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Abstract. Carrying uncertain information via a multivalued function can be found
in different settings, ranging from the computation of the image of a set by an in-
verse function to the Dempsterian transfer of a probabilistic space by a multival-
ued function. We then get upper and lower images. In each case one handles so-
called “thick sets’ in the sense of Jaulin, i.e., lower and upper bounded ill-known
sets. Such ill-known sets can be found under different names in the literature, e.g.,
“interval sets” after Y. Y. Yao, “twofold fuzzy sets” in the sense of Dubois and
Prade, or “interval-valued fuzzy sets”, ... Various operations can then be defined
on these sets, then understood in a disjunctive manner (epistemic uncertainty),
rather than conjunctively. The intended purpose of this note is to propose a uni-
fied view of these formalisms in the setting of possibility theory, which should
enable us to provide graded extensions to some of the considered calculi.
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1 Introduction

The links between interval calculus [19] and possibility theory [11, 30] are well-known,
as well as the interest for interval calculus in robust control [18]. The need for guaran-
teed approximation has led B. Desrochers and L. Jaulin to propose an original ”thick“
set and thick interval calculus [3, 4]. This research note starts with the study of links of
that latter calculus with other works dealing with uncertainty in the setting of possibility
theory and fuzzy set theory.

2 Thick sets and other related notions

A thick set [4] [[A]] on a referential U (in general Rn) is an interval in 2
U defined by

a pair (A∗,A∗) such that A∗ ⊂ A∗, namely

[[A]] = [A∗,A∗] = {A∈ 2
U ∣A∗⊂ A⊂ A∗} (1)



This means that it is an ill-known set that is lower and upper bounded. Formally speak-
ing, it can be represented by a fuzzy set with a tri-valued membership function µ:
µ ∶ U → {0, 1/2, 1} as, for instance, the ”ensembles flous“ in the sense of Gentil-
homme [17] who represents concepts by means of central area A∗ and a peripheral
areaA∗ \ A∗. We may also use sets based on Kleene logic, for which, in the peripheral
area, relevant information for concluding to belonging or not is incomplete (1/2 means
unknown). For instance, it is the case for rough sets [24] where uncertainty comes from
a lack of attributes for describing a set of objects exactly, or for twofold sets [10] where
uncertainty comes from a lack of information on the attribute values of objects. So for
rough sets, their extension is known, but their intension is ill-known (due to the lack of a
sufficient number of attributes for discriminating elements), while it is the converse for
twofold fuzzy sets, their intension is known and their extension is ill-known (the lack
of information on attribute values prevent to from deciding whether or not an element
satisfies or not a prescribed set of properties). See also the case of “interval sets” [27,
28].

Such generalized sets, at least viewed as a nested pair of sets, have been also in-
troduced in the fuzzy set literature at different times. Let us mention interval-valued
fuzzy sets (Zadeh [29], Sambuc [25] ) in particular, which are thick sets in the sense
of Jaulin, namely, pairs (F∗,F∗) of fuzzy sets that bracket an ill-known fuzzy set F :
µF∗ ≤ µF ≤ µF∗ (a particular case of type 2 fuzzy sets [29]). There are also “twofold
fuzzy sets” [10], which are pairs of fuzzy sets that are strongly nested (the support of the
former is included in the core of the other). They represent a set of elements that belong
more or less necessarily (certainly) to F, itself included in a superset of elements that
belong more or less possibly to F, these two fuzzy sets being induced by the fact that
the relevant information for concluding to belonging or not is incomplete. Besides, a
fuzzy set maybe viewed as a representation of a set with an ill-known location between
the core and the support of the fuzzy set, see, e.g., [23].

3 Epistemic sets and ontic sets

For making clear the intended meaning of thick sets, it is important to understand what
represent the sets handled in their definition. A set, be it classical or fuzzy, may represent

– either a constituted entity viewed as the conjunction of its elements - we then speak
of d’ontic sets, if nce the set either represents a real object, or constitutes the entity
that we are trying to identify.

– or a set of mutually exclusive possible values for a variable - we then speak of
epistemic sets if nce it reflects an imprecise piece of information on the value of a
variable.

