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Abstract: This paper presents a series of dynamic simulations for a ship towed by kite. To ensure
time efficient computations, seakeeping analysis with forward speed correction factors is carried out
in the frequency domain and then transformed in the time domain by convolution. The seakeeping
modeling is coupled with a zero-mass kite modeling assuming linear dependence of aerodynamic
characteristics with respect to turning rate. Decoupled (segregated) and coupled (monolithic)
approaches are assessed and compared in different environmental conditions. Results show that in
regular beam waves, strong interactions between the kite and the ship motions are captured by the
monolithic approach. Around the wave frequency, especially for the lower one tested (0.4 rad/s),
a kite lock-in phenomenon is revealed. It is concluded that the mean kite towing force can be
increased whereas the ship roll amplitude can even be decreased compared to a non-kite assisted
ship propulsion configuration.

Keywords: ship dynamics; kite assisted propulsion; time-domain seakeeping simulations; dynamic
coupling lock in effects

1. Introduction

This work is part of the beyond the sea® research program launched by Yves Parlier and managed
in partnership with French Ministry of Defence with the support of French Environment and Energy
Management Agency (ADEME). The project attempts to develop a tethered kite system as an auxiliary
device for the propulsion of merchant ships. The existing knowledge on ships towed by kite has
demonstrated great prospects for this technology in terms of CO2 emissions and fuel savings. However,
studies on the limitations of this concept to guarantee the safety and the integrity of the ship are
very limited.

Considering the mean kite towing force, Leloup et al. [1] and Naaijen et al. [2] solved the horizontal
balance equations of a ship towed by kite to determine the fuel savings. Ran et al. [3] studied the
contribution of a kite to the mean ship thrust, drift angle and rudder angle. All these previous studies
neglected the interactions between the kite and the ship. The kite force is imposed as a predefined
external force to the ship. The motions of such a system are highly dynamic since a kite experiences
a periodic dynamic flight. In Bigi et al. [4], the influence of the kite attachment point on the deck is
investigated on a fishing vessel equipped with a kite. This study is limited to horizontal ship motions.
A maneuvering modeling is implemented with a monolithic coupling approach between the ship and
the kite. The water is supposed to be calm and Bigi et al. [4] did not take into account the effect of the
radiated waves on the ship motions. Thus, the influence of the kite excitation frequency on the added
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mass and damping of the ship is neglected. Since the hydrodynamic added mass and damping may
depend strongly on the frequency of the motion [5–8], this assumption is questionable.

A ship sailing in waves is commonly studied through seakeeping codes based on the potential
flow theory under the assumption of linear response of the ship to a given perturbation on a mean
path. These studies are usually carried out in the frequency domain [9,10]. However, since the kite
and the ship may be strongly coupled, their interactions cannot be directly computed through a
spectral description of the kite excitation. Such computations are therefore limited to weak coupling.
To perform a strong coupling between the kite and the ship, a time domain formulation is required.
The aim of this paper is to assess the importance of taking into account the coupling between the kite
and the ship motions by a time domain method.

As highlighted by Skejic [11], fast time-domain methods able to compute the 6 dof combining
horizontal and vertical motions of a ship are based on the concept of linear convolution [12–14].
Such methods are first introduced by Cummins [15] in 1962. Böttcher [12] developed unified theories
that couple the linear manoeuvring and seakeeping. In specific, he extended the method to simulate
large amplitude motions taking into account nonlinear effects with Froude–Krilov effort and nonlinear
roll damping for instance. To enable a fast computation of the linear convolution product, the use of
state-space systems is introduced [13,16,17]. The identification of the state-space systems is detailed
in [18] for the zero forward speed case. In this paper, this method is extended to the forward speed case.

Kite modeling is formulated under the zero mass assumption. Behrel et al. [19] presents
experimental results comparing zero mass and point mass modeling. Differences are about few
percent. Actually, both modelings give the same results when their coefficients identification is
consistent. If taking into account the mass can be important for control issue, this is clearly not the case
for performance assessment. Studies on kite performance assessment as ship propulsion device are
based on zero-mass assumption (e.g., Wellicome and Wilkinson [20], Naaijen et al. [2], Dadd et al. [21]
and Leloup et al. [1]). In addition, a linear evolution of the kite aerodynamics with the radius of
trajectory curvature is proposed in this paper.

Section 2 presents the considered modeling of a ship towed by kite. Section 3 presents the results.
First, the kite characteristics identification is detailed, then Section 3.2 defines the case study on the
surface vessel combatant DTMB 5512. Sections 3.3 and 3.4 investigate respectively through a calm
water case and a regular beam wave case, the coupling between ship and kite. A general discussion on
the methods and results is provided in Section 4 before to conclude.

2. Ship Towed by Kite Modeling

2.1. Reference Frame and Parametrization

The Earth fixed frame n, the ship fixed frame s and the hydrodynamic frame h are sketched
in Figure 1. The earth fixed frame is centered on On with zn pointing downward. The ship fixed
frame is composed of xs pointing forward in the ship symmetry plane, zs pointing downward and y

s
completing the direct orthogonal basis. zs is normal to free surface when the ship is at the equilibrium.
The origin of s denoted by Os is in the ship symmetry plane at a longitudinal distance lx from the
aft perpendicular and at a vertical distance lz from the baseline. For a point P, the expression of its

coordinates in a frame f is P(f) =
[

p(f)x , p(f)y , p(f)z

]T
or
[
px, py, pz

]T
f . The vectors of a frame f are

x f , y
f

and z f and the origin f is denoted O f . The generalized position vector of the ship denoted

by S =
[
s(n)x , s(n)y , s(n)z , φ

(n)
s , θ

(n)
s , ψ

(n)
s

]T
is the assembly of the position of Os and the ship Euler’s

angles with respect to the n frame. The generalized ship velocity at Os expressed in s with respect
to the n frame is denoted by Vs = [us, vs, ws, ps, qs, rs]

T
s , where the first three components are the

linear velocities and the last three components are the turning rates. The transformation of a vector
expressed in the s frame denoted by n(s) can be expressed in the n frame with n(n) = Tn

s n(s), where Tn
s

is the direct cosine matrix expressed as:
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Tn
s =

cψscθs −sψscφs + cψssθssφs sψssφs + cψscφssθs

sψscθs cψscφs + sφssθssψs −cψssφs + sθssψscφs

−sθs cθssφs cθscφs

 (1)

where, c and s denote respectively the cosine and the sinus functions. The turning rates and the time
derivatives of the ship Euler’s angles satisfy the following relationship:ps

qs

rs

 = Rs
n

φ̇s

θ̇s

ψ̇s

 , (2)

where,

Rs
n =

1 0 −sθs

0 cφs cθssφs

0 −sφs cφscθs

 . (3)

The hydrodynamic frame is used by the seakeeping theory. It can be considered as Galilean since
h moves at the constant mean ship forward speed Uh on a straight path with respect to the earth
fixed frame. The generalized position vector of the ship expressed in the h frame is denoted by
ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]

T
h , where the first three components are the distance between Oh and a point

H fixed to the ship. The three last components are the Euler’s angle of the ship with respect to the h
frame. It is assumed that H is in the symmetry plane of the ship and OsH = [dx, 0, dz]

T
s with respect

to the s frame.

Os
Oh x

s

y
s

xh

y
h

z
h

z
s

A

y
n

x
n

zn

On

Figure 1. Earth fixed reference frame; hydrodynamic reference frame; ship fixed reference frame.

Figure 2 illustrates the notations used for the kite modeling. The relative wind coordinates system
moves at the tether attachment point velocity UA with respect to the Earth fixed frame. The relative
wind velocity defined in Equation (4) is the difference between the true wind velocity and the velocity
of the tether attachment point.

