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Abstract

In this paper, we have investigated the effect of material orthotropy on the formability of metallic sheets sub-

jected to dynamic biaxial stretching. For that purpose, we have devised an original three-pronged methodology

which includes a linear stability analysis, a nonlinear two-zone model and finite element calculations. We have

studied 5 different materials whose mechanical behavior is described with an elastic isotropic, plastic anisotropic

constitutive model with yielding based on Hill (1948) criterion. The linear stability analysis and the nonlinear

two-zone model are extensions of the formulations developed by Zaera et al. (2015) and Jacques (2020), respec-

tively, to consider Hill (1948) plasticity. The finite element calculations are performed with ABAQUS/Explicit

(2016) using the unit-cell model developed by Rodŕıguez-Mart́ınez et al. (2017), which includes a sinusoidal spatial

imperfection to favor necking localization. The predictions of the stability analysis and the two-zone model are

systematically compared against the finite element results –which are considered as the reference approach to

validate the theoretical models– for loading paths ranging from plane strain stretching to equibiaxial stretching,

and for different strain rates ranging from 100 s−1 to 50000 s−1. The stability analysis and the two-zone model

yield the same overall trends obtained with the finite element simulations for the 5 materials investigated, and for

most of the strain rates and loading paths the agreement for the necking strains is also quantitative. Notably, the

differences between the finite element results and the two-zone model rarely go beyond 5%. Altogether, the results

presented in this work provide new insights into the mechanisms which control dynamic formability of anisotropic

metallic sheets.
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1. Introduction

Interest of aeronautical and automotive industries in high energy rate forming (HERF) processes, such as

explosive, electromagnetic and electrohydraulic forming, has been growing in recent years due to their potential to

form aluminium, titanium, high-strength steel and other low formability metallic materials (Song et al., 2004). The

high strain rates achieved in HERF processes in comparison to conventional quasi-static metal forming operations

lead to significant changes in the constitutive behavior of the materials and give rise to inertial effects which

contribute to delay necking localization and ductile fracture (Mamalis et al., 2004; Gayakwad et al., 2014).

The first experimental evidence that inertia effects improve the formability of metal sheets was most likely

provided by Wood (1967), who showed that the ductility of several materials (stainless steel, vascojet tool steel,

René 41 superalloy) is significantly increased during high-explosive forming operations, such as tube and dome

bulging. More recently, Balanethiram and Daehn (1992) obtained the dynamic formability diagrams of Interstitial

Free iron sheets with 0.84 mm thickness tested at strain rates of ∼ 103 s−1 using electrohydraulic forming (the

sheets were formed inside a conical die with 90◦ apex angle). The comparison with the corresponding quasi-static

forming limits showed that the ductility of the specimens near plane strain increased by three times at high strain

rates. Shortly after, Balanethiram and Daehn (1994) presented additional electrohydraulic experiments showing

that the formability of AA 6061 and OFHC copper sheets also increases at high strain rates, suggesting that the

beneficial contribution of inertial forces to the ductility of metals sheets is both large and general (Balanethiram

and Daehn, 1994). The experiments on OFHC copper were performed using sheets of 0.34 and 0.79 mm thickness,

with the thicker samples showing much greater improvement in formability at high strain rates due to the increase

of inertia effects with the specimen thickness. Hence, Daehn et al. (1995) concluded that when inertial forces are

at work in stabilizing necking, size effects become important.

Years later, Seth et al. (2005) investigated experimentally the dynamic formability of sheet specimens made

of five different cold-rolled steels with thicknesses varying from 0.15 to 0.38 mm. The tests consisted of launching

electromagnetically the steel sheets at a shaped punch at velocities of 50–220 m/s. Similarly to the experimental

evidence presented by Balanethiram and Daehn (1992, 1994) for Interstitial Free iron, AA 6061 and OFHC copper,

the ductility of these five steels was also dramatically increased at high strain rates as compared to the quasi-static

forming limit diagrams. The experimental results reported by Golovashchenko (2007) for the electromagnetic

forming of AA 6111-T4 and AA 5754 sheets into conical and v-shape dies also showed that the ductility of the

electromagnetic formed samples can be ∼ 2.5 times greater than under quasi-static loading. Dariani et al. (2009)
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obtained the forming limit diagrams of AA 6061-T6 and 1045 steel under quasi-static and explosive loading (in

the latter case the strain rate reaches ∼ 103 s−1). These experiments revealed that the ductility of the explosively

formed specimens increases by a factor of 2.5 for AA6061-T6 and by factor of 1.6 for 1045 steel. Golovashchenko

et al. (2013) investigated the dynamic formability of four different dual phase steels (DP500, DP590, DP780 and

DP980) at strain rates up to ∼ 2 · 104 s−1 using electrohydraulic forming. As compared to the quasi-static case,

the relative improvement in plane strain formability in electrohydraulic forming conditions was between 63% and

190%, depending on the grade of dual phase steel. Moreover, Rohatgi et al. (2014) performed electrohydraulic

forming experiments which showed that the dynamic formability of AA 5182-O sheets of 1 mm thickness, relative

to its corresponding quasi-static formability, increases by ∼ 2.5 times and ∼ 6.5 times under free-forming and when

forming inside a conical die, respectively.

Theoretical investigations to rationalize the effect of inertia on neck retardation have been conducted using

both linear and nonlinear analyses.

Most of the linear analyses are based on the linear perturbation theory, which evaluates the growth of an

infinitesimal perturbation superimposed on the homogenous background solution of the problem at hand. Fressen-

geas and Molinari (1985) showed that if the perturbation grows faster than the background solution, the plastic

flow is unstable and a neck-like deformation field can develop. Fressengeas and Molinari (1994) extended the plane

strain linear stability analysis of Hutchinson et al. (1978b) to include inertia effects, and they showed that inertia

decreases the growth rate of perturbations, slowing down necking development and enhancing material ductility. In

addition, it was demonstrated that at high strain rates, unlike what happens under quasi-static loadings, there is a

perturbation of finite wavelength (so-called the critical wavelength) for which the growth rate of the perturbation is

maximum. This critical wavelength was used by Fressengeas and Molinari (1994) to determine the average spacing

between necks in the multiple localization patterns that emerge in shaped-charge jets, and satisfactory agreement

was found between theory and experimental data available in the literature. Mercier et al. (2010) extended the

plane strain linear stability analysis developed by Fressengeas and Molinari (1994) to thermoviscoplastic materials

to predict the critical conditions for the nucleation of necks and the spacing between necks in hemispherical shells

made of copper and tantalum, and subjected to dynamic expansion at strain rates of ∼ 104 s−1. The stability anal-

ysis predictions were in reasonable agreement with the number of necks obtained in the experiments and showed

that inertia delays the formation of necks (which indeed nucleate for strains greater than the Considère (1885)

strain, see also Vaz-Romero et al. (2017)). Moreover, Zaera et al. (2015) extended the linear stability analysis
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developed by Dudzinski and Molinari (1991) to consider inertia effects and study the formation of multiple necks

in thin metal sheets modeled with von Mises plasticity and subjected to biaxial loading at high strain rates. Using

the concept of effective instability introduced by Dudzinski and Molinari (1991), which states that a perturbation

mode turns into a necking mode when the grow rate of the perturbation reaches a critical value, Zaera et al. (2015)

used the results of the stability analysis to construct dynamic forming limit diagrams. The predictions of the

stability analysis were in qualitative agreement with finite element results which showed that the average spacing

between necks increases as the loading path moves away from uniaxial tension and approaches equibiaxial tension

(see also Rodŕıguez-Mart́ınez et al. (2017)). The stability analysis also predicted in agreement with the finite ele-

ment calculations the orientation of the necking bands that form the localization pattern, which are aligned with

the direction of zero stretch for loading paths between uniaxial tension and plane strain (Hill, 1952), and they are

perpendicular to the principal loading direction when the loading path lies between plane strain and equibiaxial

tension. In addition, the finite element calculations indicated that the formability of metal sheets increases as the

loading rate increases, in agreement with the experimental evidence discussed above (see also Rodŕıguez-Mart́ınez

et al. (2017)).

Moreover, the nonlinear analyses are generally based on the hypothesis of Marciniak and Kuczyński (1967) that

necking is initiated by an ab initio geometric imperfection of the specimen in the form of a thickness variation, and

they are usually known as two-zone models or long-wavelength analyses (Hutchinson et al., 1978b). For instance,

Fressengeas and Molinari (1985) developed a one-dimensional model based on the long-wavelength approximation

including material inertia to investigate the effect of strain rate on necking localization under uniaxial tension.

Despite the limitations of the model, that did not consider the multiaxial stress state that develops in a necked

section, Fressengeas and Molinari (1985) succeeded to provide one of the first theoretical verifications that neck

formation is delayed at high strain rates. Years later, Xue et al. (2008) formulated a dynamic two-zone analysis to

investigate necking in thin plates subjected to plane strain extension. The theoretical predictions were compared

against finite element simulations in which the plate was modeled as an array of unit-cells with sinusoidal periodic

geometric imperfections. The calculations were performed for strain rates ranging from 100 s−1 to 2000 s−1 (but

for a plate with large thickness of 20 mm, which promotes inertia effects). The two-zone analysis did a good

job capturing neck retardation due to inertia effects, however, because triaxiality effects were not included in the

formulation of the model (as in the one-dimensional model of Fressengeas and Molinari (1985)), short necking

wavelengths were not suppressed, and the two-zone analysis failed to predict the emergence of a critical necking

wavelength associated to the minimum necking strain (which determines the average spacing between necks in
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multiple localization problems, as mentioned before). Very recently, Jacques (2020) developed a two-zone model

that extends the work of Xue et al. (2008) to consider any arbitrary in-plane loading and includes stress triaxiality

effects using Bridgman (1952) approximation to account for the hydrostatic stresses which develop inside a necked

region. The predictions of the model of Jacques (2020) were validated against the dynamic forming experiments

of Golovashchenko et al. (2013) and the unit-cell finite element calculations of Rodŕıguez-Mart́ınez et al. (2017),

who extended the computational model of Xue et al. (2008) to consider loading paths ranging from plane strain

to equibiaxial tension. Excellent agreement was found between theoretical model predictions and finite element

calculations, providing a definite theoretical confirmation of the stabilizing effect of inertia on neck development

for different strain rates and loading paths, ranging from uniaxial tension to equibiaxial tension. The two-zone

model of Jacques (2020) also succeeded to capture the decrease of the critical necking wavelength with the strain

rate, and its increase as the loading path moves away from plane strain to equibiaxial tension. The increase in

ductility at high strain rates predicted by the two-zone model was also found in agreement with the experimental

data of Golovashchenko et al. (2013).

However, most of the theoretical works cited in this introduction were specifically formulated for isotropic

materials. To the authors’ knowledge, neither stability analysis nor two-zone models have been yet developed to

study the influence of inertia in the dynamic formability of anisotropic metal sheets. This is an important gap

in the literature, as it is known that most sheet metal products are anisotropic. Thus, in this paper, we extend

the stability analysis of Zaera et al. (2015) and the two-zone model of Jacques (2020) to consider orthotropic

Hill (1948) plasticity. The necking strains calculated with both theoretical models are compared to finite element

calculations performed with the unit-cell model used by Rodŕıguez-Mart́ınez et al. (2017), for a wide range of

strain rates ranging from 100 s−1 to 50000 s−1, and for loading paths varying from plane strain to equibiaxial

tension. We consider that the loading axes are parallel to the orthotropy axes of the material. Therefore, for this

range of loading paths, the orientation of the necking band is perpendicular to the principal loading direction, so

that the orientation of the geometric imperfection to be included in the unit-cell finite element model is known.

The stability analysis and the two-zone model predict the same overall trends obtained with the finite element

calculations, and for most of the strain rates and loading paths investigated, the agreement for the necking strains

is also quantitative, notably the differences between the finite element results and the two-zone model rarely go

beyond 5%. Altogether, this paper presents several methodologies to predict dynamic formability diagrams for

anisotropic materials, and provides additional insights into the stabilizing role of inertia on neck development for
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different loading paths.

2. Constitutive framework

The mechanical behavior of the materials studied in this paper is described using an elastic isotropic, plastic

anisotropic constitutive model with yielding based on Hill’s criterion (Hill, 1948). The formulation of the con-

stitutive model is outlined in Section 2.1, and the values of the parameters corresponding to the five materials

investigated are given in Section 2.2.

