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Abstract
In this work, global optimization techniques based on interval arithmetic are proposed to analyze and synthesize sliding mode
(SM) controllers. The proposed methodology allows generating a series of maps, called subpavings, which put in evidence the
required relationships among tuning parameters, disturbances and control amplitude to fulfill the sufficient condition of SM
in a guaranteed way. The a priori knowledge of the control power necessary to guarantee SM behavior of nonlinear systems
despite parameter uncertainties and external disturbances is an advantage of this proposal compared to traditional tuning
methods, which usually fall into over-sizing solutions. Although the methodology is developed in the context of conventional
first-order SM controllers, it could be extended to any other SM design approach.

Keywords Nonlinear control systems · Sliding modes · Robust control design · Global optimization · Interval analysis

1 Introduction

The design of controllers based on sliding modes (SM) is
characterized by its applicability to nonlinear systems and
by its robustness. Extensive studies have been carried out
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in this area based on classical methods like state-feedback
sliding surface design, optimization-based designs or even
SM methods that combine adaptive control features [1–3].

Conventional designs are performed in two stages. The
first stage is devoted to find a sliding manifold on which the
desired closed-loop dynamics is achieved. The second stage
consists in designing a discontinuous action and a switching
logic that enforce the system to reach the prescribedmanifold
and to slide on it from then on [4–6]. The challenge in this
type of design is to find a manifold and a control action that
satisfy the necessary and sufficient condition for SM exis-
tence, at least in the desired operating range of the system.
The traditional design consists in delimiting the parameters
of the system by its extreme values, and then to obtain the
constant control action necessary for SM operation which
is finally tested through simulation [1,7,8]. However, this
non-optimal design may not guarantee SM for some possible
states of the system, or even worse, it could lead to extremely
conservative solutions thus degrading the controller perfor-
mance (according to, for instance, power consumption or
chattering).

To overcome these problems, adaptive and optimization
techniques have been exploited. Adaptivemethods adjust on-
line the coefficients of the chosen surface and the control
action with the aim of reducing chattering and unmatched
disturbances effects. Azimi and Shahravi [9] and Wang et
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al. [10] use a time-varying commutation law, where its coef-
ficients are adapted online and the exact knowledge of the
system is not a priori necessary. Utkin et al. [11] proposes a
similar method seeking to reduce the value of discontinuous
action in order to mitigate chattering effects. Wan et al. [12]
combine SM design with a neural network that adapts the
control signal according to its distance to the desired surface.
In all of these works, although stability and robustness crite-
ria are given, the robustnessmargin is not generally analysed,
i.e. up to which excursion in system parameters the expected
behavior will remain. Optimization methods, on the other
hand, seek to optimize a functional via quadratic optimization
or linear matrix inequalities, looking for the optimal sliding
manifold. In Shtessel et al. [8] the optimal tuning of the SM
manifold is transformed into a linear quadratic regulation
(LQR) problem, while the design of the discontinuous con-
trol action is addressed separately. In contrast, Edwards [13]
provides an optimal design, via LMIs, that considers both
the SM dynamics and the control costs required to maintain
sliding. Also, the work of Salamci et al. [14] seeks to solve
the problem of SM optimal controllers in nonlinear systems
using a recursive approximation with linear models together
with an optimization criterion for the selection of the control
to apply. Despite their attractive features, these approaches
apply to linear systems or require linearization in order to
perform the optimization.

In this paper, an alternative design methodology is pro-
posed, which essentially inverts the order of the design steps.
That is, starting from the system dynamics, bounded uncer-
tainties and disturbances, and control power, an optimal SM
dynamics, i.e. an optimal sliding manifold, is derived. To
this end, the proposal integrates optimization techniques
based on interval arithmetic with classical SM tools. Dif-
fering from other proposals, global optimization techniques
are used here so that the approach can be applied with
guarantees to nonlinear systems. In particular, Interval
Branch and Bound (IBBA) and Set Inversion Via Interval
Analysis (SIVIA) algorithms are combined to find an optimal
controller for a particular criterion, considering the possible
uncertainties and disturbances of the nonlinear system. Also,
a series of maps called subpavings are obtained that provide
the state-space subsets where the designed control will have
a guaranteed behavior. These maps serve as SM design tool
even for adaptive approaches. Summarizing, the main con-
tributions of the paper are:

– An SM optimal tuning controller methodology that uses
a customizable optimization function and can deal with
nonlinear dynamics subjected to parameter uncertainties
and external disturbances.

– A series of maps that determine areas of guaranteed SM
operation and show sensitivity to parameter variations,

Fig. 1 AUV Ciscrea

thus serving as analysis and design tools for SM con-
trolled systems.

As study case, the proposed tuning method is applied to
the heave direction of the autonomous underwater vehicle
(AUV) Ciscrea (see Fig. 1). The environment where AUVs
work are unstructured, partially unknown and highly per-
turbed. Furthermore,AUVsare very sensitive tomodel-based
controller designs because their models include uncertain
hydrodynamic parameters [15–17]. All these challenges jus-
tify robust control approaches like SM techniques with
particular care about system’s uncertainties and disturbances.
Several papers in the bibliography have applied SMcontrol to
deal with the challenges of the application, particularly using
adaptive algorithms [3,18,19]. The use of interval arithmetic
in the context of AUVs has been more relegated to state esti-
mation [20,21]. In the context of SM, its use has been as a
complement to get on-line controllers with continuous adap-
tation of the command signal [22,23], or to add robustness to
the controller design [24]. Nevertheless, global optimization
based on interval arithmetic can also be used to synthesize
controllers from different criteria or control methods, such
as H∞ criteria [25] or Quantitative Feedback Theory [26].
One of the objectives of this paper is to extend the global
optimization approach to sliding mode control.