Urw = Utw −UA (4)

xrw = Urw/ ‖Urw‖ and y
rw

is defined as: y
rw

= zn × xrw/ ‖zn × xrw‖. In order to define a direct
orthogonal coordinates system, zrw is defined as follows: zrw = xrw × y

rw
. It should be noticed that

the relative wind frame depends on the considered altitude due to the wind gradient. Consequently,
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the relative wind frame is defined with respect to a given point P and is thus denoted rw (P).
For instance, the relative wind frame drawn in Figure 2 is rw (K). At the kite location, the relative
wind frame is obtained from:

Urw(K) = Utw(K) −UA (5)

The apparent kite wind velocity is denoted by Uaw and can be expressed as follows:

Uaw = Urw(K) −Uk (6)

where Uk denotes the kite velocity with respect to the rw (K) frame; the kite reference frame centered
on K is defined as follows: zk = AK/ ‖AK‖, y

k
= zk × zrw/ ‖zk × zrw‖ and xk = y

k
× zk; the kite

velocity is directed by xvk. The kite elevation angle is given by:

θk =
π

2
− arccos (zk · zrw) (7)

The kite azimuth angle is defined as follows:

φk = arccos
(

y
k
· y

rw

)
(8)

K

Vrw

θk

φk

A
xrw

Kite
pa

th

y
k

zk

xvk

zrw

xk

y
rw

Figure 2. Kite reference frames.

2.2. Ship Modeling

As introduced in Section 1, a time domain formulation is a priori mandatory to represent
the complete interaction between kite and ship motions. For the ship motion’s modeling part,
we implemented the very classical and efficient method described by Fossen [22]. Appendix A
gives details on the state space technique used. Appendix A.1 describes the equations of motion for a
ship in a seaway. Appendix A.2 shows how hydrodynamics are computed using strip method theory
and how is carried out the computation of linear convolution terms. Appendix A.3 provides details on
the calculation of wave forces.
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2.2.1. Ship Motions

The equations describing the motion of the system can be transformed into a system of first
order differential equations as in Equation (9). This system is obtained with the transformation of the
generalized ship velocity vector from the s frame to the n frame and Equations (A9) and (A12).

Ṡ =

[
Tn

s 0

0 Rn
s

]
Vs

V̇ =
[

MS + Ã
]−1 [

F−
[

B̃ + B
φ
+ D

]
Vs − µ− C S

]
ẏ

ij
= A

′

ijyij
+ B

′
ijδVs,j, ∀i, j ∈ J1; 6K

(9)

Equation (9) represents 12 scalar equations for the ship and 75 scalars equations for the state-space
systems. Assuming, for instance, that the order of each state space system is 5 and taking into account
the ship symmetry. Thus, with the present modeling, the ship is described by 87 scalar equations
depending on the state space modeling orders. This system of differential equations is numerically
integrated with the 4th order Runge–Kutta scheme with a fixed time step.

2.2.2. Ship Modeling Validation

The present ship modeling was compared to Experimental Fluid Dynamic (EFD) data and to
the STF strip theory results on the David Taylor Model Basin (DTMB) 5512. The model tested is
a 1:46.6 scale model. The hull form and its characteristics are respectively plotted in Figure 3 and
summarized in Table 1. The experimental data are provided by the University of Iowa [23] and are
presented in Irvine et al. [24]. The EFD data concern the heave and pitch motions in regular head
waves, with and without forward speed.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

0.1

0.2

y [m]

x
[m

]

Figure 3. DTMB 5512 hull sections at the scale of 1:46.6.



J. Mar. Sci. Eng. 2020, 8, 486 6 of 29

Table 1. DTMB 5512 hull and full scale characteristics.

Parameter Units 5512 Full Scale

Scale ratio - 46.6 1
Length, Lpp m 3.048 142.04
Beam, B m 0.405 18.87
Draft, T m 0.132 6.15
Weight Kg - t 86.6 8763.5
LCG m 1.536 71.58
VCG m 0.162 7.55
Pitch radius of gyration, k5 m 0.764 35.6

The computed ship motions were performed at zero forward speed and at a Froude number
of 0.28, which corresponds to U = 1.53 m.s−1 and with frequency head waves from 1 rad.s−1 to
7.5 rad.s−1. Os was defined at the ship center of gravity, hence lx = LCG and lz = VCG. Figures 4
and 5 plot the heave and pitch transfer function obtained with the experimental data, with the STF
strip theory and with the present modeling. The experimental data are obtained for different wave
steepness sw = {0.025, 0.05, 0.075}. The amplitude of the transfer function for heave motion (a) is
directly the ratio of the heave amplitude motion to the wave amplitude. The amplitude of the transfer
function for the pitch motion (c) is given by the ratio of the motion amplitude (in radians) to the wave
amplitude multiplied by the wave number k. The phase angle of the present modeling is obtained by
cross correlation between the free surface elevation and the ship motion time series.

0

0.5

1 (a)

A
|z s
|

−200
−100

0
100
200

(b)

Ψ
( z

s)
[◦

]

0

0.5

1 (c)

A
|θ s
|

1 2 3 4 5 6 7 8

−100

−50

0
(d)

ωe [rad.s-1]

Ψ
( θ

s)
[◦

]

Present model STF strip theory
EFD data sw ∈ {0.025, 0.05, 0.075}

Figure 4. Heave and pitch transfer function at function of the frequency of encounter ωe. Amplitudes
are plotted for heave (a) and pitch (c). Phases are plotted for heave (b) and pitch (d). The results are
obtained with the frequency domain and time domain approaches, experimental data for different
wave steepness sw and with the STF strip theory.
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0

0.5

1

1.5 (c)

A
|θ s
|

0 5 10 15
−200
−100

0
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ωe [rad.s-1]

Ψ
( θ

s)
[◦
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Present model STF strip theory
EFD data sw ∈ {0.025, 0.05, 0.075}

Figure 5. Heave and pitch transfer function at U = 1.53 m.s−1 according to the frequency of encounter
ωe. Amplitudes are plotted for heave (a) and pitch (c). Phases are plotted for heave (b) and pitch (d).
The results are obtained with the frequency domain and time domain approaches, experimental data
for different wave steepness sw and with the STF strip theory.

Concerning the amplitude, an overall good agreement is found with (Figure 5) and without
(Figure 4) forward speed between the EFD data, the STF strip theory, the time domain and the
frequency domain modeling. For the considered waves, the influence of the wave steepness on the
EFD data is not significant. As shown in Figures 4 and 5, the STF strip theory and the time domain
approach match with a very good accuracy for the amplitude. Very small differences can be observed
in terms of phase angle, but these differences are probably caused by the post-processing method
(Figures 4 and 5). The very small differences with the STF strip theory are due to the approximations
performed with the identification method of the transfer functions Hij. As a conclusion for the heave
and pitch motions, the transformation of the equation of motion into the ship reference frame and the
state-space modeling identification method are consistent and accurate enough.

The roll motion is much more difficult to predict with a linear modeling. Full-scale results are
presented in Figure 6. Results by Ikeda et al. [25] are considered as a reference. In the present method,
the extra roll damping was set to 1.53 · 108 kg.m.s−1 in order to obtain the same roll amplitude at
the natural frequency. As shown in Figure 6, for frequencies greater than 1 rad.s−1, the roll motion
amplitude is well predicted despite a slight difference in phase. Nevertheless predictions appear to
be less accurate for the lower frequencies, except for the natural roll frequency, ωroll = 0.56 rad.s−1,
where, by identification, both modelings match.
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0
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|φ s
|[◦

]

0 0.5 1 1.5 2
−200

−100

0

100

200

ωe [rad.s-1]

Ψ
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Figure 6. Roll response amplitude operator and phase at U = 7.716 m.s−1 as function of the frequency
of encounter we with DTMB 5512 at full scale. The results are obtained with the present model and the
STF strip theory with the roll damping modeled with the method proposed by Ikeda et al. [25].