2.1. Formulation

We consider the additive decomposition of the total rate of deformation tensor d into an elastic part de and a

plastic part dp as follows:

d = de + dp (1)

The elastic part of the rate of deformation tensor is related to the rate of the stress by the following linear

hypo-elastic law:

O
σ = C : de (2)

where
O
σ is an objective derivative of the Cauchy stress tensor, which corresponds to the Green-Naghdi derivative

in ABAQUS/Explicit (2016) (when a VUMAT user-subroutine is used), and C is the tensor of isotropic elastic

moduli given by:

C = 2GI′ +K1⊗ 1 (3)

with 1 being the unit second-order tensor and I′ being the unit deviatoric fourth-order tensor. Moreover G and

K are the shear and bulk moduli, respectively.

The yield condition is defined as:
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f = σ̄ − σY = 0 (4)

where σ̄ is the effective stress associated to the Hill (1948) criterion:

σ̄ =
[
(G+H)σ211 + (F +H)σ222 + (F +G)σ233−

2Hσ11σ22 − 2Fσ22σ33 − 2Gσ11σ33 + 2Nσ212 + 2Lσ223 + 2Mσ213
]1/2 (5)

with σij (i, j = 1, ..., 3) being the components of the Cauchy stress tensor in the Cartesian coordinate system

(X1, X2, X3) associated to the orthotropy axes (see Figs. 3 and 4). Moreover F , G, H, L, M and N are the

anisotropy parameters (see Section 2.2). Note that the von Mises (1928) yield criterion is recovered if F = G =

H = 0.5 and L = M = N = 1.5.

In equation (4), σY is the yield stress of the material in uniaxial tension in the rolling direction, which is

considered to evolve with the effective plastic strain ε̄p, the effective plastic strain rate ˙̄εp and the temperature T ,

according to the following power-law type relation:

σY = σ0
(
ε0 + ε̄p

)n( ˙̄εp

ε̇ref

)m(
T

Tref

)−µ
(6)

where σ0, ε0, n, ε̇ref , m, Tref and µ are material parameters (see Section 2.2). Moreover, most of the results

presented in this paper have been obtained with a rate-independent behaviour (m = 0) under isothermal conditions

of deformation (β = 0, see equation (10)). This facilitates the identification of the specific role played by material

orthotropy in the dynamic formability of metallic materials (see Section 6). The influence of strain-rate sensitivity

and thermal softening is specifically discussed in Section 6.4.

The effective plastic strain is related to the effective plastic strain rate as follows:

ε̄p =

∫ t

0

˙̄εp(τ)dτ (7)
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Assuming an associated plastic flow rule, the plastic part of the rate of deformation tensor is:

dp = ˙̄εp
∂σ̄

∂σ
(8)

where the effective plastic strain rate ˙̄εp is defined as:

˙̄εp =

[
F (dp11)

2 +G(dp22)
2 +H(dp33)

2

FG+ FH +GH
+

2(dp12)
2

N
+

2(dp23)
2

L
+

2(dp13)
2

M

]1/2
(9)

with dpij (i, j = 1, ..., 3) being the components of the plastic part of the rate of deformation tensor in the Cartesian

coordinate system (X1, X2, X3) associated to the orthotropy axes (see Figs. 3 and 4).

Moreover, assuming adiabatic conditions of deformation (no heat flux) and considering that plastic work is the

only source of heating, the evolution of temperature is given by:

Ṫ = β
σ̄ ˙̄εp

ρCp
(10)

where β is the Taylor-Quinney coefficient, ρ is the current material density and Cp is the specific heat.

The formulation of the constitutive behaviour is completed with the Kuhn–Tucker loading–unloading condi-

tions:

˙̄εp > 0, f 6 0, ˙̄εpf = 0 (11)

and the consistency condition during plastic loading:

ḟ = 0 (12)
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Hill’s model (Hill, 1948) highlights due to its simplicity, versatility and easy calibration procedure; so that 70

years after its publication, the criterion of Hill (1948) still is widely used to describe the directionality of plastic

properties of metallic materials in scientific and technological applications (Padmanabhan et al., 2009; Koubaa

et al., 2017; Korkolis et al., 2018; Greco et al., 2018; Baral et al., 2018). On the other hand, we are aware that

Hill’s model, which is quadratic in stresses and contains only six independent parameters to describe the state

of anisotropy (see equation (5)), cannot capture complex anisotropic behaviors observed for some materials (Hu,

2007; Banabic, 2010). Thus, in future works, we will extend the three approaches developed in this paper to

consider more advanced yield criteria specifically developed to model the mechanical response of highly textured

metallic materials which exhibit complex plastic anisotropy (e.g. the models of Karafillis and Boyce (1993), Bron

and Besson (2004), Cazacu et al. (2006) and Aretz and Barlat (2013)).

2.2. Materials investigated

We investigate 5 different materials denoted as Material 1, ..., Material 5. Materials 1 and 2 are model materials

with elastic properties and initial density representative of steel, and anisotropy parameters and parameters of the

yield stress in the rolling direction that have been specifically tailored to bring to light the roles of inertia and

orthotropy in dynamic formability. Materials 3, 4 and 5 are actual materials, namely, TRIP-780 steel, aluminium

alloy 5182-O and aluminium alloy 6016-T4. These three materials are widely used in different industrial sectors

and engineering applications, and their sheet products are often used in forming operations (Butuc et al., 2002; Li

et al., 2010; Ju et al., 2015; Zhou et al., 2018). The values of the parameters corresponding to Materials 1, ..., 5

are shown in Table 1. Note that all five materials show full in-plane anisotropy and through thickness isotropy.

We are aware that using the simple power-law type relation given in equation (6) to describe the yield stress of

the materials investigated in this work is a strong assumption (see the works of Zerilli and Armstrong (1987),

Nemat-Nasser and Li (1998) and Rusinek and Klepaczko (2001) where more advanced constitutive relations are

developed), especially for TRIP-780 steel, for which the martensitic transformation that occurs at large strains

may lead to stress-strain curves with sigmoidal shape (see the works of Tomita and Iwamoto (1995), Iwamoto et al.

(1998) and Choi et al. (2010)), which cannot be modeled by equation (6). Nevertheless, using a simple power-law

type relation limits the number of material parameters, which facilitates to perform the parametric analysis carried

out in Section 6, and it helps in the interpretation of results.

Fig. 1 shows the normalized plane stress theoretical yield loci for biaxial loading conditions, σI/σY versus
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σII/σY , where σI and σII are the components of the Cauchy stress tensor in the rolling and transverse directions,

respectively, for the five materials considered in this paper. We only show the tension-tension quadrant because all

the calculations presented in Section 6 correspond to σI > 0 and σII > 0. Specifically, we investigate the loading

cases that lie within the yellow markers that correspond to plane strain tension.

Fig. 1a compares the results for Material 1 and Material 2 with the von Mises material. For Material 1 the yield

locus is exterior to the von Mises ellipsoid, showing large differences near equibiaxial tension which are gradually

reduced as the σI/σY = 0 axis is approached. The curvature of the yield locus of Material 1 near equibiaxial

tension is significantly greater than for the von Mises material. For Material 2, the yield locus intersects to the

von Mises ellipsoid, so that the locus of Material 2 turns from being slightly interior to the von Mises ellipsoid to

being exterior and showing important differences in the sector σII > σI. Note also that the yield loci of Materials

1 and 2 intersect at σI/σY ≈ 0.87, such that for σI/σY & 0.87 the yield locus of Material 1 is exterior to Material

2, and vice versa for σI/σY . 0.87.

Fig. 1b compares the results for TRIP-780 steel, AA 5182-O and AA 6016-T4 with the von Mises material. The

yield loci of TRIP-780 steel and AA 6016-T4 are exterior and interior to the von Mises ellipsoid, respectively, with

increasing differences near σI/σY = 0. Moreover, the yield loci of von Mises material and AA 5182-O intersect at

σI/σY ≈ 0.72, so that for greater/smaller values of σI/σY the yield locus of AA 5182-O is interior/exterior to the

von Mises ellipsoid. Note also that the results obtained for TRIP-780 steel and AA 5182-O coincide for σI/σY = 0

and σII/σY = 0, yet the yield locus of TRIP-780 steel is exterior for any other stress state.

Fig. 2 shows the evolution of the Lankford coefficient (ratio between in-plane transverse and through-thickness

plastic strains under uniaxial tension) versus loading orientation for the five materials investigated in this paper.

Note that for isotropic materials the Lankford coefficient is constant rθ = 1. For materials described with the Hill

(1948) yield criterion, the value of rθ is a nonlinear function of θ which shows maxima/minima for θ = 0◦ and

90◦. In addition, for specific combinations of the anisotropy parameters, materials modeled with Hill (1948) yield

criterion show an additional maximum/minimum for an intermediate value of the loading orientation (Dasappa

et al., 2012; Huh et al., 2013; Shen et al., 2019; Cazacu and Rodŕıguez-Mart́ınez, 2019). Namely, for Material 1

the Lankford coefficient is greater than 1, with absolute minimum and maximum for θ ≈ 42◦ and 90◦, respectively.

For Material 2 and TRIP-780 steel the Lankford coefficient increases with the loading orientation, with rθ smaller

than 1 for θ < 45◦ and greater than 1 for θ > 45◦. Note that Material 2 is comparatively more anisotropic than

TRIP-780 steel because the variation of the Lankford coefficient with θ is more important. For AA 5182-O the
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Figure 1: Normalized plane stress theoretical yield loci for biaxial loading conditions, σII/σY versus σI/σY , according to Hill (1948)
criterion. (a) Comparison between Material 1, Material 2 and von Mises material. (b) Comparison between Material 3: TRIP-780
steel, Material 4: AA 5182-O, Material 5: AA 6016-T4 and von Mises material. In Section 6 we investigate the loading cases that lie
within the yellow markers that correspond to plane strain tension.

value of rθ increases, reaches a maximum for θ = 50◦, and then decreases. The Lankford coefficient is slightly

greater than 1 within the range 40◦ ≤ θ ≤ 62◦, and smaller than 1 for any other loading orientation. The value

of rθ for θ = 90◦ is greater than for θ = 0◦. For AA 6016-T4 the value of rθ is smaller than 1 for any θ, reaching

the minimum for θ = 47◦, with the Lankford coefficient for θ = 0◦ being greater than for θ = 90◦. Sowerby

and Duncan (1971) and Parmar and Mellor (1978) among others noticed that for Hill (1948) materials there is a

strong coupling between the Lankford coefficient and the material formability. The general trend being that for

rθ > 1 the elliptical plane stress yield locus stretches out (increasing the maximum curvature of the yield surface,

see Material 2 in Fig. 1a) and the material formability decreases (with respect to the isotropic von Mises (1928)

material), and viceversa for rθ < 1 (see Section 6).

The differences in the plane stress yield loci and the Lankford coefficient shown by the 5 materials studied will

be used to explain the results presented in Section 6, and to determine the role of material orthotropy in dynamic

formability.
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Figure 2: Lankford coefficient rθ versus loading orientation θ. Comparison between Material 1, Material 2, Material 3: TRIP-780 steel,
Material 4: AA 5182-O and Material 5: AA 6016-T4.

3. Linear stability model

The linear stability model is an extension of the 2D approach developed by Zaera et al. (2015) to orthotropic

materials with yielding based on Hill (1948) criterion. We consider a thin plate of initial thickness h0 and edges

of initial length L0
x and L0

y, see Fig. 3. The plate is subjected to constant and opposed stretching velocities

Vx = ±ε̇0xxL0
x/2 and Vy = ±ε̇0yyL0

y/2 on opposed sides, where ε̇0xx and ε̇0yy are the imposed initial strain rates. The

loading condition is determined by the ratio χ = ε̇0yy/ε̇
0
xx, which is varied between 0 (plane strain stretching) and

1 (equibiaxial stretching) in the calculations presented in this paper. The Lagrangian Cartesian coordinate system

associated to the applied velocity field is denoted by (X,Y, Z) while the corresponding Eulerian counterpart is

denoted by (x, y, z). Note that the direction Z of the plate is assumed of plane stress. The plate displays

orthotropic symmetry with the Cartesian frame of orthotropy (X1, X2, X3) defined by an angle ψ between X and

X1 (see Fig. 3), with X1, X2 and X3 being the rolling, transverse and through-thickness directions, respectively.