The article is structured as follows: Sect. 2 establishes the
principles of SM and the arithmetic of intervals, as well as
the statement of the optimization problem. Section 3 formu-
lates SM analysis and synthesis problems as optimization
ones. Then, Sect. 4 applies the optimization approach to the
SM control of the AUV Ciscrea (see Fig. 1). Finally, some
concluding remarks are given.
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2 Theoretical framework

In this section an introduction to SM, global optimization and
interval analysis is performed. The concepts given here will
provide the basis for understanding the Sect. 3 “Proposal:
GO as a SM tuning tool”.

2.1 SM control essentials

In order to design an SM controller, a manifold in the state
space must be selected according to some performance cri-
terion. This manifold, which must be in accordance with
the physical constraints of the system, governs the sys-
tems dynamics during the sliding motion. In addition to the
manifold selection, a discontinuous law must be designed to
enforce the state trajectories towards the manifold from both
sides.

Consider a nonlinear perturbed system of the form:

�
ẋ = f (x) + g(x)u + d(x, t)
y = h(x)

(1)

where x ∈ R
n is the system state, u ∈ R is the control signal,

y ∈ R is the system output, f (x) and g(x) are the drift
and control vector fields in R

n , d(x, t) ∈ R
n × R

+ is the
disturbance vector encompassing uncertain parameters and
external perturbations, and finally h(x) is a scalar function
in Rn .

The switching policy can be defined as:

u =
�
u− i f σ(x) < 0
u+ i f σ(x) > 0

(2)

in accordance with the sign of the auxiliary output σ(x),
which can be interpreted as the system output that vanishes
on the desired manifold

S = �
x ∈ R

n | σ(x) = 0
�
. (3)

The sliding surface and switching lawmust be designed to
fulfill the so-called reaching condition that is sufficient and
necessary for SM existence [1]:

�
σ̇ (x) < 0 i f σ(x) > 0
σ̇ (x) > 0 i f σ(x) < 0

(4)

For this condition to locally hold on both sides of S, σ̇ (x)
must depend on the discontinuous signal u. This necessary
condition constrains the family of sliding surface candidates.
Additionally, u− and u+ must be properly designed. After
reaching the sliding surface S, provided (4) holds, a very
high frequency (ideally infinite) commutation is established,
forcing the system to slide on it.

There exists a smooth control equivalent to the
discontinuous law in the sense that, once on the surface S, the
system state moves on S in the same way as it does with the
discontinuous control [1]. This so-called equivalent control
ueq(x, t) can be obtained from:

�
σ(x) = 0
σ̇ (x) = dσ

dx ẋ = L f σ + Lgσueq + Ldσ = 0
(5)

where the operator L f h(x) : Rn → R (directional or Lie
derivative) denotes the derivative of a scalar field h(x) :
R
n → R in the direction of a vector field f (x) : R

n → R
n

L f h(x) = ∂h
∂x f (x). From (5), the smooth control law that

makes S an invariant subset is given by:

ueq(x, t) = − L f σ

Lgσ
− Ldσ

Lgσ
(6)

Taking this into account, the necessary and sufficient con-
dition for SM existence (4) can be rewritten in terms of ueq .
From (6), Lgσ �= 0 establishes the necessary condition for
the existence of ueq and SM. Moreover, a sufficient condi-
tion for the local existence of the SM over S can be derived
from (4) and (5), considering (without loss of generality)
u+ > u−:

u−(x) < ueq(x, t) < u+(x) (7)

Obviously, this equivalent control is fictitious and in
general cannot be constructed because of its dependence on
the uncertain d(x, t).

With regards to the disturbances, d(x, t) can always be
decomposed into two terms, one belonging to the tangent
space of S and the other aligned with g(x). Perturbations that
are tangent to S alter the SM dynamics but not its existence
condition. On the other hand, the SMdynamics is completely
invariant to perturbations aligned with g(x), which affect the
equivalent control and therefore the existence condition. In
fact, for a matched perturbation d(x, t) = g(x)δ(x, t), the
equivalent control can be written as ueq(x, t) = u∗

eq(x) −
δ(x, t) where u∗

eq(x) is the equivalent control of the unper-
turbed system. Furthermore, if uncertainty in the control
vector field is also considered, i.e. g(x) = g∗(x)(1+ δg(x))
where g∗(x) is the control vector field of the unperturbed sys-
tem, then ueq is related with the unperturbed u∗

eq as follows
(see [1] and references therein):

ueq(x, t) = 1
1+δg(x)u

∗
eq(x) − δ(x, t)

u∗
eq(x) = − L f σ

Lg∗σ

(8)

Whenever the necessary and sufficient condition for SM
existence (7) holds in a given region of the state space for any
bounded disturbance, the controller will be said robust. If, in
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addition, there is no disturbance on the tangent subspace of
the sliding surface, i.e. if the disturbance is alignedwith g(x),
the SM will be said strongly invariant.

2.2 Global optimization (GO)

The optimization goal is to achieve an optimal design of the
sliding surface for a given criterion. This requires checking
the necessary and sufficient condition of SM existence for
all admissible excursions of state variables, system param-
eters and external disturbances. With this aim, consider a
continuous constrained optimization problem,

�
inf
k∈Rn

m(k)

subject to c(k) ≤ 0,
(9)

where

– m (Rn → R) is the objective function.
– k ∈ R

n is the optimization variable.
– c (Rn → R) is the function that defines the subset where

the solution is searched.