2.3. Kite Modeling

2.3.1. Short Literature Survey

Kites are mostly studied as a power generation system since 1980 [26]. Comparing the weight
of the kite on the one hand and the traction provided on the other, Loyd considers that it is relevant
to neglect the mass of the kite. Thus, he developed the so-called zero-mass modeling. Taking the
skysails system, the most advanced industrial example, gives us a good illustration of the relevance
of this assumption. Paulig et al. [27] computes a pulling force to mass ratio of 50daN/kg in the case
of a 320 m2 kite with 360 m tether. Wellicome extended the zero-mass modeling defining a figure-8
trajectory for the dynamic mode [20,28]. Argatov et al. [29] proposed more recently a simpler trajectory
definition. In addition, Argatov definition allows a much faster calculation and its formulation avoids
discontinuities in kite acceleration. The size of the trajectory can easily be modified thanks only to
azimuth and elevation amplitude parameters. In 2006, Naaijen et al. [2] computes the fuel savings on a
full range of true wind angles for the British Bombardier, a 50000 DWT tanker. In 2011, Dadd et al. [21]
improved the calculations with more realistic trajectories using the Wellicome formalism. In 2014,
Leloup et al. [1,30] proposed a fully analytical solution for the zero-mass modeling that allows faster
and more reliable computations avoiding optimization process failures. Leloup takes into account
adequately the wind gradient effect and takes advantage of the Argatov trajectory definition for even
faster computations.

2.3.2. Zero-Mass Kite Model

According to the zero-mass kite modeling, the masses of the tether and the kite are neglected and
the tether is assumed to be straight and of constant length Lt. Consequently, the kite velocity with
respect to the rw (K) frame is normal to zk0 and for any configuration the tether tension is opposed to
the aerodynamic kite force. Assuming that the kite flies with a constant lift to drag ratio and that the
apparent wind velocity is in its symmetry plane, Leloup et al. [1] expressed the kite velocity according
to a given kite velocity direction xvk in Equation (10):

Uk = Urw

(xvk · xrw) +

√
(xvk · xrw)

2 +

(
zk0 · xrw

sin εk

)2
− 1

 xvk (10)
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The kite velocity is a real number if the following condition is satisfied:

(xvk · xrw)
2 +

(
zk0 · xrw

sin εk

)2
− 1 > 0. (11)

Then, the tether tension is given by the following formula:

Tk = −
Clkρa AkU2

aw
2 cos εk

zk (12)

The generalized tether force vector acting on the ship at Os with respect to s frame is expressed
as follows:

Fk =
[

T(s)
k Os A(s) × T(s)

k

]T
(13)

In order to represent the wind friction with the sea, the true wind velocity Utw is function of the
altitude according to the wind gradient law recommended by the ITTC [31].

Utw(k
(n)
z ) = U10

(
k(n)z
10

)1/7

(14)

2.3.3. Kite Control According to a Trajectory

The kite velocity direction xvk is controlled in order to follow a trajectory denoted by C (Figure 7).
The kite velocity direction is defined by the target point K̃ expressed as follows:

K̃ = C (λ + ‖Uk‖ dt) , (15)

where λ is the curvilinear abscissa of Cλ the closest point of the trajectory from the current kite position
K. Hence, the kite velocity direction xvk is defined as follows:

xvk =

(
KK̃ · xk

)
xk +

(
KK̃ · yk

)
y

k∥∥∥(KK̃ · xk

)
xk +

(
KK̃ · yk

)
y

k

∥∥∥ (16)

The point Cλ is determined according to the following equation:

KCλ · tλ = 0, (17)

where tλ is the tangent vector to the trajectory at curvilinear abscissa λ. Equation (17) is solved
numerically with a Newton–Raphson algorithm.

K̃

Cλ

ds =
∥∥∥Uk

∥∥∥ dt

K
Uk

C

tλ

Figure 7. Schema describing the target point to control the kite velocity direction xvk.
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2.3.4. Theoretical Lemniscate Trajectory

To perform a dynamic flight, the considered theoretical trajectory is the eight shaped Lissajous
curve as used by Argatov et al. [29] and Leloup [32]. This type of trajectory has the advantage to
avoid twists of the tether system. The Lissajous trajectories are defined in terms of elevation θC and
azimuth φC: {

θC = ∆θ8 sin (2α) + θ8

φC = ∆φ8 sin(α) + φ8
, (18)

where, α ∈ [0; 2π]. θ8 and φ8 are the elevation and the azimuth of the center of the trajectory denoted
by C8. The trajectory is defined with respect to rw

(
zre f

)
, the relative wind frame with respect to the

wind measurement altitude. On a sphere of radius Lt, a point C of the trajectory is defined in terms of
elevation θC and azimuth φC with respect to rw

(
zre f

)
frame as follows:

C =

 Lt cos θC cos φC
Lt cos θC sin φC
−Lt sin θC


rw(zre f )

, (19)

As shown in Figure 8, the lemniscate trajectories can be rotated by an angle χ8 around C8 A.
Any point of the trajectory must satisfy Equation (11) insuring the realness of the kite velocity.
The benefit to defining the trajectory with respect to the relative wind frame is that the realness
of the kite velocity along the trajectory does not depend on the ship motions. Nevertheless, the ship
motions may modify significantly the shape of the trajectory with respect to the Earth fixed frame
n. Vertical motions are especially known to cause unwanted overloads and flight instabilities [27].
Consequently, two trajectory definitions are investigated further in the paper. The first definition takes
into account all components of the tether attachment point velocity. The second definition takes only
the horizontal components of the tether attachment point velocity with respect to the earth fixed frame
n to compute the relative wind frame. This modified relative wind frame of trajectory definition is
denoted by ˜rw

(
zre f

)
and is defined from:

U(n)
rw = U(n)

tw

(
zre f

)
−
[
u(n)

a , v(n)a , 0
]T

(20)

C

Urw

θC

φC

A
xrw

zrw

y
rw

χ8

C8

Figure 8. Lissajous trajectory parametrization.
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2.4. Two Coupling Methods

The tether tension induces motions to the ship. The expression of generalized kite force acting on
the ship is expressed as follows:

Fk =
[

T(s)
k OS A(s) × T(s)

k

]T
(21)

In addition, according to the zero-mass kite modeling (cf. Section 2.3.2 and Equation (5)), the ship
motions can modify the kite flight and the tether tension through the relative wind speed at the kite
altitude with respect to the tether attachment point A:

Urw

(
k(n)z

)
= Utw

(
k(n)z

)
−UA (22)

Two coupling approaches are investigated in this paper: a monolithic and a segregated approaches.
The monolithic approach takes into account all the coupling terms between the kite and the ship
modeling. Here, the considered segregated approach assumes a predefined kite force and then solves
the ship equations of motion separately.

2.4.1. A Monolithic Approach

The monolithic equations of motion of a ship towed by kite are obtained with Equations (9) and
(10) as follows: 

Ṡ =

[
Tn

s 0

0 Rn
s

]
Vs

V̇s =
[

MS + Ã
]−1 [

F−
[

B̃ + B
φ
+ D

]
Vs − µ− C S

]
ẏ

ij
= A

′

ijyij
+ B

′
ijδVs,j, ∀i, j ∈ J1; 6K

K̇(n)
= U(n)

A + Urw

√
(xvk · xrw)

2 +
(

zk0·xrw
sin εk

)2
− 1 x(n)vk

(23)

Equation (23) adds 3 scalar equations for the kite. With the monolithic approach, the fully coupled
system between the ship motions and the kite motions is solved. This monolithic system of differential
equations is numerically integrated with the 4th order Runge–Kutta scheme with fixed time step.