Our attention is limited to the scenarios where the orthotropy axes and the loading axes are co-directional (ψ = 0◦

or 90◦), i.e. the principal directions of stress and strain coincide. In this paper the angle ψ is also referred to as

material orientation. Notice that varying the material orientation from ψ = 0◦ to ψ = 90◦ amounts to exchange

the value of the anisotropy coefficients F and G, see equations (5) and (9). The elastic deformations are neglected

and hereafter ε̄ = ε̄p will be named effective strain and ˙̄ε = ˙̄εp effective strain rate.
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Figure 3: Linear stability analysis. Schematic representation of the geometry and boundary conditions of the problem addressed: a
plate of initial thickness h0 and edges of initial length L0

x and L0
y subjected to constant and opposed stretching velocities Vx = ±ε̇0xxL0

x/2
and Vy = ±ε̇0yyL0

y/2 on opposed sides, where ε̇0xx and ε̇0yy are the imposed initial strain rates. The Lagrangian Cartesian coordinate
system associated to the applied velocity field is denoted by (X,Y, Z), while the corresponding Eulerian counterpart is denoted by
(x, y, z). Note that the direction Z of the plate is assumed of plane stress. The plate displays orthotropic symmetry with the Cartesian
frame of orthotropy (X1, X2, X3) defined by an angle ψ between X and X1.

The unknowns of the problem are: velocities (Vx, Vy), strain rates (dxx, dyy), deformation gradients (Fxx, Fyy, Fzz),

thickness (h), effective strain (ε̄), effective strain rate ( ˙̄ε), temperature (T ), uniform stresses (σxx, σyy), average

stress in the major stretching direction (σavgxx ), effective stress (σ̄), yield stress in the rolling direction (σY ) and

Bridgman’s correction factor argument (ϕ). The fundamental equations governing the loading process are presented

below:

• Kinematic relations:

dxx =
∂Vx
∂x

dyy =
∂Vy
∂y

(13)
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Fxx =
Ḟxx
dxx

Fyy =
Ḟyy
dyy

(14)

• Incompressibility condition:

FxxFyyFzz = 1 (15)

• Current thickness:

h = h0Fzz (16)

• Momentum balance:

Fyy
∂ (hσavgxx )

∂X
= ρh0

∂Vx
∂t

Fxx
∂ (hσyy)

∂Y
= ρh0

∂Vy
∂t

(17)

where ρ is the material density (assumed constant, i.e. ρ = ρ0). The momentum balance equation in the out

of plane direction has been disregarded, see Zaera et al. (2015).

• Average stress in the major stretching direction:

σavgxx = B (ϕ)σxx (18)

where
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B (ϕ) =
√

1 + ϕ−1 ln
(

1 + 2ϕ+ 2
√
ϕ (1 + ϕ)

)
− 1 (19)

is the correction factor introduced by Bridgman (1952) to model the hydrostatic stresses that developed in

a necked section (see Zhou et al., 2006; Zaera et al., 2015). Notice that, while in this paper we have used

the classical Bridgman (1952) approximation, in future works we shall consider the one-dimensional model

based on an asymptotic analysis recently developed by Audoly and Hutchinson (2016, 2019) to determine

the stress state inside the neck.

• Argument of Bridgman’s correction factor:

ϕ =
h

8

∂2h

∂x2
(20)

• Effective stress:

σ̄ =
[
(G+H)σ211 + (H + F )σ222 − 2Hσ11σ22 + 2Nσ212

]1/2
(21)

Previous expression is a specialization of equation (5) for plane stress conditions, where σ11, σ22 and σ12 are

given by:

σ11 = σxx cos2 ψ + σyy sin2 ψ

σ22 = σxx sin2 ψ + σyy cos2 ψ

σ12 = (σxx − σyy) sinψ cosψ

(22)

• Flow rule:
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dxx = ˙̄ε
∂σ̄

∂σxx

dyy = ˙̄ε
∂σ̄

∂σyy

(23)

where

˙̄ε =

[
Fd211 +Gd222 +H(d11 + d22)

2

FG+ FH +GH
+

2d212
N

]1/2
(24)

Previous expression is a particularization of equation (9) for plane stress conditions, where d11, d22 and d12

are given by:

d11 = dxx cos2 ψ + dyy sin2 ψ

d22 = dxx sin2 ψ + dyy cos2 ψ

d12 = (dxx − dyy) sinψ cosψ

(25)

The governing equations are completed with the expressions of the yield condition, the yield stress in the rolling

direction, the effective strain and the temperature evolution equation, given by the relations (4), (6), (7) and (10),

respectively.

The solution of the problem at any given loading time, usually referred to as homogeneous or fundamental

solution:

S1 = (V 1
x , V

1
y , d

1
xx, d

1
yy, F

1
xx, F

1
yy, F

1
zz, h

1, ˙̄ε1, ε̄1, T 1, σ1xx, σ
1
yy, σ

avg,1
xx , σ̄1, σ1Y , ϕ

1)T (26)

can be readily obtained by integration of the governing equations with the following initial conditions:
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Vx (X,Y, 0) = ε̇0xxX; Vy (X,Y, 0) = ε̇0yyY ; σij (X,Y, 0) = 0

ε̄ (X,Y, 0) = 0; h (X,Y, 0) = h0; T (X,Y, 0) = T 0 = Tref

(27)

and boundary conditions:

Vx
(
L0
x/2, Y, t

)
= −Vx

(
−L0

x/2, Y, t
)

= ε̇0xxL
0
x/2

Vy
(
X,L0

y/2, t
)

= −Vy
(
X,−L0

y/2, t
)

= ε̇0yyL
0
y/2

(28)

where, as already mentioned, ε̇0xx and ε̇0yy define the initial strain rates in X and Y directions of the plate,

respectively. The applied loading is selected through input values of ε̇0xx and χ = ε̇0yy/ε̇
0
xx. Note that ε̇0xx will be

also referred to as imposed initial major strain rate. The details on the kinematics of the fundamental solution are

given in Appendix A.

The stability of the homogeneous solution is tested by introducing at some time t1 a small perturbation δS of

the form:

δS(X, t)t1 = δS1eiξX+η(t−t1) (29)

where

δS1 = (δVx, δVy, δdxx, δdyy, δFxx, δFyy, δFzz, δh, δ ˙̄ε, δε̄, δT , δσxx, δσyy, δσ
avg
xx , δσ̄, δσY , δϕ)T (30)

is the perturbation amplitude, ξ is the wavenumber (also called perturbation mode) and η is the growth rate

of the perturbation at time t1. The perturbation is imposed on lines X = constant which is the orientation

naturally selected by the material to trigger a neck for the loading paths (0 ≤ χ ≤ 1) and the orientations of the

orthotropy axes (ψ = 0◦ or 90◦) investigated in this work (see Zaera et al., 2015). Notice that, while in this paper

we have assumed the classical frozen coefficients theory and the exponential form of the time dependency of the

perturbation for the sake of simplicity, Xavier et al. (2020) have recently developed a promising method to relax

these assumptions.
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The perturbed solution of the problem is:

S = S1 + δS (31)

with |δS| �
∣∣S1∣∣. A system of linear algebraic equations is obtained by substituting equation (31) into the governing

equations and keeping only the first-order terms in the increments δS1. This system of equations, which is not

explicitly shown in this paper for the sake of brevity, has been adimensionalized by introducing the following

dimensionless groups:

V̂x =
Vx
h0 ˙̄ε1

; V̂y =
Vy
h0 ˙̄ε1

; d̂xx =
dxx
˙̄ε1

; d̂xx =
dxx
˙̄ε1

; F̂xx = Fxx; F̂yy = Fyy

F̂zz = Fzz; ĥ =
h

h0
; ˆ̄̇ε =

˙̄ε
˙̄ε1

; ˆ̄ε = ε̄; T̂ =
T

T 0
; σ̂xx =

σxx
σ0

σ̂yy =
σyy
σ0

; σ̂avgxx =
σavgxx

σ0
; ˆ̄σ =

σ̄

σ0
; σ̂Y =

σY
σ0

; ϕ̂ = ϕ

η̂ =
η
˙̄ε1

; ξ̂ = ξh0

(32)

A non trivial solution for the adimensionalized perturbation amplitude δŜ1 is obtained only if the determinant of

the matrix of coefficients of the system of adimensionalized linear algebraic equations is equal to zero. Application

of this condition leads to a third order polynomial in η̂:

B3(Ŝ1)η̂3 +B2(Ŝ1, ξ̂)η̂2 +B1(Ŝ1, ξ̂)η̂ +B0(Ŝ1, ξ̂) = 0 (33)

with
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B3(Ŝ1) = 8c̃(F̂ 1
xx)3

(
M̂1(d̂

1
xx)2 − 2R̂2d̂

1
xxd̂

1
yy + R̂1(d̂

1
yy)

2 + Q̂2

(
M̂1R̂1 − R̂2

2

))
B2(Ŝ1, ξ̂) = −8(F̂ 1

xx)2
(
F̂ 1
xx

(
βQ̂3

(
σ̄1
(
R̂2

2 − M̂1R̂1

)
+ R̂1(d̂

1
yy)

2
)

+

c̃Q̂1

(
R̂2

2 − M̂1R̂1

)
+ βM̂1Q̂3(d̂

1
xx)2 − 2βQ̂3R̂2d̂

1
xxd̂

1
yy

)
− ξ̂2c̃H̃2ĥ1F̂ 1

yy

(
(d̂1yy)

2 + M̂1Q̂2

))
B1(Ŝ1, ξ̂) =

2

3
ξ̂2H̃2ĥ1F̂ 1

yy

(
−12(F̂ 1

xx)2
(
βQ̂3

(
(d̂1yy)

2 − M̂1σ̄
1
)

+ c̃
(
d̂1xx

(
(d̂1yy)

2 + M̂1Q̂2

)
− M̂1Q̂1

))
−

c̃σ̂1xx

(
12(F̂ 1

xx)2 − ξ̂2(ĥ1)2
)(

M̂1(d̂
1
xx)2 − 2R̂2(d̂

1
xx)2(d̂1yy)

2 + R̂1(d̂
1
yy)

2 + Q̂2

(
M̂1R̂1 − R̂2

2

)))
B0(Ŝ1, ξ̂) = −2

3
ξ̂2H̃2ĥ1F̂ 1

yy

(
12d̂1xx(F̂ 1

xx)2
(
c̃M̂1Q̂1 − βQ̂3

(
(d̂1yy)

2 − M̂1σ̄
1
))
− σ̂1xx

(
12(F̂ 1

xx)2 − ξ̂2(ĥ1)2
)

(
βQ̂3

(
σ̄1
(
R̂2

2 − M̂1R̂1

)
+ R̂1(d̂

1
yy)

2
)

+ c̃Q̂1

(
R̂2

2 − M̂1R̂1

)
+ βM̂1Q̂3(d̂

1
xx)2 − 2βQ̂3R̂2d̂

1
xxd̂

1
yy

))

(34)

where R̂1 = σ0
∂2σ̄

∂2σxx

∣∣∣∣
t1

, R̂2 = σ0
∂2σ̄

∂σxx∂σyy

∣∣∣∣
t1

and M̂1 = σ0
∂2σ̄

∂2σyy

∣∣∣∣
t1

are the non-dimensional second-derivatives

of the effective stress with respect to the Cauchy stress tensor components, Q̂1 =
1

σ0
∂σY
∂ε̄

∣∣∣∣
t1

, Q̂2 =
˙̄ε1

σ0
∂σY
∂ ˙̄ε

∣∣∣∣
t1

and Q̂3 =
T 1

σ0
∂σY
∂T

∣∣∣∣
t1

are the non-dimensional strain, strain-rate and temperature sensitivities of the material,

respectively, c̃ =
ρCpT

0

σ0
is the non-dimensional specific heat, and

1

H̃2
=
ρ
(
h0 ˙̄ε1

)2
σ0

represents the inertial resistance

to motion.