The solution to this problem (the minimizer), is expressed
as k∗. It is the point where m is minimum over the set
defined by {k ∈ R

n, c(k) ≤ 0}. The minimum, denoted as
m∗ = m(k∗), fulfills,

m(k) ≥ m∗, ∀k ∈ R
n such as c(k) ≤ 0. (10)

Whenm and c are not convex functions, local optimization
techniques do not guarantee convergence to the global solu-
tion k∗. In contrast, global optimization methods converge
to the global minimum and supply an enclosure [m∗,m∗] of
m∗.

In the following subsection, the global optimization algo-
rithm of Branch and Bound based on interval arithmetic is
revisited [27].

2.3 Interval arithmetic

The proposal of this work is based on the Interval Branch and
Bound Algorithm (IBBA) and the Set Inversion Via Interval
Analysis (SIVIA) algorithms [28]. The concepts of real inter-
vals and inclusion functions are introduced here as they will
be used to represent the bounded uncertainties and sliding
functions in the next section. This way, the IBBA algorithm
will be exploited as a robust SM tuning tool.

A real interval [k] = [k, k] = {k | k ≤ k ≤ k} ∈ IR is
a closed connected subset of R delimited by its endpoints
k ∈ R∪{−∞} and k ∈ R∪{+∞}. Accordingly, a box [k] is
an n-dimensional interval vector belonging to the space IRn

[29].

An inclusion function [m] of m mapping IRn into IR ful-
fills the property m([k]) = {m(k), k ∈ [k]} ⊆ [m]([k])
Interval arithmetic extends common operators (+,−,×, sin,
cos, exp, log, . . . ) to IR and provides inclusion functions of
most analytic functions.

Considering the problem (9), if inclusion functions of m
and c exist, k∗ can be searched in K ⊂ IR

n . Furthermore,
a guaranteed lower bound m and an upper bound m of m∗
can be achieved using the IBBA. To compute this, IBBA
repeatedly bisectsK in smaller boxes [ki ] and discards them
when it is proven thatk∗ /∈ [ki ]. This happens if the constraint
is not satisfied over [ki ]:

[c]([ki ]) > 0 ⇐⇒ ∀k ∈ [ki ], c(k) > 0,
�⇒ k∗ /∈ [ki ], (11)

or if a feasible point k̃ has been found (through the testing of
random points in each box) such that any points in [ki ] can
provide a better feasible solution,

[m]([ki ]) > m(k̃) ≥ m∗ �⇒ k∗ /∈ [ki ]. (12)

The IBBA stops when the distance between m and m
reaches the desired precision �, with

m = inf
i

[m]([ki ]), and m = m(k̃). (13)

Figure 2 illustrates the IBBAbehaviour.Box [k1] is proved
not to contain theminimizer k∗ because to Property (11), and
similarly boxes [k2] and [k3] because to Property (12).

Through the creation of a subpaving, that is the union of
non-overlapping boxes [30], the branch and bound method
SIVIA provides an approximation of the feasible region of
K. It bisects K in smaller boxes [ki ] until the constraint is
proved to be fulfilled over [ki ] as a result of (14) or not to be
fulfilled due to (11).

[c]([ki ]) ≤ 0 ⇐⇒ ∀k ∈ [ki ], c(k) ≤ 0 (14)

SIVIA algorithm stops when boxes [ki ] reach a minimum
size �. From Fig. 2, SIVIA will return the subpaving com-
posed of [k1], [k2], [k3] and [k4]. In this case, it can be
proved that [k4] is a subset of the feasible set, [k1] is not and
that nothing could be concluded for [k2] and [k3]. It means
that [k4] is an inner approximation of the feasible set and
[k1] ∪ [k2] ∪ [k3] is an outer approximation. Through the
bisection of [k2] and [k3] in smaller boxes, these approxi-
mations can be improved.

To conclude, on one side IBBA has [m], [c], K and d
as inputs, and on the other a feasible point k̃ and a guaran-
teed enclosure [m,m] of the global minimum m∗ as outputs.
SIVIA algorithm has [c], K and � as inputs and gives a sub-
paving which characterizes the feasible region.
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m, c

k0

m

c

k̃

m

m

K

[k1] [k2] [k3] [k4]

[k2]× [m]([k2])

[k3]× [c]([k3])

Fig. 2 Illustration of IBBA and SIVIA algorithms

3 Proposal: GO as a SM tuning tool

This section is devoted to solve the problems of analysis
and synthesis of SM using a GO approach. These problems
are not convex in the general case. Hence, the global opti-
mization algorithms presented just before are suited to solve
such problems. Although the complexity of these algorithms
grows exponentially with the number of variables, since they
rely on a Branch and Bound structure, they are able to solve
sliding mode problems of reasonable size as shown in the
study-case. The main advantage of using global optimiza-
tion over other optimization techniques (convex relaxation,
local optimization, etc) to solve non-convex problems lies
on the fact that the convergence to the global optimum is
guaranteed.

3.1 SM analysis problem

Consider an objective sliding surface σ(x) = 0 satisfying the
SM necessary condition Lgσ �= 0. The SM analysis problem
involves verifying if ueq fulfills the existence condition (7).
This problem can be posed as follows,

�
sup
δ∈Δ

a(θ , δ) (15)

with θ being a vector of constant tuning parameters given by
the operator (for example coefficients of the sliding surface),
δ the vector of variable parameters, Δ a subset of IRnδ with
nδ the dimension of δ and a is the analysis function:

a = max
δ∈Δ

(u− − ueq(θ, δ), ueq(θ , δ) − u+) (16)

IBBA can provide an enclosure [a, a] of the minimum a∗
useful to evaluate the SM condition over σ(x) = 0. If δ = x,
then the equivalent control of the unperturbed system u∗

eq will
be considered in (16) and theSMexistence of the unperturbed
system on a bounded region Δ of the state space will be
evaluated in (15). That is, the nominal case will be addressed.
On the contrary, if δ includes also all system uncertainties
and external disturbances, then the equivalent control of the
perturbed system ueq will be considered in (16) and the SM
existence of the perturbed system will be evaluated in (15).
That is, the robust problem will be addressed. From Property
(10), we can derive Properties (17) and (18).