2.4.2. A Segregated Approach

By contrast to the monolithic approach, the segregated approach considers only the mean tether
attachment point velocity on the ship. The ship motions are computed applying the time series of the
kite towing force as an external forces. Thus, the ship equation of motion can be expressed as follows:

Ṡ =

[
Tc

s 0

0 Rc
s

]
Vs

V̇s =
(

MS + Ã
)−1 [

Fk (t) + F
′ −
(

B̃ + B
φ
+ D

)
Vs − µ− C S

]
ẏ

ij
= A

′

ijyij
+ B

′
ijδVs,j, ∀i, j ∈ J1; 6K

(24)

where F
′

denotes the external forces such as rudder, propeller and windage forces excluding the
kite forces applied as a time series Fk (t). This segregated approach could be very practical to study
the motions of a ship towed by kite. Even if here, this approach is performed into the time domain,
the segregated approach can be performed into the frequency domain applying the kite excitation
spectrum directly in Equation (A1).
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3. Results

3.1. Validation and Comments on the Kite Aerodynamic Characteristics

On the basis of the experimental data obtained by Behrel et al. [19,33], the zero-mass modeling
is compared to the experimental data. The zero mass kite modeling is dependent of two parameters,
the kite lift coefficient Clk and the glide angle εk. These coefficients must be adapted in order to
fit the data. The onshore full scale trials [19,33] were performed with a classical kite Cabrinha®

Switchblade2016 of 5 m2 designed for kite-surfing. The tether length was 80 m long. During the run,
the kite performed eight shaped trajectory controlled by an autopilot based on the algorithm proposed
in [34,35]. The experimental kite position is determined with a 3D load cell assuming that the tethers
are straight. The evolution of the wind velocity with the altitude was identified thanks to a SOnic
Detection And Ranging (SODAR). The experimental results presented here correspond to a phase
averaging post-processing of a 5-minute kite flight run. For the presented case, the wind velocity was
interpolated from the SODAR data with the following linear function:

Utw = 3.16− 0.035k(n)z (25)

The wind gradient function in Equation (25) is used for the following presented simulation results.
The zero-mass modeling presented in [1] assumes a constant glide angle and a constant lift

coefficient. The kite velocity depends only on its direction and position in the wind window and on the
glide angle εk. Consequently, the present zero-mass modeling results are obtained with a glide angle
enabling that the simulated kite trajectory has the same period than the experimental data, which is
5.86 s. The kite towing force is dependent of the kite lift coefficient. Hence, the kite lift coefficient is
adjusted in order to obtain the same mean towing force. The kite trajectory used for the simulation
is the same than the kite trajectory of the experimental measurements. The position of the kite is
integrated with the 4th order Runge–Kutta scheme with a time step of 0.1 s.
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Figure 9. Evolution of the kite velocity (a) and of the tether tension at A, along the average trajectory
(b); comparison between the zero mass model with constant aerodynamics and the model with a linear
modification of the kite aerodynamic characteristics using phase averaging of experimental data from
Behrel et al. [33].

Figure 9 shows the evolution of the magnitude of the kite velocity (a) and the evolution of the
magnitude of the tether tension at A on the average trajectory (b). The experimental velocity is obtained
by finite differentiation, which induces some noise in the signal sampled at 50 Hz. This noise in terms
of speed and tension for the simulated results is still present since the simulation uses the average kite
trajectory of the experimental data. However, this noise is barely visible since the sampling frequency
of the simulation is only 10 Hz. The kite glide angle and the lift coefficient used for the zero-mass
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modeling are respectively 12.45° and 0.855. The main difference between the experimental data and
the results concerns the tether tension and the kite velocity amplitude. The simulated amplitude is
slightly underestimated for the velocity and is particularly underestimated for the tension. The tether
tension given by Equation (12) is a quadratic function of the apparent wind velocity. Therefore,
for a relative kite velocity error, the relative tension error is twice. In order to perform an eight
trajectory, the back tethers are steered. The difference between the back tethers lengths leads to
important modifications of the kite flying shape. Hence, it can be expected a modification of the
kite lift coefficient and of the glide angle leading to the significant differences observed between the
zero-mass modeling with constant aerodynamic characteristics and the measurements. Leloup [36]
and Duport [37] demonstrated the variation of the aerodynamic characteristics with respect to the
turning rate. Even without considering tip vortices, the yaw rate induces an evolution of the local
inflow velocity along the kite span. According to Equation (10), the kite velocity is independent of
its area. Consequently, for a given radius of curvature of the trajectory, the evolution of the local
inflow along the span and the effect of the flying shape deformation are more consequent with larger
kites. Here it is assumed that the evolution of the kite glide angle and lift coefficient are proportional
to the ratio of a characteristic length of the kite with the radius of curvature of the trajectory. For a
given aspect ratio, the characteristic length of the kite can be

√
Ak. Denoting the trajectory radius of

curvature RC , the glide angle and the lift coefficient could written as follows:{
εk = ε0 + κ

′
ε

√
Ak

RC

Clk = Cl0 + κ
′
l

√
Ak

RC

(26)

where, κ
′
ε and κ

′
l are two coefficients. Equation (26) can be rewritten in terms of heading rate according

to the relationship between the radius of curvature of the trajectory and the kite velocity. Furthermore,
according to Equation (10), the kite velocity is proportional to the relative wind speed, thus the
correction proposed can be rewritten as functions of the time derivative of the heading and the relative
wind speed as follows: {

εk = ε0 +
√

Ak
Urw

κε |γ̇|
Clk = Cl0 +

√
Ak

Urw
κl |γ̇|

(27)

The determination of the coefficient ε0, κε, Cl0 and κl can be evaluated by comparison with the
experimental data. First, ε0 and κε are identified in order to obtain respectively the same maximum
and minimum speed than the experiments. Then, Cl0 and κl are identified in order to obtain respectively
the same maximum and minimum tether tension than the experiments. According to this method,
the following coefficient values are identified:

ε0 = 0.2013 rad

κε = 0.0422 s

Cl0 = 0.9856

κl = −0.3718 s.rad−1

(28)

These values are consistent with the ones by Behrel et al. [19], who did the identification with a quite
different and more straightforward method. The results in terms of kite velocity and tether tension are
plotted in Figure 9. With the modification of the glide angle and the lift coefficient, the noise in the
kite velocity and the tether tension time series is more significant. Indeed, the computation of the kite
yaw rate requires two finite differentiations of the kite position. As expected with the identification
method of ε0, κε, Cl0 and κl , the amplitude of the kite velocity and the amplitude of the tether tension
are respected.

An overall good agreement is found in terms of velocity but a slight phase difference is observable
between the simulation results and the experimental data. The linear modifications of the glide angle



J. Mar. Sci. Eng. 2020, 8, 486 14 of 29

and of the lift coefficient with the kite yaw rate lead to a better agreement with the experimental
results than the zero mass modeling. However, these modifications should be confirmed with more
experimental cases. Since at the first order the ship motions are proportional to the amplitude of the
excitation forces, these modifications enhancing the prediction of the kite excitation force amplitude
are crucial.