This distinction is crucial for the proper handling of sets in computations. Thus a thick
set, as a set of sets, is epistemic and represents an ill-known set, which is itself con-
sidered as ontic; for example, a physical area for which one wants to guarantee the
coverage [14], for instance for making sure that a robot can pass in between two obsta-
cles [15, 16], is an ontic set.



4 Dempster’s construction

An example of thick interval is made by the pair of lower and upper sets of solutions,
A∗ and A∗ respectively, of the set equation

f(S) = A ⊆ Ω

where A is set and f ∶ U → Ω is an ill-known function belonging to a set Γ of
functions. It is a thick set inversion problem the solutions S of which all satisfy S ∈

[A∗, A∗], with
A∗ = {u ∶ ∀f ∈ Γ,∃a ∈ A ∣ a = f(u)}
= {u ∶ Γ (u) ⊆ A} = ⋂f∈Γ f

−1(A);
A
∗
= {u ∶ ∃f ∈ Γ,∃a ∈ A ∣ a = f(u)}
= {u ∶ Γ (u) ∩A ≠ ∅} = ⋃f∈Γ f

−1(A).
Dempster [1] uses this model for inducing lower and upper probabilities from proba-

bilistic space (Ω,P ) and a multivalued mapping Γ ∶ Ω → U . This mapping represents
the incomplete knowledge about an aleatory variable, i.e., a function f that relates a
sample space to an observation space U . The value u = f(ω) is a measurement of a
feature of ω. IF an aleatory experiment gives a result ω, the corresponding observation
is an ill-known value u = f(ω) ∈ Γ (u) if nce the measurement tool that should yield
u = f(ω) is imperfect. We are facing an ill-observed aleatory variable.

So we do not know the precise value of the probability Pf(A) = P (f−1(A)) of the
event f(ω) ∈ A on Ω, but only an upper bound P ∗(A) = P ({ω ∶ Γ (ω) ∩ A ≠ ∅})
and a lower bound P∗(A) = P ({ω ∶ Γ (ω) ⊆ A}). The same construction can be made
starting from a possibilistic space [9].

In this model, we are thus using the description of the inverse image f−1(A) of an
event A ⊂ Ω when the function f is ill-known. It is given by the thick subset [A∗, A∗]
of Ω. The interval [P∗(A), P∗(A)] = [P (A∗), P (A∗)] is the “probability” of this
thick subset, and represents the set of possible values of the probability P (f−1(A))
when f ∈ Γ .

5 Case of interval arithmetics

An illustration of what precedes is given by the pair of lower and upper sets of solutions
X∗ and X∗ of the equation x − u = v (and thus x = u + v) where u ∈ M,v ∈ N ,
M,N being intervals.

One may interpret the equation x − u = v in an uncertain context in two ways:
- Looking for the set

X
∗
= {x ∶ ∃u ∈M, v ∈ N, such that x = u + v}.
- or looking for the set

X∗ = {x ∶ ∀u∈M,∃v∈N, such that x = u + v}.
These maximal and minimal sets are respectively given by two set addition opera-

tions: namely Minkowski’s subtraction and addition defined respectively by

X
∗
=M ⊕N ={x ∶ (x⊖M) ∩N ≠ ∅}

={u + v ∶ u ∈M,v ∈ N}
X∗ =M ⊞ N ={x ∶ (x⊖M) ⊆ N}



with x ⊖M = {x − u ∣ u ∈ M}. M ⊞ N is the largest subset S such that ∀x ∈

S,∃v ∈ N, x− v ∈M . In other words, it is the subset of x such that −M translated by
x is included in N .

For instance, if M =[m,m′] and N =[n, n′], we have M ⊕N =[m+ n,m′ + n′],
and M ⊞ N =

[m + n′,m′ + n] if m + n′ ≤ m′ + n and M ⊞ N = ∅ otherwise. It can be checked
that M ⊞ N ⊆M ⊕N , and that the length of M ⊞ N is the length of M reduced by
the one of N .