Equation (33) has three roots in η̂ which depend on the adimensionalized fundamental solution of the problem

Ŝ1 and the adimensionalized wavenumber ξ̂. Note also that the adimensionalized wavenumber is related to the

normalized perturbation wavelength L0/h0 as: L0/h0 =
2π

ξ̂
. The requisite for unstable growth of the perturbation

is given by <(η̂) > 0. Thus, the root with the greatest positive real part denoted by η̂+ represents the physical

solution of the problem (Dudzinski and Molinari, 1991). Note that η̂+ is usually referred to as instantaneous

instability index (El Mäı et al., 2014). Following Fressengeas and Molinari (1994), we introduce a cumulative

instability index defined as I =
∫ t
0 η̂

+ ˙̄ε1dτ which tracks the history of the instantaneous grow rate of all the

growing modes. To calculate I, we introduce the perturbation at different times and sum the instantaneous

growth rate obtained for each loading time. The stabilizing effect of stress multiaxiality and inertia on small and

large perturbation wavelengths, respectively, boosts the growth of a finite number of intermediate perturbation

modes (Fressengeas and Molinari, 1994). The wavelength of the mode with the greatest value of the cumulative

instability index I is called the critical cumulative wavelength, and the corresponding value of I is called the critical
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cumulative instability index. The critical cumulative instability index, which evolves with the loading time, and

thus with the strain, will be used in Section 6 to determine when a perturbation mode turns into a necking mode,

allowing to perform quantitative comparisons between the results obtained with the linear stability analysis set

out in this section, and the nonlinear two-zone model and the finite element model presented in Sections 4 and

5, respectively. Notice that Dudzinski and Molinari (1991) and Zaera et al. (2015) relied on the instantaneous

instability index η̂+ to determine when a neck is formed, in order to construct forming limit diagrams. However,

in this paper we choose I because, as discussed by El Mäı et al. (2014) and Vaz-Romero et al. (2017), it provides

predictions for necking formation which are generally closer to finite element results.

4. Nonlinear two-zone model

The nonlinear two-zone model is an extension to orthotropic materials with yielding based on Hill (1948) crite-

rion of the formulation recently developed by Jacques (2020) to include inertia effects in the classical localization

approach of Marciniak and Kuczyński (1967). The model consists of a plate idealized as an array of unit-cells with

spatial imperfections in the form of bands with reduced initial thickness. Fig. 4 shows the schematic representation

of the unit-cell. Following the notation used in Section 3, the Lagrangian and Eulerian Cartesian coordinate sys-

tems associated to the applied loading conditions are (X,Y, Z) and (x, y, z), respectively. Similarly, (X1, X2, X3)

is the Cartesian coordinate system associated to the orthotropy axes defined by an angle ψ between X and X1.

The initial lengths of the cell are L0
x and L0

y, and the zones inside and outside the band are denoted by A and B,

respectively. The initial thicknesses of zones A and B are:

hA,0 = h0 (1−∆)

hB,0 = h0
(35)

where ∆ is the normalized amplitude of the imperfection. Note that superscripts ()i with i = A,B are used to

denote quantities in the zones A and B, respectively.

The initial and boundary conditions are consistent with those used in the linear stability model (see Fig. 3,

and equations (27) and (28)). Note that, in the present work, the imperfection (band with reduced thickness)

is assumed perpendicular to the major stretching direction X. Indeed, as earlier stated in Section 3, this is the

orientation naturally selected by the material to trigger a neck for the loading paths (0 ≤ χ ≤ 1) and material
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orientations (ψ = 0◦ or 90◦) investigated in this paper. However, this assumption can be easily relaxed to consider

other material orientations. Note also that, similarly to the stability model (see Section 3), the direction Z of the

cell is assumed of plane stress and elastic deformations are neglected.

Figure 4: Two-zone model. Schematic representation of the unit-cell with two zones of uniform thickness A and B. The initial lengths
of the cell are L0

x and L0
y, and the initial thicknesses of zones A and B are hA,0 and hB,0, respectively, with hB,0>hA,0. The initial and

boundary conditions are consistent with those used in the linear stability model, see Fig. 3.

The zones A and B are assumed to be regions of homogeneous deformation and the unknowns of the problem in

these two zones are: strain rates (dixx, d
i
yy), deformation gradients (F ixx, F

i
yy, F

i
zz), thicknesses (hi), effective strains

(ε̄i), effective strain rates ( ˙̄εi), temperature (T i), uniform stresses (σixx, σ
i
yy), average stress in zone A in the major

stretching direction (σA,avgxx ), yield stresses in rolling direction (σiY ) and Bridgman’s correction factor argument in

zone A (ϕA). The equations governing the loading process are presented below:

• Kinematic relations:

The components of the overall deformation gradient in the whole unit-cell (Fxx, Fyy, Fzz) are given by equation

(A.7) and the continuity of the displacement between the zones A and B leads to the following relations
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linking the deformation gradient components in the zones A and B, and the overall deformation gradient

components:

FAxxR+ FBxx(1−R) = Fxx

FAyy = FByy = Fyy

(36)

where

R =
LA,0x

L0
x

(37)

is the ratio between the initial length of the imperfection, LA,0x , and the initial length of the cell in the major

stretching direction, L0
x.

The strain rate components in the zones A and B are given by:

dixx =
Ḟ ixx
F ixx

diyy =
Ḟ iyy
F iyy

(38)

• Virtual work principle:

Jacques (2020) stated that including inertia effects in the classical localization approach of Marciniak and

Kuczyński (1967) implies that the momentum balance equation cannot be fulfilled at any point of the cell,

and he circumvented this difficulty using the virtual principle work (i.e. the weak form of the momentum

balance equation), which leads to the following differential equation to describe the evolution of FAxx:

F̈Axx =
1

Cd

(
hB,0σBxx
FBxx

− hA,0σA,avgxx

FAxx

)
(39)
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with

Cd =
ρ(L0

x)2

12

(
R2hA,0 +R(1−R)hB,0

)
(40)

Note that all the unknowns of the problem can be readily computed once FAxx is obtained. The required steps

to derive equation (39) are given in Jacques (2020).

Using the plane stress condition, σizz = 0, the Cauchy stress tensor components in zones A and B are computed

as:

σixx = sixx − sizz

σiyy = siyy − sizz
(41)

where
(
sixx, s

i
yy, s

i
zz

)
are the components of the stress deviator referred to the coordinate system associated to the

loading axes. Moreover, with respect to the orthotropy axes, they can be computed as:

si11 =
σiY
˙̄εi

F

(FH + FG+HG)
di11

si22 =
σiY
˙̄εi

F

(FH + FG+HG)
di22

si33 =
σiY
˙̄εi

F

(FH + FG+HG)
di33

si12 =
σiY
˙̄εi
di12
N

(42)

where the relationship between
(
sixx, s

i
yy, s

i
zz

)
and

(
si11, s

i
22, s

i
33, s

i
12

)
is calculated using the corresponding rotation

matrix, as in equation (22). These expressions have been obtained using equations (8) and (21). Note that the

expression of the shear component si12 is given for completeness but, for the material orientations considered in

the present study (ψ = 0◦ and ψ = 90◦), si12 is equal to zero.

The governing equations are completed with the expressions of the yield stress in the rolling direction, the
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effective strain, the temperature evolution equation, the incompressibility condition, the current thicknesses, the

average stress in the major stretching direction in zone A and the effective strain rate. These expressions are

given by equations (6), (7), (10), (15), (16), (18) and (24), respectively. Note that the argument of the Bridgman

correction factor is calculated using the following expression (see Jacques (2020) for more details):

ϕA =
π2hA

(
hB − hA

)
16(LA,0x FAxx)2

(43)

The equations governing the loading process have been integrated using the explicit Euler method. In the

calculations we consider that L0
x = L0

y = L0. The results of the model are obtained for several normalized cell

sizes 0.25 ≤ L0/h0 ≤ 10 and h0 fixed (h0 = 2 mm). The normalized cell size in the two-zone model is the

counterpart of the normalized perturbation wavelength in the linear stability analysis, see Section 3, and thus it

will be denoted the same L0/h0. The normalized amplitude of the imperfection is ∆ = 0.2% in most two-zone

calculations presented in this work (unless otherwise noted). This value is arbitrary and we take it because the same

imperfection amplitude was used in the finite element calculations performed by N’souglo et al. (2020). The specific

influence of the imperfection amplitude in the two-zone model results is investigated in Section 6.5. Moreover, the

two-zone model results are dependent on the value of R (see equation (37)). In the case of isotropic materials,

Jacques (2020) found that the value R = 0.28 gives the best agreement between the finite element simulations and

the dynamic two-zone model, and therefore the same value is used in the present study. It will be seen in Section 6

that this value also yields an excellent agreement between the two-zone model and the finite element computations

for the different anisotropic materials and within the whole range of loading conditions considered.

5. Finite element model

The finite element model is based on the unit-cell model developed by Xue et al. (2008), and later adopted

by Rodŕıguez-Mart́ınez et al. (2017) and N’souglo et al. (2020), to study the influence of constitutive behavior

and inertia on neck formation in thin metal plates subjected to dynamic loading. The model consists of a plate

modeled as an array of unit-cells with sinusoidal spatial imperfections defined by the following expression:

h =
h0

2
− δ

2

[
1 + cos

(
2πX

L0
x

)]
(44)
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where δ is the amplitude of the imperfection. Due to the symmetry of the model, only one eight of the cell has

been analyzed (see Fig. 5), with reference configuration (imperfection-free) given by the domain 0 ≤ X ≤ L0
x/2,

0 ≤ Y ≤ L0
y/2 and 0 ≤ Z ≤ h0/2, with L0

x = L0
y = L0. The origin of coordinates of the Lagrangian Cartesian

coordinate system (X,Y, Z) is located at the center of mass of the whole cell. Similarly to the dynamic two-

zone model (see Section 4), we have investigated several normalized cell sizes 0.25 ≤ L0/h0 ≤ 10 with h0 fixed

(h0 = 2 mm). As in the two-zone model, the normalized imperfection amplitude is ∆ = 2δ
h0

= 0.2% in most of

the finite element calculations (unless otherwise noted). Nevertheless, the role of ∆ in the finite element results is

discussed in Section 6.5. The finite element calculations are performed with ABAQUS/Explicit (2016) under the

following imposed initial conditions:

Vx (X,Y, Z, 0) = ε̇0xxX

Vy (X,Y, Z, 0) = ε̇0yyY

Vz (X,Y, Z, 0) = −
(
ε̇0xx + ε̇0yy

)
Z

T (X,Y, Z, 0) = T 0 = Tref

(45)

and boundary conditions:

Ux (0, Y, Z, t) = 0; Uy (X, 0, Z, t) = 0; Uz (X,Y, 0, t) = 0

Vx
(
L0
x/2, Y, Z, t

)
= ε̇0xxL

0
x/2; Vy

(
X,L0

y/2, Z, t
)

= ε̇0yyL
0
y/2

(46)

consistent with those used in the theoretical approaches (see Sections 3 and 4) and the symmetry imposed to the

finite element model (note that Ux, Uy and Uz denote displacements along the X, Y and Z directions, respectively).

As shown by Rodŕıguez-Mart́ınez et al. (2017), these initial conditions allow to minimize the propagation of stress

waves within the unit-cell during the loading process. Similarly to the theoretical models (see Sections 3 and 4),

the finite element calculations have been carried out for loading paths ranging between plane strain stretching and

equibiaxial stretching (0 ≤ χ ≤ 1), namely, we have performed calculations for χ = 0, 0.125, 0.25, 0.375, 0.5, 0.625,

0.75 and 1. Each marker in Figs. 7, 8, 9, 10, 12, 13, 14 and C.16 corresponds to a value of χ. Notice that unit-cell

calculations with ab initio geometric imperfections do not allow for exploring loading paths such that χ < 0. The

problem is that the orientation that has to be assigned to the imperfection such that it is aligned with the direction

of zero stretch when necking occurs is not known in advance (see Hill (1952)). Moreover, the major stretching
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direction of the cell, which coincides with the X axis (see Fig. 5), has been aligned either with the rolling direction

(ψ = 0◦ in the theoretical models) or the transverse direction (ψ = 90◦ in the theoretical models).

Figure 5: Finite element model. Mesh and boundary conditions for a normalized cell size of L0/h0 = 1. A large imperfection amplitude
has been shown in the figure for better illustration of the geometric perturbation. For interpretation of the references to color in the
text, the reader is referred to the web version of this article.

The cell is meshed with eight-node solid elements, with reduced integration and hourglass control (C3D8R in

ABAQUS notation). The elements have an initial aspect ratio close to 1:1:1 with dimensions ≈ 50× 50× 50 µm3.