Moreover, the minimum allowable radius of curvature of the trajectory can be estimated according
to Equation (26). Indeed, during a kite flight Clk must be positive. This means that the trajectory radius
of curvature must satisfy the following condition:

RC > −
κ
′
l

Cl0

√
Ak (29)

As a numerical application, the minimum trajectory radius of curvature of the 5 m2 Cabrinha®

Switchblade is 2.23
√

Ak ≈ 5.0 m, Which is a little less than twice the projected wingspan. Given that
the lift coefficient must have a strictly positive value in order to fly, we are here outside the validity
domain of the proposed modeling. However, the order of magnitude is confirmed by Fagiano who
evaluated the minimum turning radius at 2.5 times the wingspan [38,39]. The coefficients ε0, κε, Cl0
and κl are dimensionless quantities. Consequently, the presented modifications in Equations (27) and
(28) are retained as formulated for the rest of the paper.

3.2. Study Case

In order to simplify the analysis, only vertical ship motions (heave, roll and pitch) of the DTMB
5512 at full scale were considered here. The analysis was focused on the roll motion. Thus, in the
scope to observe significant roll motion, a true wind angle βtw = 90° was chosen. A true wind speed
of reference U10 =10 m.s−1 corresponding to the high range of a fresh breeze from the Beaufort scale
was considered. The ship speed was set to Uh =7.5 m.s−1 since it corresponds to a common sailing
speed condition of the world merchant ship fleet. A kite with an area of Ak =500 m2 and with the
aerodynamic characteristics determined in Equation (28) was used. The tether attachment point was in
the center plane, 7.9 m above the water line and 25 m in front of the center of gravity.

The kite flight trajectory corresponded to a Lissajous trajectory as defined in Section 2.3.4.
The amplitudes of the trajectory were arbitrarily set to ∆φ8 = 20° and ∆θ8 = 8°. According to
the formulation of the lift coefficient in Equation (26), the tether length condition to obtain a positive
lift coefficient was Lt > 360 m. The kite excitation was studied by varying the tether length. Tether
length between 360 m and 1000 m were investigated. The center of the trajectory [φ8, θ8] and the angle
of the trajectory χ8 around the axis C8 A were determined optimizing of the longitudinal kite towing
force with the same code used by Leloup et al. [1]. In this configuration, the kite provided about 16%
of the propulsive power, provided the data from [40].

Figure 10a–c show respectively the evolution of the φ8, θ8 and χ8 with the tether length. A calm
water case and three regular beam wave cases are considered. A regular beam wave of 2.5 m high
consistent with a fresh breeze. Three wave frequencies were investigated {0.4, 0.56, 0.8} rad.s−1.
The 0.56 rad.s−1 wave frequency corresponded to the natural roll ship frequency. For all following
results, the simulation time was 1640 s with a time step of 0.3 s.

3.3. Calm Water Case

3.3.1. Kite Excitation Spectrum

Figure 11a,b show respectively the time series and the spectrum of the kite roll excitation moment
obtained with the segregated approach for a tether length Lt = 500 m. Only the varying part of the kite
excitation is taken into account to compute the kite excitation spectrum. With the segregated approach,
the kite flight is not modified by the ship motions. It can be noticed in Figure 11 that the roll excitation
moment is mainly composed of several harmonics. For convenience, the harmonics are denoted
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ωki where i is a natural number. Only the first, the second and the fourth harmonics are significant.
The whole spectrum is not represented but the other harmonics that occur at higher frequencies are
not significant. The second and the fourth harmonics are the most powerful. The second harmonic
should appear to be the most critical for the ship motions due to its proximity with the natural roll
ship frequency.
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Figure 10. Kite flight trajectory parameter versus tether length. (a) Trajectory angle χ8; (b) Azimuth of
the center of the trajectory; (c) elevation of the center of the trajectory.

0 0.5 1 1.5 2 2.5
0

0.5

1

·106

(a)

ω [rad.s−1]

A
|K

k|[
N

.m
]

0 5 10 15 20 25
−5
−4
−3
−2
−1 ·106

(b)

Time [s]

K
k

[N
.m

]

Figure 11. With a tether length Lt = 500 m; (a) spectrum of the kite excitation moment around the
longitudinal ship axis xs; (b) time history of the kite excitation moment around the longitudinal ship
axis xs over the last loop.

3.3.2. Comparison of the Segregated Approach with the Monolithic Approach

Figure 12 shows the evolution of the roll amplitude, first kite excitation harmonic frequency and
amplitude kite moment with respect to the tether length. Three methods are compared: the segregated
approach in dashed-dotted line and the two monolithic approaches with the kite trajectories defined
in ˜rw (A) and in rw (A) respectively in solid and dashed lines.

As expected, the first kite excitation harmonic ωk1 decreases with the tether length since the
angular amplitude of the Lissajous trajectories is remained constant. No major difference can be
noticed between the three approaches in terms of harmonics frequencies. The roll amplitude ∆φs and
the amplitude of the kite roll moment ∆Kk predicted by the segregated are higher than those predicted
by the two monolithic approaches. The two trajectory definitions in ˜rw and rw give almost the same
results both in terms of roll amplitude and kite roll moment amplitude. For all approaches presented,
the roll amplitude evolution is similar. The kite moment amplitude increase quasi linearly with the
tether length. Four ruptures (mainly three) can be observed in the evolution of the kite moment
amplitude. These ruptures corresponds to the evolution of the trajectory parameters with the tether
length as shown in Figure 10. Due to the wind gradient, the longer the tether is, the larger the kite
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roll moment is. This increase in kite roll moment explains the continuous increase in roll amplitude.
However, two important increases can be noticed between Lt = 360 m and Lt = 500 m and from
Lt = 790 m, which are not explained by the kite roll moment. In fact, these two increases are due to
the proximity between the two most powerful kite roll excitation harmonics and the vessel natural roll
frequency. Indeed, for Lt = 440 m the second harmonic frequency is almost equal to the natural roll
frequency of the ship. From Lt = 790 m, the fourth harmonic frequency approaches the natural roll
ship frequency. In case of a slower true wind speed, the increase of the kite roll moment with the tether
length would be less significant. Thus, it could be observed a maximum of roll amplitude for tether
length corresponding to a match between a kite harmonic frequency and the natural roll frequency of
the ship. According to these results in calm water, the segregated approach is slightly conservative
with respect to both monolithic approaches.
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Figure 12. (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c) amplitude of
the kite moment of excitation for different tether lengths from 360 m to 990 m by step length of 10 m in
calm water.

3.4. Regular Beam Wave Case

To investigate a case closer to a real ocean environment, the influence of regular beam waves
is studied. The wave considered is a 2.5 m high at the frequencies ωw of 0.4 rad.s−1, 0.56 rad.s−1

and 0.8 rad.s−1. As for the calm water case, the frequency domain of kite excitation is scanned with
different tether lengths from Lt = 360 m to Lt = 990 m with a tether length step of 10 m.

3.4.1. Ship Vertical Motion Influence on Kite Trajectory

This section focuses on the influence of ship vertical motion on kite flight trajectory. Paulig et al. [27]
underlined the major disturbances caused by this motion in terms of flight control and overload. Although
this is in line with the rare feedback from experiences at sea, this has never been simulated before,
all published studies being carried out so far in cases of calm water. Figure 13 shows the trajectory defined
neglecting the ship vertical motion in solid line and the trajectory defined in the actual relative wind frame
in dashed line. The latter has considerably reduced turning radius. It is not in line with the relationship
on the minimum kite flight radius highlighted by Fagiano nor with the experiments by Behrel presented
in Section 3.1. Such a sharp trajectory could not be achieved in the real world. As a consequence, in the
rest of the paper, all the trajectories will be defined in ˜rw (A) and will be called.
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Figure 13. Kite and ship path with respect to n for Lt = 390 m with a wave of 2.5 m high at the
frequency ωw = 0.8 rad.s−1.

