n,mN−n−1,mN−n−2) (see Equations (44), (50)
and (47) respectively) and the identical form of terms in (17).
We thus conclude the proof.
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