The number of elements is ranging between 500 for L0/h0 = 0.25 and 800000 for L0/h0 = 10. A mesh convergence

study has been performed, in which the time evolution of different output variables, namely stress, strain and

necking inception, were compared for different mesh sizes. The regularizing effects of inertia and strain-rate

sensitivity minimize the mesh sensitivity of the numerical calculations (see Needleman, 1988; Jacques et al., 2012;

Czarnota et al., 2017; Rodŕıguez-Mart́ınez et al., 2017).

The constitutive model presented in Section 2 has been implemented in ABAQUS/Explicit (2016) through

a user subroutine VUMAT, adapting the implicit integration algorithm developed by Zaera and Fernández-Sáez

(2006) for von Mises plasticity to Hill (1948) yield criterion.
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6. Analysis and results

This section presents quantitative comparisons between the results obtained with the three approaches set out

in Sections 3, 4 and 5. Section 6.1 shows the process that we have followed to determine the strain leading to

necking formation and the specific methodology that we have designed to construct the forming limit diagrams,

and Sections 6.2, 6.3, 6.4 and 6.5 investigate the effects of anisotropy, loading rate, strain-rate sensitivity, adiabatic

heating and imperfection amplitude in the formability of the materials investigated. The finite element simulations

are considered as the reference approach to validate the capacity of the stability analysis and the two-zone model

to predict dynamic formability of metallic ductile materials.

6.1. Salient features

The results shown in this section correspond to Material 1 for m = 0 (rate-independent material) and β = 0

(isothermal conditions of deformation). The imposed initial major strain rate is ε̇0xx = 10000 s−1. This value lies

within the typical strain rates attained in electrohydraulic and electromagnetic forming operations (Golovashchenko

et al., 2013; Alves Zapata, 2016). For the two-zone model and the finite element calculations the normalized

imperfection amplitude is ∆ = 0.2%.

Fig. 6 shows the major necking strain εneckxx versus L0/h0. In the linear stability analysis, the major necking

strain corresponds to the major logarithmic strain of the fundamental solution, εxx = ln (Fxx), when the cumulative

instability index meets the condition I = Ineck with Ineck = 3.25. This specific value has been obtained following

the calibration procedure developed by N’souglo et al. (2020) which is detailed in Appendix B (additional stability

analysis results obtained using an alternative calibration procedure are included in Appendix C for completeness).

In the two-zone model the major necking strain corresponds to the major logarithmic strain measured in zone

B, εBxx = ln
(
FBxx
)
, when the condition

ḞBxx
ḞAxx

= 10−2 is met (the same criterion was applied in Jacques (2020)).

Similarly, in the finite element calculations, the major necking strain corresponds to the major logarithmic strain

measured in the finite element located at the upper right corner of the thickest section of the cell (see the yellow

marker in Figure 5) when the axial strain rate equals 10−3 s−1 in that specific element (similar procedure was

applied in Rodŕıguez-Mart́ınez et al. (2017) and N’souglo et al. (2020)).

First, let us note that the shape of the εneckxx −L0/h0 curves obtained with the three approaches is the same. The

major necking strain first decreases, reaches a minimum and then increases. The greater values of εneckxx obtained

for small and large values of L0/h0 are due to the stabilizing effects of stress multiaxiality and inertia on short

and long necking wavelengths, respectively (Fressengeas and Molinari, 1994). The minimum value of the major
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necking strain is referred to as the critical major necking strain εcxx, and the corresponding value of L0/h0 is called

the critical necking wavelength
(
L0/h0

)c
. Figs. 6a and 6b show the results for χ = 0 (plane strain stretching)

and ψ = 0◦ and ψ = 90◦, respectively. The predictions obtained from the stability analysis and the two-zone

model show excellent quantitative agreement with the finite element calculations for the whole range of values of

L0/h0 investigated. To be noted that the stability analysis was calibrated for an isotropic von Mises material,

plane strain stretching and the same strain rate, see Appendix B. Figs. 6c and 6d show the results for greater

value of the loading path χ = 0.5, and the same material orientations, ψ = 0◦ and ψ = 90◦. The predictions of

the stability analysis and the two-zone model are again in good agreement with the finite element calculations,

yet it is worse than in the case of χ = 0. The two-zone model overestimates/underestimates the major necking

strains for short/long values of L0/h0, however it provides accurate predictions for the critical major necking

strains. Moreover, the stability analysis predictions increasingly underestimate the finite element results as L0/h0

increases, being the predictions for the critical major necking strains ≈ 10% lower.

The critical major necking strains εcxx, and the corresponding critical minor necking strains εcyy (i.e. the minor

logarithmic strains, at the same measurement location, when εcxx are measured), are combined to construct the

forming limit diagrams shown in Fig. 7. The results correspond to loading cases ranging from plane strain stretching

εcyy = 0 (i.e. χ = 0) to εcxx = εcyy (which corresponds to χ = 1 for the linear stability analysis, and to χ < 1 for

the two-zone model and the finite element simulations, because of the strain gradients caused by the geometric

imperfection, see Appendix D). In fact, the result corresponding to χ = 1 for the finite element calculations is

not shown in Fig. 7 since εcyy becomes greater than εcxx (notice that there are only seven markers corresponding

to the finite element results). The cases for the material orientations ψ = 0◦ and 90◦ are compared with the

corresponding specialization to isotropic von Mises (1928) plasticity obtained by imposing F = G = H = 0.5 and

L = M = N = 1.5 (see Section 2). There is a monotonic increase of εcxx as the value of χ increases, i.e. plane

strain corresponds to a minimum in the critical major necking strain. This trend is consistent with experimental,

numerical and analytical results published elsewhere (Kuroda and Tvergaard, 2000; Banabic et al., 2010; Brunet

and Morestin, 2001). Moreover, note that the three approaches show that the critical major necking strains εcxx

are greater for the von Mises specialization than for ψ = 0◦ and ψ = 90◦, with increasing differences as the

condition εcxx = εcyy is approached. Sowerby and Duncan (1971) showed that for Hill (1948) materials the influence

of anisotropy on the formability is small near plane strain and increases as the loading path approaches equibiaxial

tension. Moreover, note that the gap between the results obtained for ψ = 0◦ and ψ = 90◦ is small, with the
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Figure 6: Comparison between finite element results (FEM), two-zone model (2ZM) and linear stability analysis predictions (LSA) for
Material 1 with m = 0 (rate-independent) and β = 0 (isothermal conditions of deformation). Major necking strain εneckxx versus L0/h0.
Different loading paths and material orientations are considered: (a) χ = 0 and ψ = 0◦, (b) χ = 0 and ψ = 90◦, (c) χ = 0.5 and ψ = 0◦

and (d) χ = 0.5 and ψ = 90◦. The imposed initial major strain rate is ε̇0xx = 10000 s−1. For the finite element calculations and the
two-zone model the normalized imperfection amplitude is ∆ = 0.2%. In the linear stability analysis the cumulative instability index is
Ineck = 3.25.
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lowest formability corresponding to the latter material orientation. Attending to the results presented in Fig.

2, it seems that a Lankford coefficient greater than 1 implies a drop in formability compared to the von Mises

material, and the greater the value of rθ, the greater the formability decrease (see also Sowerby and Duncan (1971)

and Parmar and Mellor (1978)). Namely, the fact that rθ is greater for θ = 90◦ than for 0◦ makes that the

values of εcxx are smaller for ψ = 90◦ than for ψ = 0◦. Moreover, it is remarkable the ability of both analytical

approaches to capture the slight effect of material orientation in the forming limit diagram predicted by the finite

element calculations. In addition, the results of the two-zone model show excellent quantitative agreement with the

numerical computations, for all the loading paths, both material orientations and the von Mises specialization. In

contrast, the stability analysis predictions, while showing very good agreement with the finite elements near plane

strain, increasingly underestimate the numerical results as the condition εcxx = εcyy is approached. There are two

probable reasons behind this difference. First, the hypothesis of Ineck = constant is a rather crude assumption that

should be reassessed in a future work with the aim of finding the functional dependence of the critical instability

conditions with the loading path (note that performing the calibration of the linear stability analysis for a loading

case different from plane strain strechting does not to lead to a better agreement with the finite element results, see

Appendix C). Second, while in the stability analysis the strain field is assumed homogeneous until the condition

Ineck = 3.25 is met, in the two-zone model and the finite element calculations it is not. The imperfection leads to

strain gradients along the principal loading direction such that the actual ratio between minor and major strain

when the necking condition is met is greater than that corresponding to the fundamental (homogeneous) solution

for χ > 0, see Appendix D for details.

6.2. The effect of anisotropy

The results shown in this section correspond to Material 2, ..., Material 5 with m = 0 (rate-independent

materials) and β = 0 (isothermal conditions of deformation). As in Section 6.1, ε̇0xx = 10000 s−1, ∆ = 0.2% and

Ineck = 3.25.

Fig. 8 compares forming limit diagrams obtained with the finite element calculations, the two-zone model

and the linear stability analysis, for loading cases ranging from plane strain stretching εcyy = 0 (i.e. χ = 0) to

εcxx = εcyy. The results correspond to (a) Material 2, (b) Material 3: TRIP-780 steel, (c) Material 4: AA 5182-O

and (d) Material 5: AA 6016-T4. The cases for the material orientations ψ = 0◦ and 90◦ are compared with

the corresponding specialization to isotropic von Mises plasticity. As mentioned in Section 6.1, the influence of

anisotropy increases as the loading path moves away from plane strain, in agreement with the results of Sowerby
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Figure 7: Comparison between finite element results (FEM), two-zone model (2ZM) and linear stability analysis predictions (LSA) for
Material 1 with m = 0 (rate-independent) and β = 0 (isothermal conditions of deformation). Forming limit diagram, critical major
necking strain εcxx versus critical minor necking strain εcyy, for loading conditions ranging from εcyy = 0 (χ = 0, plane strain stretching)
to εcxx = εcyy. The cases for the material orientations ψ = 0◦ and ψ = 90◦, are compared with the corresponding isotropic von Mises
material for which F = G = H = 0.5 and L = M = N = 1.5. The imposed initial major strain rate is ε̇0xx = 10000 s−1. For the finite
element calculations and the two-zone model the normalized imperfection amplitude is ∆ = 0.2%. In the linear stability analysis the
cumulative instability index is Ineck = 3.25.
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and Duncan (1971) and Kuroda and Tvergaard (2000). This overall trend is also captured by both two-zone model

and stability analysis.

Similarly to the formability results presented in previous section for Material 1, the two-zone model provides

predictions which are closer than the stability analysis to the finite element results, notably for large values of χ.

On the other hand, for the four materials, both stability analysis and two-zone model predict the specific order of

the curves obtained for the two values of ψ and for the specialization to the isotropic von Mises material. Namely,

for Material 2 and Material 3 (TRIP-780 steel), Figs. 8a and 8b, the greatest formability is achieved for ψ = 0◦,

and the lowest for ψ = 90◦, with the intermediate values of εcxx corresponding to the von Mises specialization.

These results are consistent with Sowerby and Duncan (1971) and Parmar and Mellor (1978) and the interpretation

provided in Section 6.1 on the influence of the Lankford coefficient in the formability: the fact that rθ is minimum

and smaller than 1 for θ = 0◦ leads to the greatest critical major necking strains for ψ = 0◦, and the fact that rθ

is maximum and greater than 1 for θ = 90◦ leads to the lowest critical major necking strains for ψ = 90◦ (see Fig.

2). Comparing the finite element results for these two materials, it is observed that the influence of anisotropy in

the formability results is particularly important for Material 2, and this trend is also captured by both two-zone

model and linear stability analysis. These results are also consistent with the fact that the increase of the Lankford

coefficient from θ = 0◦ to 90◦ is more important for Material 2 than for Material 3 (see Fig. 2). On the other hand,

for Material 4 (AA 5182-O), Fig. 8c, the influence of material anisotropy on the formability is different than for

Material 2 and Material 3, so that now the lowest formability corresponds to the von Mises specialization (contrary

to Material 1 for which the largest formability was for the von Mises specialization, see Fig. 7). This also can be

interpreted in terms of rθ which, for AA 5182-O, is lower than 1 for both θ = 0◦ and 90◦, leading to values of εcxx

for both material orientations, ψ = 0◦ and 90◦, which are greater than for the von Mises specialization (see Fig. 2).