3.4.2. Interactions with Regular Beam Waves

Figures 14–16 show respectively for three wave frequencies, the roll amplitude of the ship, the first
kite harmonic frequency and roll moment. For each wave cases, the monolithic approach is compared
to the segregated approach. The dashed-dotted line corresponds to the roll amplitude of the ship due
to the wave excitation without kite. For all wave cases, the roll amplitude and the amplitude of the
kite roll moment increase globally with the tether length as for the calm water case. In contrary to
the calm water case, the amplitude of the kite roll moment obtained with the monolithic approach is
globally larger than the one obtained with the segregated approach. However, it should be noticed
some drops in the evolutions of the roll amplitude and amplitude of the kite roll moment. For instance,
in Figure 15a, for the tether length Lt = 440 m, a significant drop of the roll amplitude can be noticed in
the segregated case. This phenomenon of interaction between the kite and the ship can explained the
fact that the monolithic approach predicts a smaller roll amplitude despite a larger kite roll moment
amplitude compared to the segregated approach. Indeed, the secondary kite harmonic at the wave
frequency has a relative phase with the ship motion. As an example, for the case plotted in Figure 17,
the difference in phase angle between the ship motion and the kite excitation at ω = 0.4 rad.s−1 is 60.7°.
For the case with the frequency wave ωw = 0.8 rad.s−1, the interaction between the kite and the ship
is less significant since the wave frequency is far from the most powerful kite harmonic frequencies.
Moreover, in contrary to the calm water case, the segregated approach is not necessarily conservative
with respect to the monolithic approach as shown by Figure 16a.

Concerning the evolution of the first harmonic frequency, differences can be noted between the
two approaches. Indeed, for certain ranges of tether length, the harmonic frequency obtained with
the monolithic approach remains constant. For instance, on Figure 15b, the first harmonic frequency
remains constant to half the wave frequency for tether lengths within the range [390; 470] m. A sharp
evolution of the roll amplitude concerns both approaches. In the monolithic case, this phenomenon
does not occur only when a harmonic frequency of the kite corresponds to the wave frequency. With a
wave frequency of 0.4 rad.s−1 and a tether length Lt = 840 m, a drop of the ship roll amplitude can be
noticed. Figure 17 shows that no principal kite harmonic frequency corresponds to the wave frequency.
However, due to coupling between kite and ship motions, secondary harmonics appear. The secondary
harmonic frequencies are denoted ω

′
ki. This phenomenon occurs when the frequency gap between

the closest principal harmonic frequency and the wave frequency is a submultiple of the first kite
harmonic frequency. For the case presented in Figure 17, ωk1 = 3ω

′
k1. Furthermore, it should be noted

that these drops in roll amplitude are due to the interactions between the kite and the ship. With the
monolithic approach, these drops are independent from initial conditions. The most important drops
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in roll amplitude occur when ωk1 = ω
′
k1 or ωk1 = 2ω

′
k1. The importance of the phenomenon occurring

at ωk1 = nω
′
k1 decreases with the increasing value of the integer n. Moreover, the importance of the

phenomenon decreases when the interaction with the wave concerns high harmonic orders.
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Figure 14. (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c) amplitude of
the kite moment of excitation for different tether lengths from 360 m to 990 m by step length of 10 m
with a beam regular wave of 2.5 m high at a frequency of ωw = 0.4 rad.s−1.
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Figure 15. (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c) amplitude of
the kite moment of excitation for different tether lengths from 360 m to 990 m by step length of 10 m
with a beam regular wave of 2.5 m high at a frequency of ωw = 0.56 rad.s−1.

3.4.3. Kite Lock-in Phenomenon

As shown in the previous section, an important interaction phenomenon between the kite and
the ship occured. We observed the appearance of plateaus which were all the more pronounced as
they were located near the first harmonics of the moment of excitation produced by the kite. It can
be observed in Figures 14a and 15a respectively at Lt = 650 m and Lt = 470 m, that the drop in
roll amplitude predicted by the monolithic approach is important enough to lead to smaller roll
amplitude than the case without kite. A particular attention is paid to the case where the wave
frequency ωw = 0.4 rad.s−1 and Lt = 470 m, because the interaction between the kite and the ship is
win-win. Indeed, for this case the mean kite towing force predicted by the monolithic approach is 8.0%
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more important than the mean kite towing force predicted with the segregated approach. In addition,
the ship roll amplitude is 1.4% weaker than without kite.
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Figure 16. (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c) amplitude of
the kite moment of excitation for different tether lengths from 360 m to 990 m by step length of 10 m
with a beam regular wave of 2.5 m high at a frequency of ωw = 0.8 rad.s−1.

0

2

4

6
(a)

A
|φ s
|[◦

]

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5 ·106

(b)

ω [rad.s−1]

A
|L k
|[N

.m
]

Monolithic approach
with the simplified

trajectory (Principal
harmonics ωki : )

segregated approach
(Principal harmonics ωki : )

Figure 17. With a tether length Lt = 840 m at the wave frequency ωw = 0.4 rad.s−1; (a) Spectrum of the
roll motion of the ship; (b) Spectrum of the kite excitation moment around the longitudinal ship axis.

Figure 18 shows the spectrum of the roll motion (a) and the spectrum of the kite excitation (b).
It can be noticed that the second harmonic of the kite roll moment is attracted towards the wave
frequency. Since the kite harmonic frequency is increased towards the wave frequency, the kite
performed the whole trajectory faster. The time to perform the trajectory is decreased by 5.7%.
This leads to a higher apparent wind speed and therefore to a higher average kite towing force.
Moreover, the difference in phase angle between the roll motion and the kite roll moment is 18.2°,
leading to a reduction of the roll amplitude. This attraction towards the wave frequency can be noticed
also on the secondary harmonic corresponding to the case ωk1 = 2ω

′
k1. However, the effects are less

significant. This phenomenon is similar to the lock-in phenomenon happening with the vortex-induced
vibrations [41,42]. Henceforth, this phenomenon is called the kite lock-in.
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Figure 18. With a tether length Lt = 470 m at the wave frequency ωw = 0.56 rad.s−1; (a) Spectrum of
the roll motion of the ship; (b) Spectrum of the kite excitation moment around the longitudinal ship
axis xs.

4. Discussion

A method coupling a time domain seakeeping and a zero-mass kite modeling was developed
to investigate the dynamic motion of ship towed by kite. The zero-mass kite modeling neglects the
inertial forces, its deformation and the dynamic behavior of the tether. The ship modeling was based
on the linear seakeeping STF strip theory [9]. A monolithic approach coupling the kite and the ship
modeling was compared to a segregated approach, which neglected the coupling terms. Both methods
allowed fast computation. Implemented in Python, the monolithic approach computed faster than
the real-time. The computation of the considered cases were five time faster than the real time on a
processor Intel(R) Xeon(R) CPU E3-1220 v3 with a CPU frequency of 3.10 GHz.

The ship modeling provides satisfactory results in terms of heave and pitch motions. Since the roll
motion is highly nonlinear, the linear prediction of the roll motion is less accurate. However, a similar
evolution of the predicted roll motion was noticed between the proposed roll motion modeling and
the modeling by Ikeda et al. [25] used as reference here. Consequently, a good confidence in the kite
influence on the roll motion could be attributed in terms of evolution. Nevertheless, the value of the
results in terms of roll motion should be considered with caution. Moreover, the ship motions were
restricted to heave, pitch and roll motions and existing couplings, such as roll and sway coupling,
were neglected.