The operation ⊕ is said to be optimistic, and the operation ⊞ is said to be pes-
simistic. It can be checked that:

M ⊞ N = ⋂
f∈Γ

f
−1(N) = ⋂

u∈M

u⊕N,

M ⊕N = ⋃
f∈Γ

f
−1(N) = ⋃

u∈M

u⊕N,

where u ⊕ N = {u + v ∣ v ∈ N} and x ⊖ M plays the role of Γ (x). Γ (u) =

{f(x) ∣ ∃u, f(x) = x−u and u ∈M} and then f−1(N) = {u+v ∣ u ∈M} =M⊕v.
Thus this is a particular case of Dempster’s construction where Ω is the domain of X ,
and U is the domain of v. In the notations of the previous section, one should write
M ⊞ N = N∗ and M ⊕N = N

∗. But here we see that M ⊞ N and M ⊕N do not
solve the same problem.

If M and N are epistemic sets representing ill-known values, M ⊕N describes the
uncertainty about x induced by the one on u and v. If N represents a tolerance interval
to be respected, M ⊞ N describes the values of x allowed for making sure that the
uncertainty about x − u remains bounded by N in spite of the fluctuations due to the
poor knowledge about u, described by M .

But, let us suppose that M and N are ontic, and represent the positions on the
real line of two rods. Then the length of M ⊕ N is the one of the rod obtained by
concatenation of M and N . By contrast, M ⊞ N is the set of points certainly covered
by the rod M if it is translated by a length v ∈ N .

These two operations ⊞ and ⊕ can be generalized when M and N are fuzzy inter-
vals [5, 8, 26].

6 An example: the problem of the two goats

Let us consider two goats, each one is attached to a stake by a rope the length of which
is 10 m. The position of the stakes, mi for goat i, i ∈ {1, 2} is ill-known. We only know
that

m1 ∈ [m1] = [0, 1] × [2, 10]andm2 ∈ [m2] = [10, 16] × [0, 1].

The area grazed by goat i is pervaded by uncertainty, due to the uncertainty on the
positions of the stakes. This is represented by the thick set

[[A(i)]] = [[A∗(i),A∗(i)]]



with
A∗(i) = [mi] ⊞ D,A∗(i) = [mi] ⊕ D,

where D is the disc with centrer 0 and radius 10. The area grazed by at least one goat is
the set A that belongs to the thick set

[[A]] = [[A(1)]] ∪ [[A(2)]] = [[A∗(1) ∪ A∗(2),A∗(1) ∪ A∗(2)]].

The set A is an ontic set, while the rectangles [m1],[m2] are epistemic (in black on
the figure). We are certain that none of the goats can reach the area in dark grey. Let us
note that the possible grazed areas are not all the subsets between A∗(1) ∪ A∗(2) and
A∗(1) ∪ A∗(2). The thick set is an encompassing approximation of the grazed areas
that are effectively possible.

Fig. 1. The grazed area contains the set A∗ (grey) and is contained in A∗ (grey + light grey)

7 Conclusion
This note has been suggesting the existence of links between several works having
different motivations. Thick sets are pairs of nested classical subsets. The framework
of possibility theory should allow us to extend their calculus to the case of fuzzy thick
sets, thus permitting to introduce gradedness in the uncertainty. However, for this fuzzy
set extension, one may think of two approaches: i) working in terms of alpha level-cuts
(which is certainly fine for the pessimistic part, but less obvious for the optimistic part),
or ii) looking for the solution of a fuzzy set equation of the formA+X = B. This raises
the question of the agreement between the two views. Besides, the work of Denœux et
al. [2] can also be seen as an extension of thick sets to belief functions.

8 Dedication

This short note is dedicated to Hung T. Nguyen. The first and the last authors of this note
had the privilege to meet Hung very early in the late seventies short after he published an



important paper discussing the expression of Zadeh’s extension principle (for extending
a mapping to fuzzy arguments) in terms of alpha level-cuts with application to fuzzy
arithmetics [20]. Hung has been a continuous supporter and contributor to fuzzy set
theory, and the first and the last authors were fortunate enough to collaborate with him,
in a friendly manner, on two overview papers on important fuzzy set issues [6] [7].
Among all his contributions, let us also particularly mention his pioneering works on
the relation between belief functions and random sets [21], and his works on interval-
and fuzzy-valued probabilities [22], a topic clearly related to the issues of this research
note.
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