a < 0
�⇒ a∗ < 0
⇐⇒ ∀δ ∈ Δ, max(u− − ueq (θ , δ), ueq (θ , δ) − u+) < 0
⇐⇒ ∀δ ∈ Δ, u− − ueq (θ , δ) < 0 and ueq (θ , δ) − u+ < 0
⇐⇒ ∀δ ∈ Δ, u− < ueq (θ , δ) and ueq (θ , δ) < u+

(17)
a ≥ 0

�⇒ a∗ = a(δ∗) >= 0
⇐⇒ max(u− − ueq (θ , δ∗), ueq (θ , δ∗) − u+) ≥ 0
⇐⇒ ∃δ ∈ Δ, max(u− − ueq (θ , δ∗), ueq (θ , δ∗) − u+) ≥ 0
⇐⇒ ∃δ ∈ Δ, u− − ueq (θ , δ) ≥ 0 or ueq (θ , δ) − u+ ≥ 0
⇐⇒ ∃δ ∈ Δ, u− ≥ ueq (θ , δ) or ueq (θ , δ) ≥ u+

(18)

Property (17) provides a sufficient condition to prove
that the system will slide on the sliding surface S over the
subsetΔ. Conversely, Property (18) provides a sufficient con-
dition that the systemwill not slide over S in allΔ. In fact, the
systemwill leave S at least at δ∗ the solution to Problem (15).
When 0 ∈ [a, a], it is not possible to provewhether or not θ is
a feasible solution since none of the conditions of Properties
(17) and (18) is satisfied.

3.2 SM synthesis problem

The synthesis problem consists in choosing a sliding sur-
face σ(x, θ) = 0 that guarantees the fulfillment of the SM
existence condition for all admissible variations of system
parameters and environment perturbations. This goal can be
achieved by obtaining the set of all tuning parameters for
which the SM existence condition holds, from where the
designer could find θ by minimizing a cost function within
this set. SIVIA algorithm and IBBA are suited to perform
such computation.

LetΘ be a subset of IRnθ , l : Rnθ �→ R be a cost function
given by the system designer. It is assumed that an inclusion
function of l is available, i.e. l has an analytic expression.

We define the analysis function at θ by:

aθ = max(u− − ueq(θ, δ), ueq(θ , δ) − u+) (19)
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and

a∗
θ = inf

δ∈Δ
aθ (δ) (20)

is the minimum of Problem (15) with θ fixed. We also define
the function

asup : IRnθ �→ IR

θ → a∗
θ .

(21)

The optimization problem (22) represents generically the
synthesis task

�
inf
θ∈Θ

l(θ)

s.t. asup(θ) < 0
(22)

The constraint of Problem (22) guarantees the SM existence
condition and implies the resolution of the analysis prob-
lem (15). Using interval analysis, an enclosure of asup over
a box [θ ] can be provided [31]. Thus, IBBA can be used to
solve Problem (22), while SIVIA can be used to characterize
the set defined by the constraint

{θ ∈ Θ, asup(θ) < 0} (23)

In the literature, this kindof constraint is called aSemi Infinite
Constraint (SIC), since it is equivalent to the infinite set of
constraints

asup(θ) < 0 ⇐⇒ a∗
θ < 0

⇐⇒ aθ (δ) < 0, ∀δ ∈ Δ.
(24)

Optimization problems involving SIC are called Semi Infi-
nite Programs (SIP) and can be solved in a global way with
different methods [32,33]. Furthermore, the characterization
of the set defined by SICs has been studied in several works
[34,35].

4 Application to the AUV heave direction
control

The proposed technique is applied to the control of the AUV
Ciscrea heave axis. Given the disturbances and uncertain-
ties present in this type of application, the use of robust
controllers is justified [36,37]. This problem will be ana-
lyzed from the controller design point of view, and series of
tuning/analysis maps called subpavings will be generated.

4.1 AUV Ciscreamodel

The model of the Ciscrea robot presented in Rosendo et al.
[38], reduced to the heave direction, is used. This model

is based on the ideas presented in [39] using parameters
borrowed from [17]. Two coordinate systems are introduced:
a NED-frame (North East Down) and a B-frame (Body fixed
reference) for the localization as it is described in Fig. 1.

The modeling of the heave direction is done by:

MRB z̈ + CRB(ż)ż = τenv + τhydro + τpro (25)

τhydro = −MAz̈ − CA(ż)ż − D(|ż|)ż − Γ (z) (26)

where all the parameters and functions of themodel are listed
in Table 1 and distances are in meters.

Below, some considerations and approximations are given
for some of the functions and parameters of the model:

– MA: added mass, is a virtual concept representing the
hydrodynamic forces that any accelerating emerged-
object would encounter due to the inertia of the fluid.

– CA and CRB are dismissed in the nominal model due to
the low speed application.

– D(|ż|): damping in the fluid, is approximated by a
linear and a quadratic term, DL and DNL , respectively:
D(|ż|) = DL + DNL |ż|. Nominal values of these terms
are DL = 0 and DNL = 80.37.

– Γ (z) is assumed constant in the model with nominal
value γ = 0.074 (which implies that the AUV has almost
null flotation) due to the little variation of the restoring
forces in the given application.

For more details about the mathematical model and numeri-
cal values used, refer to Rosendo et al. [38] where this model
has been developed and experimentally tested.