For Material 5 (AA 6016-T4), Fig. 8d, the lowest fomability corresponds to the von Mises specialization, as in the

case of Material 4 (AA 5182-O). However, the greatest values of εcxx are obtained for ψ = 90◦. These results are

explained because the Lankford coefficient is smaller than 1, which implies that the formability for both ψ = 0◦

and 90◦ is greater than for the von Mises specialization. In addition, since the smallest value of rθ is obtained for

θ = 90◦, the greatest values of the critical major necking strain are obtained for the material orientation ψ = 90◦

(see Fig. 2).

Even if our results show a clear correlation between formability and the value of the Lankford coefficient in

the main straining direction, it is worth emphasizing that, strictly speaking, the forming limit diagram of an

anisotropic material depends on the whole yield locus. For instance, it can be noticed that, for Material 1, the
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forming limit curves for the two orientations are very close while the Lankford coefficient in the transverse direction

is significantly larger than in the rolling direction (rθ (0◦) = 2.01 and rθ (90◦) = 2.42), see Figs. 2 and 7. The weak

influence of orientation on the formability of Material 1 is probably related to the fact that its yield surface is nearly

symmetrical with respect to the σI = σII line (Fig. 1a). Also, we have to mention that the strong influence of the

Lankford coefficient on formability is specific to the Hill 48 yield function. Indeed, several studies (dedicated to

quasi-static conditions) have shown that with non-quadratic yield criteria the influence of the Lankford coefficient

is much less pronounced (Parmar and Mellor, 1978; Graf and Hosford, 1990; Friedman and Pan, 2000).

6.3. The effect of loading rate

The results presented in this section correspond to Material 1, ..., Material 5, with m = 0 (rate-independent

materials) and β = 0 (isothermal conditions of deformation), for imposed initial major strain rates ε̇0xx ranging

from 500 s−1 to 50000 s−1. While the largest strain rates exceed the maximum values typically attained in high

energy rate forming processes, which are approximately 20000 s−1 (see the Introduction of this paper), exploring

such a wide range of loading rates helps to enlighten the role of inertia in the formability of anisotropic materials.

As in Sections 6.1 and 6.2, ∆ = 0.2% and Ineck = 3.25.

Fig. 9 shows forming limit diagrams obtained with the finite element calculations, and the two theoretical

models, for loading cases ranging from plane strain stretching εcyy = 0 (i.e. χ = 0) to εcxx = εcyy. The results

are obtained for (a) Material 1, (b) Material 2, (c) Material 3: TRIP-780 steel, (d) Material 4: AA 5182-O

and (e) Material 5: AA 6016-T4. The cases for the material orientations ψ = 0◦ and 90◦ are compared with the

corresponding specialization to isotropic von Mises plasticity. The difference with Figs. 7 and 8 is that the imposed

initial major strain rate has been reduced by half ε̇0xx = 5000 s−1. The two-zone model results and the stability

analysis predictions show qualitative agreement with the finite element calculations for the five materials considered,

capturing the relative order of the εcxx − εcyy curves obtained for the two values of ψ and for the specialization

to von Mises plasticity (the relative order of the curves is the same as in the case of ε̇0xx = 10000 s−1). The

quantitative agreement between two-zone model and finite elements is excellent, for all the loading paths. On the

other hand, the predictions of the stability analysis gradually deviate from the finite element results as χ increases.

As mentioned in Section 6.1, this difference is partially attributed to the fact in the two-zone model and the finite

element calculations the imperfection leads to strain gradients along the principal loading direction, such that

the ratio between minor and major strain when the necking condition is met is greater than the theoretical one

corresponding to the stability analysis (decreasing the imperfection amplitude improves the agreement between



35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MISES_FEM

MDisRD_FEM

MDisTD_FEM

MISES_2Z

MDisRD_2Z

MDisTD_2Z

MISES_LSA

MDisRD_LSA

MDisTD_LSA

Material 2

FEM:von Mises

FEM:ψ=0

FEM:ψ=90

2ZM:von Mises

2ZM:ψ=0

2ZM:ψ=90

LSA:von Mises

LSA:ψ=0

LSA:ψ=90

o

o

o

o

o

o

Critical minor necking strain, ε
yy

C
ri
ti
c
a
l 
m

a
jo

r 
n
e
c
k
in

g
 s

tr
a
in

, 
ε

x
x

c

c

ε
0
 =10000 s

-1
xx

.

ε
xx

= ε
yy

c c

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MISES_FEM

MDisRD_FEM

MDisTD_FEM

MISES_2Z

MDisRD_2Z

MDisTD_2Z

MISES_LSA

MDisRD_LSA

MDisTD_LSA

Material 3: TRIP-780 steel

FEM:von Mises

FEM:ψ=0

FEM:ψ=90

2ZM:von Mises

2ZM:ψ=0

2ZM:ψ=90

LSA:von Mises

LSA:ψ=0

LSA:ψ=90

o

o

o

o

o

o

Critical minor necking strain, ε
yy

C
ri
ti
c
a
l 
m

a
jo

r 
n
e
c
k
in

g
 s

tr
a
in

, 
ε

x
x

c

c

ε
0
 =10000 s

-1
xx

.

ε
xx

= ε
yy

c c

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MISES_FEM

MDisRD_FEM

MDisTD_FEM

MISES_2Z

MDisRD_2Z

MDisTD_2Z

MISES_LSA

MDisRD_LSA

MDisTD_LSA

FEM:von Mises

FEM:ψ=0

FEM:ψ=90

2ZM:von Mises

2ZM:ψ=0

2ZM:ψ=90

LSA:von Mises

LSA:ψ=0

LSA:ψ=90

ε
0
 =10000 s

-1
xx

.
Material 4: AA 5182-O

o

o

o

o

o

o

Critical minor necking strain, ε
yy

C
ri
ti
c
a
l 
m

a
jo

r 
n
e
c
k
in

g
 s

tr
a
in

, 
ε

x
x

c

c

ε
xx

= ε
yy

c c

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MISES_FEM

MDisRD_FEM

MDisTD_FEM

MISES_2Z

MDisRD_2Z

MDisTD_2Z

MISES_LSA

MDisRD_LSA

MDisTD_LSA

Material 5: AA 6016-T4

FEM:von Mises

FEM:ψ=0

FEM:ψ=90

2ZM:von Mises

2ZM:ψ=0

2ZM:ψ=90

LSA:von Mises

LSA:ψ=0

LSA:ψ=90

o

o

o

o

o

o

Critical minor necking strain, ε
yy

C
ri
ti
c
a
l 
m

a
jo

r 
n
e
c
k
in

g
 s

tr
a
in

, 
ε

x
x

c

c

ε
0
 =10000 s

-1
xx

.

ε
xx

= ε
yy

c c

(d)

Figure 8: Comparison between finite element results (FEM), two-zone model (2ZM) and linear stability analysis predictions (LSA).
Forming limit diagram, critical major necking strain εcxx versus critical minor necking strain εcyy, for loading conditions ranging from
εcyy = 0 (χ = 0, plane strain stretching) to εcxx = εcyy. The results correspond to (a) Material 2, (b) Material 3: TRIP-780 steel, (c)
Material 4: AA 5182-O, (d) Material 5: AA 6016-T4. The strain-rate sensitivity parameter is m = 0 (rate-independent materials) and
the Taylor-Quinney coefficient is β = 0 (isothermal conditions of deformation). The cases for the material orientations ψ = 0◦ and
ψ = 90◦, are compared with the corresponding isotropic von Mises material for which F = G = H = 0.5 and L = M = N = 1.5.
The imposed initial major strain rate is ε̇0xx = 10000 s−1. For the finite element calculations and the two-zone model the normalized
imperfection amplitude is ∆ = 0.2%. In the linear stability analysis the cumulative instability index is Ineck = 3.25.
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linear stability analysis, two-zone model and finite elements, see Section 6.5). The hypothesis of Ineck = constant

also seems to play a role in this disagreement.

Fig. 10 shows the same results as in Fig. 9 for an imposed initial major strain rate which is four times greater

ε̇0xx = 20000 s−1. Notice that for the five materials considered, the relative order of the εcxx−εcyy curves for ψ = 0◦,

ψ = 90◦ and the von Mises specialization, is the same obtained for lower strain rates in Figs. 7, 8 and 9. In

other words, the finite element calculations show that the strain rate does not change the relative influence of the

plastic anisotropy on the dynamic formability of the materials investigated, and such behaviour is captured by the

stability analysis and the two-zone model.
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The stabilizing effect of strain rate is brought out in Fig. 11, which shows the evolution of the critical major

necking strain εcxx with the imposed initial major strain rate ε̇0xx, for the five materials considered and χ = 0 (plane

strain stretching). As in previous plots, results are presented for ψ = 0◦, ψ = 90◦ and the specialization to von Mises

material. The critical major necking strain increases nonlinearly with the axial strain rate displaying a concave-

upwards shape. Namely, the slope of the εcxx−ε̇0xx curves is very shallow until ≈ 2000 s−1 (the precise value depends

on the material), when it starts to increase rapidly with the strain rate. This transition in the slope of the εcxx− ε̇0xx

curves determines when inertia effects become important, leading to neck retardation and increasing material

formability (Jacques, 2020). Recall that inertia effects are size dependent and, if the specimen is thinner/thicker,

inertia effects become important for greater/smaller strain rates (see Fig. 11 in Jacques (2020)). The predictions

of the two-zone model find excellent agreement with the finite elements for all the strain rates investigated, while

the stability analysis underestimates the finite element results and the two-zone model calculations for the greater

strain rates considered. This disagreement is most likely due to the simple criterion used in the stability analysis,

which assumes that necking occurs for the same value of cumulative index Ineck = 3.25 for all the strain rates.

Moreover, the increase of the critical major necking strain εcxx with the strain rate is largely independent of the

anisotropy (as anticipated by the comparison of Figs. 7, 8, 9 and 10), as evidenced by the fact that for the five

materials considered the εcxx− ε̇0xx curves for ψ = 0◦, ψ = 90◦ and the von Mises specialization, are virtually parallel

to each other. However, the effect of inertia on the necking strain does depend on the material considered. For

instance, for the material orientation ψ = 0◦, the two-zone model predicts that the increase of the critical major

necking strain from 100 s−1 to 20000 s−1 (maximum strain rate typically attained in high energy rate forming

processes, see the Introduction of this paper), calculated as ∆εcxx|
20000 s−1

100 s−1 =
εcxx|20000 s−1 − εcxx|100 s−1

εcxx|100 s−1

, is 436%,

490%, 166%, 77% and 120% for Materials 1, ..., 5, respectively. Notice that, for aluminium alloys (Materials 4 and

5), with lower density than steel, inertia effects are less important, and the increase of necking strain with the strain

rate is smaller. On the other hand, the lower influence of inertia on Material 3, in comparison with Materials 1 and

2, is most likely due to the greater yield stress of TRIP-780 steel, which decreases inertial resistance to motion (see

equation (34)). Moreover, we have checked that the same overall trends and conclusions are obtained for loading

paths other than plane strain, however, we do not show additional plots for the sake of brevity. On the other hand,

it is worth mentioning that, as shown in the works of Rodŕıguez-Mart́ınez et al. (2017) and Jacques (2020), the

increase of the loading parameter decreases the influence of inertia on neck formation. For instance, for ψ = 0◦

and greater loading parameter χ = 0.5, the two-zone model predicts that the increase of the critical major necking



40

strain ∆εcxx|
20000 s−1

100 s−1 is 95%, 45%, 22%, 10% and 17% for Materials 1, ..., 5, respectively. Notice that for the five

materials the value of ∆εcxx|
20000 s−1

100 s−1 is smaller than in the case of plane strain. For additional discussions on the

interplay between inertia and loading path, the reader is referred to Section 9 of Rodŕıguez-Mart́ınez et al. (2017)

and Section 3.2 of Jacques (2020).
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6.4. The effect of strain-rate sensitivity and adiabatic heating

The results shown in this section correspond to Material 1, with two different values of the strain-rate sensitivity

exponent m = 0.01 and 0.02, for isothermal (β = 0) and adiabatic conditions of deformation (β = 0.9). Similar

values of the strain-rate sensitivity exponent have been reported in the literature for different metals and alloys

(e.g. see Hutchinson and Neale (1977)). The Taylor-Quinney coefficient β = 0.9 is a standard value generally

taken for metals and alloys (e.g. Børvik et al. (2001); Dey et al. (2004); Park et al. (2018)). As in Sections 6.1 and

6.2, ε̇0xx = 10000 s−1, ∆ = 0.2% and Ineck = 3.25.