The AUV model (25)–(26) with the above considera-
tions taken into account fits the nonlinear dynamical model
(1) with x = (z, ż), u = τpro, y = z, g(x) = g =
(MRB +MA)−1, f (x) = [1; 0]+ g · (−DNL |x2|x2 −γ ); the
perturbation d(x, t) = g · δ(x, t) is clearly collinear with g
being δ(x, t) = τenv(t) − (CRB(ż) − CA(ż) − ΔDNL |ż| −
DL)ż − (Γ (z)− γ ) and the uncertainty in the control vector
field is δg = −g · (ΔMRB + ΔMA).

4.2 Global optimization for SM design

First, a desired SM dynamics is established. In particular,
a first-order linear time response of the heave position is
prescribed in which the time constant will be the tuning
parameter to optimize. The sliding surface (3) is therefore
defined as

S =
�
(z, ż) ∈ R

2 | σ(z, ż = (zd − z) − λż = 0
�

(27)

where zd is the reference position and λ is the tuning
parameter. It can be easily proved that the necessary SM con-
dition Lgσ �= 0 is fulfilled. The second step is to choose the
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Table 1 Nomenclature of AUV
model

Parameter Description

MRB AUV rigid-body mass. Nominal value 14.385 kg

MA Added mass. Nominal value 67.141 kg

CRB Rigid-body induced coriolis-centripetal

CA Added mass induced coriolis-centripetal

z Heave position

ż Heave velocity

D(|ż|) Damping

Γ (z) Restoring forces (weight and buoyancy)

τenv Bounded environmental disturbances (wind, waves and currents)

τhydro Hydrodynamic forces

τpro Total propeller forces in heave direction

minimization function. For the prescribed first-order dynam-
ics, the optimal λ is chosen as the fastest one. Accordingly,
the optimization function is l(θ) = −λ.

The third step is to determine the expression of the
equivalent control that is required by the optimization algo-
rithm. The equivalent control for the unperturbed u∗

eq and
perturbed system ueq are then derived:

u∗
eq = −λż(MRB + MA) + DNL |ż|ż + γ

ueq = u∗
eq − λżΔMRB+ΔMA

(MRB+MA)
− δ(z, ż, t)

δ(z, ż, t) = τenv(t) − (CRB − CA − ΔDNL |ż|
−DL)ż − (Γ (z) − γ )

(28)

The limits u− and u+ of the SM existence condition
(7) are given by the maximum propeller torque |u−| =
|u+| = τmax . For the AUV Ciscrea, τmax = 6 Nm in
the nominal case. The discontinuous control is therefore
τpro = τmaxsign(σ ).

Then, the optimization function, the available control
effort, the expression of the equivalent control and the inter-
vals of all variable parameters (including state variables) are
fed to the optimization algorithm, which will return the opti-
mal λ. This way, the SM of the system will be robust over
the prescribed excursions of the state space and all other
parameters and external disturbances.

Below, the variables selection for the optimization
problem (22) is given:

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ λ

Θ ↔ [0, 2]
δ ↔ (ż, τenv)

T

Δ ↔ ([−0.15, 0.15], [−3, 3])T
(29)

For the sake of brevity, the nominalmodel of theAUVwas
considered and just the environment torque τenv is considered
as system disturbance. The ranges for speed and environment
torque are consistent with the Ciscrea [38]. Particularly, note

that the AUV speed is bounded by [−0.15, 0.15] m/s and the
environment torque is limited to [−3, 3] Nm. Note also that
no uncertainty in the model parameters is considered in this
step, so just robustness against bounded environment torque
is guaranteed.Of course, all uncertain parameters of theAUV
model can be incorporated in δ, leading to a design robust
against all these uncertainties too.

For the optimization problem posed above, the IBBA
algorithm provides an enclosure [−0.3885,−0.3842] of the
minimum. This means that λ = 0.3842 is the best feasible
point, i.e. is the fastest λ that guarantees robust existence of
SM over the variable intervals. If precision is increased, a bit
faster λ ∈ [0.3842, 0.3885] could be obtained.

4.2.1 Comparison

It is interesting to compare the previous result with a tradi-
tional optimal tuning of SM [8]. The quadratic optimization
technique applied to the AUV Ciscrea provides the optimal
λ that minimizes the weighted quadratic errors in speed and
position. For instance,

– if position and speed are weighted equally, then the opti-
mum is λ = 0.5

– if position is ten times more weighted than speed, then
the optimum is λ = 0.31.

This optimization depends on the weight assignment,
requires the system linearization and is completely decou-
pled from the SM existence conditions. In fact, after the
sliding surface is designed, the control limitsmust be selected
to guarantee SM for given excursions of variables and
parameters or, alternatively, the admissible excursions are
determined based on the available control effort. In contrast,
the proposed optimization algorithm finds the optimal SM
tuning subject to the available control effort and the admis-
sible excursions of variables and parameters.

123



A global optimization approach for sliding mode tuning and existence maps generation 665

Fig. 3 Comparative example. (Color figure online)

A simulation example is presented in Fig. 3 where the
results of a traditional SM manifold optimization and the
proposed SM optimization subject to admissible variable
excursions are compared. In Fig. 3a, the SM manifolds

obtained from both optimizations are plotted with dotted
lines, the red one corresponds to λ = 0.5 and the black
one to λ = 0.38. The system was simulated with a constant
disturbance τtenv = −3, a maximum torque τmax = 6 and
an initial position error e(0) = 0.5. The state trajectories are
plotted with dashed lines. In black dashed line is shown the
trajectory with the proposed design λ = 0.38. It is observed
that the state starts from A and reaches the SM manifold
at B. From then on, the state evolves along the prescribed
manifold toward the equilibrium point. On the other hand,
the state evolution corresponding to the standard optimiza-
tion (λ = 0.5, red dashed line), reaches the optimal sliding
manifold at point C, but the available control power is not
enough to force the sliding regime. So, an undesirable open-
loop transient occurs until the surface is reached again at
point D where the SM finally establishes. Therefore, for the
standard optimal design to make sense, either the admissi-
ble state excursion should be reduced or the control power
should be increased. In fact, e|(0)| < 0.2 is necessary to
establish SM once the manifold is reached with τmax = 6 or,
alternatively, τmax > 8.3 is required to establish SM once
the manifold is reached from e(0) = 0.5.

The state trajectories for a smaller initial condition e(0) =
0.2 and for a higher control power τmax = 9 are shown with
blue and green lines, respectively. Figure 3b shows the dis-
continuous control actions for all the cases discussed above
using the same color code.

4.3 Global optimization for SM analysis and design
assistance

The proposed SM design based on (22) finds the best
tuning for the given optimization function, in this case study
the fastest dynamics, subject to predetermined excursions
of variables and parameters. Additionally, this work pro-
vides other powerful design and analysis tools. By means

Fig. 4 SM subpaving analysis for an exact modeling of the system. (Color figure online)
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of (23), a series of maps can be developed providing much
more insight into the robustness of the design. In fact, the
generated maps help determining admissible excursions and
operational limits, exploring the sensitivity of the optimal
tuning with respect to state and parameter excursions, and
manually tuning the controller. These maps show admissible
excursions of variables and system parameters as function
of design parameters. In the following, different optimiza-
tion problems will be posed to illustrate the potentiality of
the proposed tool. For the sake of clarity of presentation, 2D
maps are presented.

First, the subpaving λ versus ż with the environment
torque as variable parameter is built. This implies solving
the problem given by (23), for the following variables and
parameters:

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ (λ, ż)
Θ ↔ ([0, 2], [−1, 1])T
δ ↔ (τenv)

Δ ↔ ([−3, 3])T
(30)

Figure 4 shows the resulting subpavings for three dif-
ferent torque magnitudes produced by the AUV thrusters,
where the nominal case is at the center. These results are
obtained applying SIVIA with � = 0.01. In the subpavings,
green boxes imply satisfaction of the imposed conditions, red
boxes no satisfaction of them and blue boxes indicate that the
algorithm cannot determine the fulfillment conditions. This
methodology allows identifying in a guaranteed way where
the objective dynamics will be achieved despite excursions
in the parameters/states of the system. From the results, it
is observed that the range of admissible dynamics increases
as speed decreases (note area around the ż = 0 axis). This
behavior is due to the fact that at higher speeds the inertia of
the AUVwill require greater torque in order to guarantee the
SM. Also it is noticed in Fig. 4 the existence of two lateral
“branches” in the feasible zone, this is due to the non-linear
behavior of the system (DNL ).

Remark 1 It is important to note that although the red boxes
imply the non-satisfaction of the imposed conditions, this
only means that there is at least a combination of the system
parameters which SM is not guaranteed for.

It can be appreciated that a 25% reduction in torque
(Fig. 4a) reduces the feasible area with respect to the nominal
case (Fig. 4b), while an 25% increase widens it (Fig. 4a). It is
possible to affirm from the results that even with variations of
25% in the available torque, the AUV will be able to work in
the region of speeds ż ∈ [−0.1, 0.1]with dynamics included
in the interval λ ∈ (0, 0.38].

Figures 5 and 6 show the time response of the system and
controller, while Fig. 7 depicts the state trajectories in the

Fig. 5 System step response

Fig. 6 Actuator signal for step response

phase plane. Three different values for λ are analyzed, the
maximum λ = 0.38 to guarantee SM, a lower λ = 0.20
(both values in the guaranteed area of Fig. 4b) and a larger
one λ = 0.60 (outside the guaranteed area of Fig. 4b).

The systems starts from an initial position z = 2 while
the set-point is zd = 1.5 An external disturbance τenv = −3
is applied from the beginning affecting the total torque. As
expected, it is observed in Figs. 6 and 7 that the SM estab-
lishes immediately after the state reaches the sliding surface
for λ = 0.38 and λ = 0.20. Figure 5 clearly shows that
the time response with λ = 0.38 is much faster than with
λ = 0.20. This means that choosing λ = 0.20 implies
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Fig. 7 State evolution in the phase space

over-sizing the thrusters, or alternatively that the system is
made unnecessarily slow. On the other hand, when λ = 0.60,
the SM is not established but after some undesirable long
transient. This is because the SM existence condition is not
fulfilled at the first approach to the surface. So, although the
sliding regime is much faster, the overall response in Fig. 5
is dominated by the open-loop reaching dynamics and even
an overshoot is observed.

So far, the behavior of the system under external distur-
bances and variations in the control power has been analyzed.
In the same way, it is possible to analyze what the effects of
parametric uncertainties are. As the first case of analysis, Fig.
8 shows a variation of 5%, 10%and 25% in theMa parameter,
observing a narrowing of the area with working conditions.
For this case, referring to (23), the variables and parameters
are:

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ (λ, ż)
Θ ↔ ([0, 2], [−1, 1])T
δ ↔ (τenv, MA)T

Δ ↔ ([−3, 3], [63.78, 70.49])T
(31)

where the interval forMA corresponds to the±5%excursion.
Obviously, the proposed methodology can be used to

evaluate the effects of combined system uncertainties. Fig-
ure 9 shows the effect of a 25% simultaneous variation in Ma

and DNL parameters. It is possible to observe that the effect
of DNL variation is dominant, considerably reducing the lat-
eral branches (in comparison with Fig. 8). The optimizations
problem in this case is posed as

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ (λ, ż)
Θ ↔ ([0, 2], [−0.5, 0.5])T
δ ↔ (τenv, MA, DNL)T