Fig. 12 shows forming limit diagrams obtained with the three approaches developed in this paper. The cases

for the material orientations ψ = 0◦ and 90◦ are compared with the corresponding specialization to isotropic von

Mises plasticity. The results correspond to (a) m = 0.01 and (b) m = 0.02. The Taylor-Quinney coefficient is

β = 0 (isothermal conditions of deformation). The increase of the strain-rate sensitivity parameter delays necking

formation, shifting upwards the εcxx − εcyy curves and increasing material formability. For instance, for χ = 0 and

ψ = 0◦, the two-zone model predicts that the value of εcxx increases from ≈ 0.32 for the rate-independent material

(see Fig. 7) to ≈ 0.39 for m = 0.02. Note that the effect of strain-rate hardening on neck retardation has been

previously shown in the literature, e.g. see Hutchinson and Neale (1977) and Audoly and Hutchinson (2019).

On the other hand, notice that the increase of the critical major necking strain with the strain-rate sensitivity

exponent ∆εcxx|
m=0.02
m=0 predicted by the two-zone model, which is 21% for plane strain, is significantly smaller than

the gain in εcxx obtained when the imposed initial major strain rate is increased from 100 s−1 to 20000 s−1, which

is 436% (see Fig. 11a). This result shows that at high strain rates, the inertia effect is most likely the main

contributor to neck retardation (under quasi-static loading, when a power law relation is adopted, equation (6),

the increase in ductility due strain-rate sensitivity is independent of the prescribed strain-rate, see Hutchinson and

Neale (1977)). Moreover, for the results presented in this section, the increase of the critical major necking strain

with the material viscosity shows a mild variation with the loading path, since for material orientation ψ = 0◦ and

εcxx = εcyy, we have that ∆εcxx|
m=0.02
m=0 = 11%, being this value slightly smaller than for plane strain. On the other

hand, notice that the value of the strain-rate sensitivity parameter does not amend the effect of material anisotropy

in the forming limit diagram. In fact, the goal of presenting the results for different values of m in different plots

(instead of showing in each plot results for a given material orientation and different values of m) is to illustrate

that the effect of anisotropy in the formability remains virtually the same for different material viscosities. As in

the case of the rate-independent material (see Fig. 7), for m = 0.01 and 0.02 the critical major necking strains are

significantly greater for the von Mises specialization than for ψ = 0◦ and ψ = 90◦, with increasing differences as
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the loading path moves away from plane strain. Notice also that for both values of m considered, the formability

of the material is slightly greater for ψ = 0◦ than for ψ = 90◦.
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Figure 12: Comparison between finite element results (FEM), nonlinear two-zone model (2ZM) and linear stability analysis predictions
(LSA). Forming limit diagram, critical major necking strain εcxx versus critical minor necking strain εcyy, for loading conditions ranging
from εcyy = 0 (χ = 0, plane strain stretching) to εcxx = εcyy. The results correspond to Material 1 with two different values of the
strain-rate sensitivity parameter: (a) m = 0.01 and (b) m = 0.02. The cases for the material orientations ψ = 0◦ and ψ = 90◦, are
compared with the corresponding isotropic von Mises material for which F = G = H = 0.5 and L = M = N = 1.5. The imposed initial
major strain rate is ε̇0xx = 10000 s−1. The Taylor-Quinney coefficient is β = 0 (isothermal conditions of deformation). For the finite
element calculations and the two-zone model the normalized imperfection amplitude is ∆ = 0.2%. In the linear stability analysis the
cumulative instability index is Ineck = 3.25.

Fig. 13 compares forming limit diagrams obtained with the three approaches developed in this paper, for

isothermal (β = 0) and adiabatic (β = 0.9) conditions of deformation. The strain-rate sensitivity exponent is

m = 0.01. The results correspond to (a) specialization to isotropic von Mises plasticity, (b) material orientation

ψ = 0◦ and (c) material orientation ψ = 90◦. Notice that the scales of Figs. 13a and 13b-13c are different.

Thermal softening favors necking formation, decreasing material formability. The three approaches predict the

same trend, with the εcxx − εcyy curves shifting downwards between 2% and 8% for β = 0.9, within the range of

loading paths considered. Moreover, these results indicate that thermal softening does not change the specific

influence of anisotropy on the material formability, suggesting that the conclusions derived in this work using

β = 0 (see Sections 6.1, 6.2, 6.3 and 6.5) remain valid for adiabatic conditions of deformation.
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Figure 13: Comparison between finite element results (FEM), nonlinear two-zone model (2ZM) and linear stability analysis predictions
(LSA). Forming limit diagram, critical major necking strain εcxx versus critical minor necking strain εcyy, for loading conditions ranging
from εcyy = 0 (χ = 0, plane strain stretching) to εcxx = εcyy. The results correspond to Material 1 for: (a) specialization to von Mises
plasticity for which F = G = H = 0.5 and L = M = N = 1.5, (b) material orientation ψ = 0◦ and (c) material orientation ψ = 90◦.
The strain-rate sensitivity parameter is m = 0.01. The imposed initial major strain rate is ε̇0xx = 10000 s−1. Results are shown for
isothermal (β = 0) and adiabatic (β = 0.9) conditions of deformation. For the finite element calculations and the two-zone model the
normalized imperfection amplitude is ∆ = 0.2%. In the linear stability analysis the cumulative instability index is Ineck = 3.25.
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6.5. The effect of imperfection amplitude

The results shown in this section correspond to Material 1 with m = 0 (rate-independent material) and

β = 0 (isothermal conditions of deformation). The finite element calculations and the two-zone model have been

performed with two different values of the imperfection amplitude ∆ = 0.02% and 2%, i.e. ten times smaller and

ten times greater than the imperfection amplitude used in the rest of the calculations of this paper. The value of

the cumulative index has been calibrated for these two additional imperfection amplitudes such that Ineck is 5.55

and 1.12, respectively, see Appendix B. Note that, as ∆ increases, the cumulative instability index Ineck decreases

(see also Fig. 10 of Zheng et al. (2020) and the discussion therein, and Appendix C of N’souglo et al. (2020)). As

in Sections 6.1, 6.2 and 6.4, the imposed initial major strain rate is ε̇0xx = 10000 s−1.

Fig. 14 displays forming limit diagrams, εcxx versus εcyy, obtained with the unit-cell finite element calculations,

and the two theoretical approaches developed in this paper. The results for ψ = 0◦ and 90◦ are compared with

the corresponding specialization to isotropic von Mises plasticity. The calculations correspond to (a) ∆ = 0.02%

and (b) ∆ = 2%. The critical major necking strain decreases as the imperfection amplitude increases and the

cumulative instability index decreases (notice that the scales of Figs. 14a and 14b are different). Obviously,

increasing the imperfection amplitude leads to early necking formation (e.g. see Hutchinson and Neale (1977),

Hutchinson et al. (1978a), Rodŕıguez-Mart́ınez et al. (2017) and Jacques (2020)). Namely, the two-zone model

predicts that for the material orientation ψ = 0◦, the variation in the critical major necking strain is ∆εcxx|
2%
0.02% =

εcxx|2% − εcxx|0.02%
εcxx|0.02%

= 130% for plane strain, and ∆εcxx|
2%
0.02% = 200% for εcxx = εcyy, showing that for this material

the role of the imperfection on necking formation is more important as the loading path moves away from plane

strain. Note that geometric imperfections have also been shown to promote early shear band formation in shear-

dominated problems in which flow localization occurs in the form of shear bands (e.g. Molinari and Clifton (1987)).

Moreover, the two-zone model predictions show excellent agreement with the finite element calculations for both

imperfection amplitudes, ∆ = 0.02% and 2%, and for all the loading paths investigated (like for the calculations

with ∆ = 0.2% shown in previous sections of this paper). In addition, the comparison between Figs. 14a and 14b

illustrates that the stability analysis predictions show better quantitative agreement with the two-zone model and

the finite elements for the smaller imperfection amplitude. The decrease of ∆ reduces the gradients of strain along

the principal loading direction, such that the ratio between minor and major strain when the necking condition is

met in the two-zone model and the unit-cell calculations comes closer to the theoretical value calculated with the

stability analysis (see Appendix D). Furthermore, the hypothesis of Ineck = constant seems to work better for a

wider range of loading paths, for small imperfection amplitudes.
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Figure 14: Comparison between finite element results (FEM), nonlinear two-zone model (2ZM) and linear stability analysis predictions
(LSA). Forming limit diagram, critical major necking strain εcxx versus critical minor necking strain εcyy, for loading conditions ranging
from εcyy = 0 (χ = 0, plane strain stretching) to εcxx = εcyy. The results correspond to Material 1. The two-zone model and finite element
calculations correspond to two different values of the imperfection amplitude, and the stability analysis results to two different values
of the cumulative instability index: (a) ∆ = 0.02% and Ineck = 5.55, and (b) ∆ = 2% and Ineck = 1.12. The cases for the material
orientations ψ = 0◦ and ψ = 90◦, are compared with the corresponding isotropic von Mises material for which F = G = H = 0.5 and
L = M = N = 1.5. The strain-rate sensitivity parameter is m = 0 (rate-independent) and the Taylor-Quinney coefficient is β = 0
(isothermal conditions of deformation). The imposed initial major strain rate is ε̇0xx = 10000 s−1.
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7. Summary and concluding remarks

In this work we have developed a linear stability analysis and a nonlinear two-zone model, and have performed

unit-cell finite element calculations, to investigate the effect of inertia, material strain-rate sensitivity and adia-

batic heating in the formability of anisotropic metallic sheets subjected to dynamic biaxial stretching. We have

investigated loading paths ranging from plane strain tension to equibiaxial tension, and a wide range of strain

rates ranging from 100 s−1 to 50000 s−1. We have studied 5 different materials whose mechanical behavior is

described with an elastic isotropic, plastic anisotropic constitutive model with yielding based on Hill (1948) crite-

rion. Materials 1 and 2 are model materials with elastic properties and initial density representative of steel, and

anisotropy parameters and parameters of the yield stress that have been specifically tailored to heighten the effect

of anisotropy in dynamic formability. Materials 3, 4 and 5 are actual materials, namely, TRIP-780 steel, aluminium

alloy 5182-O and aluminium alloy 6016-T4. The finite element calculations are carried out with ABAQUS/Explicit

(2016), using the unit-cell model developed by Rodŕıguez-Mart́ınez et al. (2017) which includes a geometric imper-

fection to favor necking localization. The nonlinear two-zone model is based on the classical imperfection approach

of Marciniak and Kuczyński (1967), that was recently extended by Jacques (2020) to consider inertia effects, and

to include specific features to account for the hydrostatic stresses that develop inside a necked section. In this

paper, the formulation of Jacques (2020), that was originally developed for isotropic plasticity criteria, is enhanced

to consider anisotropic Hill (1948) materials. The stability analysis is an extension of the 2D model developed

by Zaera et al. (2015) for von Mises plasticity to consider materials with yielding based on Hill (1948) criterion.