Δ ↔ ([−3, 3], [50.35, 83.92], [60.27, 100.46])T
(32)

Another problem of interest for a designer is to determine
the minimum control effort necessary to guarantee a given
dynamics (λ value). This involves performing the subpaving
of λ and |τmax | and solving (23) with:

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ (λ, |τmax |)T
Θ ↔ ([0, 2], [−7.5, 7.5])T
δ ↔ (ż, τenv)

T

Δ ↔ ([−0.15, 0.15], [−3, 3])T
(33)

The resulting subpaving is shown in Fig. 10, which allows
concluding that the fastest dynamics for τmax = 6 is
λ = 0.38. As expected, this result coincides with the result of
the first synthesis problem and Fig. 4b. Further, given a dis-
turbance bound and a speed excursion, the fastest achievable
dynamics (i.e. the largest λ) can also be identified. In other
words, this allows determining the minimum control effort

Fig. 8 SM subpaving analysis considering MA variation
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Fig. 9 SM subpaving analysis considering MA and DNL variation

Fig. 10 Reachable dynamics for |ż| ≤ 0.15 and |τenv | = 3

(τmax ) needed to establish a prescribed convergence time for
given intervals of state variables and uncertainties.

Finally, the procedure to determine the maximum distur-
bance that the system can endure without risking the SM
existence is illustrated. With this aim, the subpaving with λ

and τenv is performed. In this case (23) is solved for:

⎧⎪⎪⎨
⎪⎪⎩

θ ↔ (λ, τenv)
T

Θ ↔ ([0, 0.8], [−7, 7])T
δ ↔ (ż)
Δ ↔ ([−0.15, 0.15])

(34)

Figure Fig. 11 shows the results for different control
power. For the nominal case (Fig. 11b), it is concluded that
the system works as designed within the area of interest even
under a disturbance of |τenv| = 3. The subpavings for lower
and higher control torque (Fig. 11a, c) show how sensitive
the admissible external disturbance is to the control power.

Fig. 11 SM subpaving analysis considering τenv effects

Remark 2 Although this work is limited to the application of
conventional first-order SM, it could potentiality be applied
to other versions of SM, just introducing the necessary
modifications to the analysis equations. To illustrate this
point Fig. 10 could serve as a map to modify the control
signal considering the state of the system in adaptive SM.

5 Conclusions

Anew technique for SMcontrol tuningwas devolved through
the application of global optimization tools. The proposed
approach returns a tuning that is optimal for a given crite-
rion subjected to admissible excursions of state variables.
Moreover, a robust design is achieved by incorporating also
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intervals for uncertain parameters. The joint consideration
of SM dynamics, SM existence and uncertainties in the
optimization procedure is the main distinctive feature of
the proposal. Other advantages are that the optimization is
global and does not require system linearization as other
optimization techniques. Furthermore, the proposal provides
additional tools for SM analysis and design by the user.
In fact, by means of a subpaving analysis, the operational
region, the sensitivity of the design to different uncertainties
and the manual selection of tuning gains can be evaluated.

The potentiality of the proposal is illustrated by means of
an AUV control design as case study. The approach allowed
finding the fastest SM dynamics for given excursions of
the AUV speed and the environment torque. Furthermore,
admissible parameter inaccuracies, perturbations and state
excursions without risking the desired SM operation were
obtained.

Future research will be devoted to customize the opti-
mization functions including both manifold and control
parameters so that the SM dynamics and the control power
are simultaneously designed.

Acknowledgements Funding was provided by Direction Générale de
l’Armement, City of Brest, Consejo Nacional de Investigaciones Cien-
tíficas y Técnicas (AR) (Grant No. PIP0837), Universidad Nacional
de La Plata (Grant No. I216), Agencia Nacional de Promoción de la
Investigación, el Desarrollo Tecnológico y la Innovación (Grant No.
PICT2017 3211).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-
mechanical systems. CRC Press, Boca Raton

2. Liu J, Gao Y, Yin Y, Wang J, Luo W, Sun G (2020) Sliding mode
control methodology in the applications of industrial power sys-
tems. Springer, Berlin

3. Ramezani-al M, Tavanaei Sereshki Z (2019) A novel adaptive slid-
ing mode controller design for tracking problem of an AUV in the
horizontal plane. Int J Dyn Control 7:679–689

4. Mobayen S, BaleanuD, Tchier F (2019) Second-order fast terminal
sliding mode control design based on LMI for a class of non-linear
uncertain systems and its application to chaotic systems. J Vib
Control 23(18):2912–2925

5. Temel T, Ashrafiuon H (2015) Sliding-mode speed controller for
tracking of underactuated surface vessels with extended kalman
filter. Electron Lett 51(6):467–469

6. Corradini ML, Giambò R, Pettinari S (2015) On the adoption of
a fractional-order sliding surface for the robust control of integer-
order LTI plants. Automatica 51:364–371

7. MusmadeBB,Khandekar AA, Patre BM (2017) Slidingmode con-
trol design for robust tracking of open loop stable processes with
experimental application. Int J Dyn Control 5(4):1201–1210

8. Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding mode
control and observation. Control engineering. Birkhäuser, Basel

9. AzimiM, ShahraviM (2019) Stabilization of a large flexible space-
craft using robust adaptive sliding hypersurface and finite element
approach. Int J Dyn Control 8:644–655

10. WangL, ShengY, LiuX (2014)A novel adaptive high-order sliding
mode control based on integral sliding mode. Int J Control Autom
Syst 12(3):459–472

11. Utkin VI, Poznyak AS, Ordaz P (2011) Adaptive super-twist con-
trol with minimal chattering effect. In: 2011 50th IEEEConference
on decision and control and european control conference, pp 7009–
7014

12. Wan L, Su Y, Zhang H, Tang Y, Shi B (2019) Global fast terminal
sliding mode control based on radial basis function neural network
for course keeping of unmanned surface vehicle. Int J Adv Robot
Syst 16(2):1729881419829961

13. Edwards C (2004) A practical method for the design of slid-
ing mode controllers using linear matrix inequalities. Automatica
40(10):1761–1769

14. SalamciMU, OzgorenMK, Banks SP (2019) Sliding mode control
with optimal sliding surfaces for missile autopilot design. J Guid
Control Dyn 23(4):719–727

15. Fossen TI (2011) Handbook of marine craft hydrodynamics and
motion control. Wiley, New York

16. Londhe PS, Dhadekar DD, Patre BM, Waghmare LM (2017)
Uncertainty and disturbance estimator based sliding mode control
of an autonomousunderwater vehicle. Int JDynControl 5(4):1122–
1138

17. Yang R, Clement B, Mansour A, Li M, Wu N (2015) Modeling of
a complex-shaped underwater vehicle for robust control scheme. J
Intell Robot Syst 80(3):491–506

18. BessaWM, DutraMS, Kreuzer E (2010) An adaptive fuzzy sliding
mode controller for remotely operated underwater vehicles. Robot
Auton Syst 58(1):16–26

19. Sarhadi P, Noei AR, Khosravi A (2017) Adaptive μ-modification
control for a nonlinear autonomous underwater vehicle in the
presence of actuator saturation. Int J Dyn Control 5(3):596–603

20. Clérentin A, Delafosse M, Delahoche L, Marhic B, Jolly-Desodt
AM (2008) Uncertainty and imprecision modeling for the mobile
robot localization problem. Auton Robots 24:267–283

21. Rohou S, Jaulin L, Mihaylova L, Le Bars F, Veres SM (2017)
Guaranteed computation of robot trajectories. Robot Auton Syst
93:76–84

22. Rauh A, Aschemann H (2012) Interval-based sliding mode control
and state estimation for uncertain systems. In: 17th International
conference on methods and models in automation and robotics
(MMAR), pp 595–600

23. Senkel L, Rauh A, Aschemann H (2014) Robust sliding mode
techniques for control and state estimation of dynamic systems
with bound and stochastic uncertainty. In: Second international
conference on vulnerability and risk analysis and management
(ICVRAM) and the sixth international symposium on uncertainty,
modeling, and analysis (ISUMA)

24. Rauh A, Minisini J, Hofer E (2009) Verification techniques for
sensitivity analysis and design of controllers for nonlinear dynamic
systemswith uncertainties. Int JApplMathComput Sci 19(3):425–
439

25. Monnet D, Ninin J, Clement B (2017) A global optimization
approach to H∞ synthesis with parametric uncertainties applied
to AUV control. IFAC-PapersOnLine 50(1):3953–3958

26. Purohit H, Goldsztejn A, Jermann C, Granvilliers L, Goualard
F, Nataraj PSV, Patil B (2017) Simultaneous automated design
of structured QFT controller and prefilter using nonlinear
programming. Int J Robust Nonlinear Control 27(15):2529–2548

123



670 J. L. Rosendo et al.

27. Kearfott RB (1992) An interval branch and bound algorithm for
bound constrained optimization problems. J Glob Optim 2(3):259–
280

28. Ninin J (2010) Global optimization based on interval analysis:
affine relaxation and limited memory. PhD thesis, Institut National
Polytechnique de Toulouse—INPT

29. Moore R, Kearfott R, Cloud M (2009) Introduction to interval
analysis. Society for Industrial andAppliedMathematics, Philadel-
phia

30. Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval
analysis, 1st edn. Springer, London

31. Monnet D, Ninin J, Clément B (2016) A global optimization
approach to structured regulation design under H∞ constraints. In:
55th IEEE Conference on decision and control (CDC), Las Vegas

32. Mitsos A (2011) Global optimization of semi-infinite programs via
restriction of the right-hand side. Optimization 60(10–11):1291–
1308

33. Bhattacharjee B, Lemonidis P, Green WH Jr, Barton PI
(2005) Global solution of semi-infinite programs. Math Program
103(2):283–307

34. Goldsztejn A, Michel C, Rueher M (2009) Efficient handling of
universally quantified inequalities. Constraints 14(1):117–135

35. Ratschan S (2002) Approximate quantified constraint solving by
cylindrical box decomposition. Reliab Comput 8(1):21–42

36. Lapierre L (2009) Robust diving control of an AUV. Ocean Eng
36(1):92–104 Autonomous underwater vehicles

37. Elmokadem T, Zribi M, Youcef-Toumi K (2016) Trajectory track-
ing sliding mode control of underactuated AUVs. Nonlinear Dyn
84(2):1079–1091

38. Rosendo JL, Clement B, Garelli F (2018) Experimental validation
of constraint mitigation algorithm in underwater robot depth con-
trol. Proc Inst Mech Eng Part I J Syst Control Eng 233(3):264–275

39. FossenTI (2002)Marine control systems: guidance, navigation and
control of ships, rigs and underwater vehicles. Marine Cybernetics,
Trondheim, Norway

123


	A global optimization approach for sliding mode tuning and existence maps generation
	Abstract
	1 Introduction
	2 Theoretical framework
	2.1 SM control essentials
	2.2 Global optimization (GO)
	2.3 Interval arithmetic

	3 Proposal: GO as a SM tuning tool
	3.1 SM analysis problem
	3.2 SM synthesis problem

	4 Application to the AUV heave direction control
	4.1 AUV Ciscrea model
	4.2 Global optimization for SM design
	4.2.1 Comparison

	4.3 Global optimization for SM analysis and design assistance

	5 Conclusions
	Acknowledgements
	References