Following the calibration procedure for the linear stability analysis proposed by N’souglo et al. (2020), we have

determined the critical instability conditions for which a perturbation mode turns into a necking mode, which

has enabled to construct forming limit diagrams with the stability analysis predictions, which are systematically

compared with the two-zone model results and the finite element calculations. A key outcome of this paper is

that both theoretical models predict the same trends shown by the finite element calculations for the necking

strains, and they capture the effect of anisotropy in dynamic formability for the 5 materials studied. These results

suggest that both nonlinear two-zone model and linear stability analysis take into account the key mechanisms

which control dynamic necking localization, and that they can be used to assess the workability of metallic ductile

sheets in high strain rate forming operations. Notably, the quantitative agreement between the two-zone model

predictions and the finite element results is excellent for all the loading paths and strain rates investigated. On the

other hand, the quantitative agreement between stability analysis predictions and finite elements depends on the

amplitude of the imperfection included in the numerical model, so that the smaller the imperfection amplitude,
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the better the quantitative agreement for a wider range of loading paths. The theoretical and finite element results

have shown also that the effect of anisotropy on dynamic formability increases as the loading path moves away

from plane strain and approaches equibiaxial tension, but it is not significantly affected by the prescribed strain

rate. This indicates that it is important to account for anisotropy in the analysis and design of high energy rate

forming processes. For the five materials studied, we have observed that the increase in ductility due to inertia

becomes significant when the applied strain rate goes beyond ∼ 2000 s−1 (the precise value depends on the material

and the plate thickness, and it is generally smaller for steels than for aluminium alloys). In addition, we have

demonstrated that for large strain rates, greater than 10000 s−1 for the problem considered, inertia seems to be

the main factor responsible for neck retardation, more important than the viscosity effects for the standard values

of the strain-rate sensitivity exponent explored in this work. Furthermore, we have shown that, while thermal

softening favors necking localization, adiabatic heating has a mild effect in the dynamic formability. In summary,

this paper provides new analysis tools and specific results to build and interpret dynamic forming limit diagrams

of anisotropic ductile materials. In the present study, the Hill 48 plasticity model has been employed, but the

proposed methodologies can be easily extended to consider other anisotropic yield criteria. On the other hand,

notice that the analysis developed in this paper is specific for ductile materials for which necking occurs before

fracture. Analytical and finite element calculations impose that a neck is formed in the specimen, either including

a geometric imperfection in the case of the two-zone model and the finite element calculations, or introducing a

neck-like perturbation in the stability analysis. However, some authors (e.g. Makkouk et al. (2008) and Mu et al.

(2020)) have shown that fracture may occur before necking in metallic materials subjected to biaxial stretching.
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Appendix A. Kinematics of the fundamental solution used in the linear stability model

We assume the following velocity field in the X direction and Y direction:

Vx = ε̇0xxX

Vy = ε̇0yyY

(A.1)

where ε̇0xx and ε̇0yy are the initial strain rates in the specimen. The displacement field, obtained by temporal

integration of previous expressions, is:

Ux = ε̇0xxtX

Uy = ε̇0yytY

(A.2)

Moreover, the Eulerian coordinates are given by:

x = X + Ux =
(
1 + ε̇0xxt

)
X

y = Y + Uy =
(
1 + ε̇0yyt

)
Y

(A.3)

and the deformation rates by:

dxx =
∂Vx
∂x

=
ε̇0xx

1 + ε̇0xxt

dyy =
∂Vy
∂y

=
ε̇0yy

1 + ε̇0yyt

(A.4)

Regarding the Z-direction, we use the incompressibility condition dxx + dyy + dzz = 0 to get:

dzz = −

(
ε̇0xx

1 + ε̇0xxt
+

ε̇0yy
1 + ε̇0yyt

)
(A.5)

Therefore, we obtain:

Vz = −

(
ε̇0xx

1 + ε̇0xxt
+

ε̇0yy
1 + ε̇0yyt

)
z

z =
Z

(1 + ε̇0xxt)
(
1 + ε̇0yyt

)
Uz =

(
1

(1 + ε̇0xxt)
(
1 + ε̇0yyt

) − 1

)
Z

(A.6)
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The deformation gradients are:

Fxx = 1 + ε̇0xxt

Fyy = 1 + ε̇0yyt

Fzz =
1

(1 + ε̇0xxt)
(
1 + ε̇0yyt

)
(A.7)

Appendix B. Calibration of the linear stability analysis

We have calibrated the linear stability analysis using unit-cell finite element calculations following the procedure

developed by N’souglo et al. (2020). Fig. B.15 shows the evolution of the major necking strain εneckxx with L0/h0

for the specialization of Material 1 to isotropic von Mises plasticity (obtained by imposing F = G = H = 0.5 and

L = M = N = 1.5) with m = 0 (rate-independent material) and β = 0 (isothermal conditions of deformation). The

loading path is χ = 0 (plane strain stretching) and the imposed initial major strain rate is ε̇0xx = 10000 s−1. The

critical major necking strain obtained in the finite element calculations (black solid markers) is 0.34 (minimum value

of εneckxx ). We perform the linear stability analysis using this critical major necking strain as the major logarithmic

strain for which the cumulative instability index is calculated. The resulting critical cumulative instability index

is 3.25 (see Section 3). We take this value of I as the cumulative instability index required to trigger a neck

Ineck = 3.25. Assuming that this value of Ineck is the same for all perturbation wavelengths, we obtain the

stability analysis predictions corresponding to the dashed green curve reported in Fig. B.15 (for each value of

L0/h0 we determine the value of the major logarithmic strain required to meet the condition I = Ineck and this is

considered to be the major necking strain).

In this paper, we take Ineck = 3.25 for ∆ = 0.2%, and all the loading paths, strain rates and materials

investigated. We are aware that this is a rather crude assumption, however, it enables to perform quantitative

comparisons between linear stability analysis, finite element simulations and two-zone model predictions. We

assume that Ineck depends, only, on the imperfection amplitude of the unit-cell finite element calculations used for

the calibration, see Section 6.5.

For imperfection amplitudes different from ∆ = 0.2%, it is necessary to re-calibrate the stability analysis.

For instance, following the procedure described above, we obtain Ineck = 5.55 and 1.12 for ∆ = 0.02% and 2%,

respectively (see Section 6.5). Alternatively, once Ineck is determined using finite elements for a given imperfection

amplitude, it is also possible to obtain an estimate on the influence of ∆ on the cumulative instability index relying,

only, on the stability analysis, see Section 3. Considering the definition of the cumulative instability index, the
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Figure B.15: Comparison between finite element results (FEM) and linear stability analysis predictions (LSA) for the specialization
of Material 1 to isotropic von Mises plasticity (F = G = H = 0.5 and L = M = N = 1.5) with m = 0 (rate-independent) and
β = 0 (isothermal conditions of deformation). Major necking strain εneckxx obtained using finite element simulations (FEM) and linear
stability analysis (LSA) versus L0/h0. Linear stability analysis results are shown for Ineck = 3.25. In the finite element simulations
the amplitude of the imperfection is ∆ = 0.2%. The imposed initial major strain rate is ε̇0xx = 10000 s−1. For interpretation of the
references to color in the text, the reader is referred to the web version of this article.

growth of the perturbation can be described by a relation of the form (Fressengeas and Molinari, 1994; El Mäı

et al., 2014):

A (t) = A0eI(t) (B.1)

with A (t) being the current perturbation amplitude, A0 the initial amplitude of the perturbation and I (t) the

cumulative instability index. We can identify A0 as the initial imperfection amplitude ∆. Considering two im-

perfection amplitudes ∆1 and ∆2, and assuming that localized necking occurs when the perturbation amplitude

reaches a critical value, the values of the cumulative instability index, Ineck1 and Ineck2 , associated to ∆1 and ∆2,

are linked by the following relation:

Ineck1 − Ineck2 = ln

(
∆1

∆2

)
(B.2)

The results obtained with previous expression are in reasonable agreement with the values Ineck fitted from

the finite element computations, see Table B.2.
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∆ Ineck (FEM) Ineck (Eq. (B.2))

0.02% 5.55 5.553
2% 1.12 0.947

Table B.2: Comparison between the values of the cumulative instability index Ineck for ∆ = 0.02% and ∆ = 2% obtained with the
calibration based on the unit-cell finite element calculations (FEM) and with equation (B.2).

Appendix C. Stability analysis results using an alternative calibration procedure

Fig. C.16 compares forming limit diagrams obtained with the finite element calculations, the two-zone model

and the linear stability analysis, for loading cases ranging from plane strain stretching εcyy = 0 (i.e. χ = 0) to

εcxx = εcyy. The results correspond to Material 1 and the imposed initial major strain rate is ε̇0xx = 10000 s−1.

The cases for the material orientations ψ = 0◦ and 90◦ are compared with the corresponding specialization to

isotropic von Mises plasticity. The only difference with the results shown in Fig. 7 of Section 6.1 is that the linear

stability analysis predictions are obtained with greater cumulative instability index Ineck = 4.57. This value has

been determined following the procedure detailed in Appendix B, with the difference that the calibration of the

stability analysis has been performed for χ = 0.5 instead of for plane strain. As in Fig. 7, the stability analysis

predictions are in qualitative agreement with the finite elements and the nonlinear two-zone model. The difference

is that the quantitative agreement is worse in the vicinity of plane strain, and slightly better near εcxx = εcyy, with

the stability analysis overpredicting the results derived from the finite elements and the two-zone model. However,

increasing the value of the critical cumulative instability index does not change the specific effect of anisotropy on

the forming limit diagram. These results indicate that the conclusions obtained in this paper with the stability

analysis regarding the influence of anisotropy on dynamic formability of ductile materials are largely independent

of the loading path used in the calibration procedure of the cumulative instability index.

Appendix D. Comparison of strain paths in the linear stability analysis, the two-zone model and

the finite element calculations

Fig. D.17 shows the evolution of the major logarithmic strain εxx with the minor logarithmic strain εyy for

the specialization to von Mises plasticity of Material 1 (F = G = H = 0.5 and L = M = N = 1.5) with m = 0

(rate-independent material) and β = 0 (isothermal conditions of deformation). Two different loading paths are

investigated χ = 0.125 and 0.5. The imposed initial major strain rate is ε̇0xx = 10000 s−1. Two normalized

imperfection amplitudes, ∆ = 0.02% and 2%, are considered in the finite element calculations and in the two-zone
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model, with the end of the εxx − εyy curves corresponding to the occurrence of localized necking. For the linear

stability analysis, the strain for which the necking condition is met is identified with a yellow marker, being the

cumulative instability index for ∆ = 0.02% and 2%, Ineck = 5.55 and 1.12, respectively (see Section 6.5 and

Appendix B).

The two-zone model shows very good agreement with the finite element calculations for the two imperfection

amplitudes and both loading paths. As the loading starts, the εxx − εyy curves obtained with the two-zone model

and the finite elements coincide with the fundamental solution corresponding to the stability analysis (green dashed

curve). With the continuation of the deformation process, the results deviate from the fundamental solution –

because the imperfection leads to the development of strain gradients along the principal loading direction of the

specimen– with decreasing slope which tends to zero when the necking is fully formed. Hence, the ratio between

minor and major strain when necking occurs is greater than the theoretical value corresponding to the stability

analysis (the relation between εxx and εyy when necking occurs for the finite element calculations is indicated in

the plots). Furthermore, the increase of the imperfection amplitude causes that the two-zone model and the finite

elements deviate earlier from the fundamental solution, and that the ratio between minor and major strains when

necking occurs moves further away from the theoretical value. In addition, notice that the necking condition in the

stability analysis is attained for lower values of εxx and εyy than in the two-zone model and in the finite element

calculations. The greater relative differences –relative to the absolute values of εxx and εyy– correspond to χ = 0.5

and ∆ = 2%. This explains that the stability analysis underestimates the forming limit diagrams calculated with

the two-zone model and the finite elements in Section 6, with increasing differences as the loading path moves

away from plane strain and as the imperfection amplitude increases.
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Marciniak, Z., Kuczyński, K., 1967. Limit strains in the process of stretch-forming sheet metal. International

Journal of Mechanical Sciences 9, 609–620.

Mercier, S., Granier, N., Molinari, A., Llorca, F., Buy, F., 2010. Multiple necking during the dynamic expansion

of hemispherical metallic shells, from experiments to modelling. Journal of the Mechanics and Physics of Solids

58, 955–982.

Mises, R.V., 1928. Mechanik der plastischen formänderung von kristallen. ZAMM - Journal of Applied Mathematics

and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 8, 161–185.

Molinari, A., Clifton, R., 1987. Analytical characterization of shear localization in themoviscoplastic materials.

Journal of Applied Mechanics 54, 806–812.

Mu, L., Jia, Z., Ma, Z., Shen, F., Sun, Y., Zang, Y., 2020. A theoretical prediction framework for the construction

of a fracture forming limit curve accounting for fracture pattern transition. International Journal of Plasticity

129, 102706.

Needleman, A., 1988. Material rate dependence and mesh sensitivity in localization problems. Computer Methods

in Applied Mechanics and Engineering 67, 69–85.

Nemat-Nasser, S., Li, Y., 1998. Flow stress of f.c.c. polycrystals with application to OFHC Cu. Acta Materialia

46, 565 – 577.
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