A linear dependency of the kite aerodynamic characteristics was proposed to correct the kite
velocity amplitude and the tether tension amplitude in order to get a better agreement between the
experiments and the proposed kite modeling. The identification of the kite modeling was carried out
with experimental data on a single run of 5 minutes. A more extensive validation should investigate
the influence of the true wind speed and the influence of the trajectory position and orientation.
Moreover, the determination of the kite aerodynamic coefficients was entirely based on experimental
data. It could be interesting to be able to estimate by simulation the kite aerodynamic characteristics
for a deeper understanding.

In case of a dynamic flight, the high tensions developed lead to small tether sags, justifying the
assumption that the lines are straight and inelastic. However, the tether acts as an interface between
the kite and the ship. The dynamic tether effect may have a significant influence on the interaction
between the kite and the ship. In particular, additional theoretical research should be carried out to
study the effect of the tether on the kite lock-in phenomenon.

Moreover, in order to validate the modeling approach proposed in this paper, several strategies
could be implemented. Full scale experiments on a 6-meter long dedicated experimental boat towed by
kite were carried out by Behrel et al. [33,43]. However, measurement of the environment is challenging
at full scale. With towing tank tests, similarity issues are also difficult to solve, as Martin et al. [44]
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emphasize this in the case of offshore floating wind turbines. In order to get around the problem of
similitude and to take benefit from the towing tank test conditions, the kite could be modeled with a
hardware in the loop method such as proposed by Giberti and Ferrari [45] for classical sailing yacht.

5. Conclusions and Future Work

A dynamic modeling of a ship towed by a kite was developed by combining two modelings.
One for the ship and the other for the kite. Each modeling was validated independently. Two coupling
approaches between the kite and the ship were compared: a segregated approach where the kite force
was applied as a predefined time series and a monolithic approach where all the coupling terms were
taken into account.

The computation of the linear convolution term for the ship motion modeling was performed
with a state-space approach in order to provide time efficient computations. The identification of the
state-space modeling was revisited in order to fit the forward speed case requirements. Kite modeling
was modified using linear correction terms for aerodynamic characteristics. These modifications
improved significantly the predicted amplitude of kite velocity and tether tension.

In the calm water case, the coupling between the ship and the kite decreases the kite forces and
consequently, the segregated approach was conservative compared to the monolithic one. Different
tether lengths were tested with a constant angular trajectory size leading to an evolution of the kite
excitation frequencies. For the considered case, the effect of the wind gradient led to a continuous
increase in roll amplitude according to the tether length and excitation frequency. The vicinity between
the kite harmonics and the ship natural roll frequency led to further local significant increases.

In case of regular beam waves, the interaction between the kite and the ship was more significant.
The definition of the kite trajectory into the relative wind frame taking into account the vertical
ship velocity led to unrealistic trajectories with very short radius of curvature. This problem was
avoided by neglecting the vertical component of the vessel motion when defining the kite’s trajectory.
Moreover, a kite lock-in phenomenon to the frequency of the waves was highlighted, which can be
win-win. Indeed, for some configurations, the mean kite towing force was increased while the ship
roll amplitude remained smaller than the case without kite.
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dof Degree(s) of freedom
EFD Experimental Fluid Dynamic
Representations

n Earth fixed reference frame (inertial)
(
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, zn

)
s Ship fixed frame

(
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s
, zs

)
h Hydrodynamic reference frame

(
Oh, xh, y

h
, zh

)
rw Relative wind frame

(
xrw, y

rw
, zrw

)
k Kite reference frame
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k
, zk
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Representations
lz Vertical position of Os with respect to ship the baseline [m]
lx Longitudinal position of Os with respect to the oft perpendicular of the ship [m]
Variables
Vs Generalized velocity vector of the ship at Os with respect to the n frame expressed

in the s frame [m.s−1, rad.s−1]
ξ Generalized position vector of the ship with respect to the h frame expressed in the

h frame[m, rad]
S Generalized position vector of the ship with respect to the n frame expressed in the

n frame[m, rad]
Uh Mean ship forward speed [m.s−1]
Parameters
K Kite position (kx, ky, kz)
A Tether attachment point
Os Origin of the Ship reference frame
Oh Origin of the hydrodynamic reference
On Origin of the Earth reference frame
Ok Origin of the kite reference frame
Urw Relative wind velocity [m.s−1]
Utw True wind velocity [m.s−1]
U10 Reference wind speed at 10m altitude [m.s−1]
UA Kite attachment point velocity [m.s−1]
Uaw Apparent wind velocity to the kite [m.s−1]
Uk Kite velocity with respect to the rw frame [m.s−1]
Parameters
ω Angular frequency of the motion [rad.s−1]
ωw Angular frequency of the wave [rad.s−1]
ωe Angular frequency of encounter [rad.s−1]
ωe Angular frequency of encounter [rad.s−1]
ωki Angular frequency of the ith principal kite roll moment harmonic [rad.s −1]
ω
′

ki Angular frequency of the ith secondary kite roll moment harmonic [rad.s −1]
k Wave number [m−1]
Lt Tether length [m]
Tk Tether tension [N]
εk Glide angle of the kite [rad]
Clk Kite lift coefficient
Ak Kite surface area [m2]
zre f Measurement altitude of the wind [m]
SODAR Sonic Detection And Ranging
FFT Fast Fourier Transform
g Gravitational constant (9.81) [m.s−2]
Sw Wave spectrum
ψw Wave direction with respect to the c frame [rad]
Parameters
K Impulse response function of the retardation matrix
K Laplace transform of the retardation matrix
C Kite trajectory
Rn

s Transformation matrix of the time derivatives of the Euler’s angle s with respect
to n to the turning rates in s

A Generalized added mass matrix with respect to s for a given frequency of motion and Ã
at infinite frequency; A∗ with respect to h

B Generalized damping matrix with respect to s for a given frequency of motion and B̃ at
infinite frequency; B∗ with respect to h

C Generalized restoring matrix with respect to s; C∗ with respect to h
φ8 Azimuth of the centre of the kite trajectory [rad]
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θ8 Elevation of the centre of the trajectory [rad]
χ8 Rotation angle of the trajectory around the axis defined by its centre and the tether

attachment point A
φs Heeling angle of the ship [rad]
φw Phase angle of the Froude-Krilov force with respect to the free surface elevation [rad]
Ure f True wind velocity at altitude of measurement [m.s−1]
RC Trajectory radius of curvature [m]
∆Kk Amplitude of the kite roll moment [N.m]
∆φs Amplitude of the ship heeling angle [rad]
A Amplitude of the Fourier transform
Ψ Phase of the Fourier transform

Appendix A. Ship Modeling

Appendix A.1. Time Domain Equations of Motion

This section is an overview of the work of Fossen [22]. The starting point of the mathematical
modeling is the linearized frequency domain equation of motion, Equation (A1), used by the STF strip
theory [9]: [

M∗S + A∗
]

ξ̈ +
[

B∗ + B∗
φ

]
ξ̇ + C∗ξ = F∗ − F̄∗, (A1)

where, M∗S, A∗, B∗ and C∗ denote respectively the generalized mass matrix, added mass matrix,
damping matrix and the restoring matrix with respect to the h frame. B∗

φ
is an extra generalized

damping matrix accounting only for the roll motion as proposed in [9]. F∗ denotes the sum
of the generalized external forces (forces and moments) applied to the ship expressed in the h
frame. F̄∗ is the mean value of F∗. It should be noticed that Equation (A1) holds only for a given
frequency, ω, with small amplitude sinusoidal motions. Since, A∗and B∗ are frequency dependent.
This assumption leads to the relationship:

ξ̈ = −ω2ξ (A2)

In addition, the direct cosine matrix between the h frame and the s frame can be simplified considering
small angles:

Th
s =

 1 −ξ6 ξ5

ξ6 1 −ξ4

−ξ5 ξ4 1

 (A3)

Defining δVs = [us −Uh, vs, ws, ps, qs, rs]
T
s , ξ can be expressed from:ξ̇ = JδVs − U

ω2
e

LδV̇s

ξ̈ = JδV̇s + ULδVs
, (A4)

where,

J =



1 0 0 0 zh 0
0 1 0 −zh 0 xh
0 0 1 0 −xh 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (A5)
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and,

L =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (A6)

The detailed of this transformation is presented in [22]. Using Equation (A4), the equation of motion in
Equation (A1) can be expressed in terms of δVs as:[

MS + A
]

δV̇s +
[

B + B
φ
+ D

]
δVs + C ξ = F− F̄, (A7)

where,



MS = JT M∗S J

A = JT A∗ J

D = JT M∗SL

B = JT [B∗ + Uh A∗L
]

J

B
φ

= JT B∗
φ

J

C = JTC∗

F = JT F∗

(A8)

Equation (A7) can be solved directly for a single frequency excitation. Nevertheless, since a kite and
a ship may have strongly coupled motions, it is preferable to transform Equation (A7) into the time
domain using the impulse response function as proposed by Cummins [15,17,46]. The steady state
corresponds to us = Uh and δVs = 0. Due to the special structure of C, it can be noticed that C ξ = C S.
Consequently, the ship equation of motion for arbitrary motions and using the parametrization in
Vs is: [

MS + Ã
]

V̇s +
[
B̃ + D

]
Vs + µ + C S = F, (A9)

where, Ã = lim
ω→+∞

A (ω) and B̃ = lim
ω→+∞

B (ω). µ is defined as follows:

µ =

tˆ

0

K (t− τ) δVs (τ) dτ, (A10)

where K denotes the impulse response of the retardation matrix. Strictly speaking, the integral
boundaries of the convolution term should be +∞ and −∞. However, assuming that δVs = 0 for
t < 0, the left boundary can be replaced by zero. In addition, assuming that the ship is a causal system,
the right boundary can be truncated to t. K, the Laplace transform of the retardation matrix, can be
identified with Equation (A1) assuming unit sinusoidal motions in Equation (A9).

K (jω) = B (ω)− B̃ + jω
[
A (ω)− Ã

]
, (A11)

where j2 = −1.
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Appendix A.2. Hydrodynamic Data and Linear Convolution Term

Each convolution component µi∈J1,6K can be approximated by state space systems in
Equation (A12), as introduced by Kristiansen and Egeland in [16].

µi =
6
∑

j=1
µij

ẏ
ij

= A
′

ijyij
+ B

′
ijδVs,j

µij = C
′

ijyij

, (A12)

where,
{

A
′

ij, B
′
ij, C

′

ij

}
represents the state-space modeling corresponding to a transfer function

denoted by Hij fitting Kij (jω), for i, j ∈ J1, 6K. At zero forward speed, the properties of the retardation
functions as described in [18] impose the form of the transfer function as follows:

Hij =
Kij (t = 0) pn−1 + . . . + a1 p

pn + bn−1 pn−1 + . . . + b0
(A13)

In order to get finite results, according to the Riemann–Lebesgue Lemma, the transfer functions must
be stable [47]. The denominator should respect the Routh–Hurwitz criterion [48,49]. With forward
speed, the retardation function may not tend towards zero at zero frequency. Indeed Bij (ω = 0) can be
different from Bij (ω = ∞) [5]. Consequently, on the contrary to the zero speed case, the limit towards
zero of Kij can be non zero. This condition is not satisfied with the form given in Equation (A13).
Thus, in case of forward speed, Hij should have the form:

Hij =
Kij (t = 0) pn−1 + . . . + a1 p + a0

pn + bn−1 pn−1 + . . . + b0
, (A14)

where the coefficient a0 and b0 should respect the following condition:

a0

b0
= Bij (ω = 0)− Bij (ω = ∞) (A15)

The data Kij (jω) are obtained with the added mass and damping obtained according to the STF strip
theory [9]. The 3D added mass and damping are expressed in terms of sectional added mass and
damping. For instance, the STF strip theory expressed A∗33and B∗33 in terms of sectional added mass
a33 and damping b33 as follows:A∗33 (ω) =

´
Lpp

a33 (ω, x) dx− Uh
ω2 b33 (ω, xa)

B∗33 (ω) =
´

Lpp
b33 (ω, x) dx + Uha33 (ω, xa)

, (A16)

where xa is the longitudinal position of the aft perpendicular section. The sectional added mass and
damping are obtained with the Shipmo seakeeping software developed by the Marin® assuming
an infinite depth. The frequency range of the data depends on the ship size, but for a commercial
ship, the low frequency limit is generally about 0.1 rad.s−1 and the high frequency limit does not
generally exceed 3 rad.s−1. To improve the quality of the identification method an extrapolation of the
hydrodynamic data toward the asymptotic value is necessary. As shown by Newman [5], assuming
a potential flow, at zero and infinite frequency, the sectional damping is zero. Hence, each sectional
damping are then extrapolated at high frequency with the function in Equation (A17), proposed by
Greenhow [50]:

fe (ω) =
β1

ω4 +
β2

ω2 , (A17)
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where β1 and β2 are two constants chosen in order to provide continuity and differentiability. At zero
frequency, the sectional damping is linearly extrapolated to zero. The sectional added mass are linearly
extrapolated. At high frequency, the sectional added mass remains almost constant, consequently,
a constant extrapolation is performed. The identification of Hij can be identified either into the
frequency domain or into the time domain, see [18]. Here, a time domain identification method is used
to initialize the frequency domain identification method. The time domain identification is performed
with the singular value decomposition method proposed by Kung [51]. This step is performed with a
modified Matlab® function “imp2ss” to control the order. This method is efficient but the identified
transfer function has the following form:

Hij =
an pn + . . . + a1 p + a0

pn + bn−1 pn−1 + . . . + b0
. (A18)

Consequently, to comply with the form imposed with Equation (A14), an is set to zero, an−1

is set to Kij (t = 0) and a0 is set to a0 = b0
[
Bij (ω = 0)− Bij (ω = ∞)

]
. This first estimate of

the transfer function is used as initial solution of the frequency domain identification method.
The frequency identification step is performed with the “oe” function of the Matlab® system
identification toolbox. This function use local optimization under constraints algorithm based on
gradient methods. The structure of the transfer function, as proposed in Equation (A14), can be
imposed to the frequency domain optimization algorithm. These two steps are repeated for several
transfer function orders, for instance from 2 to 10. Then, the best transfer function order is selected
according to a criterion based on the normalized quadratic error etot from:

etot = 1
2 (eω + et)

eω =
∑k[|Hij(jωk)−Kij(jωk)|]2

∑k|Kij(jωk)|2

et =
∑k[Hij(tk)−Kij(tk)]

2

∑k Kij(tk)
2

(A19)

Appendix A.3. Wave Forces

The Froude-Krilov and diffraction forces are obtained with the STF 2D strip theory [9].
Assuming an infinite depth, the dispersion relationship is kg = ω2

w, where k is the wave-number
and g the gravity. Thus the frequency of encounter denoted by ωe can be approximated by the
following relationship:

ωe = ωw −
us

g
ω2

w cos βw (A20)

where ωw and βw denote respectively the wave angular frequency in rad.s−1 and the angle of the
waves with respect to the ship heading. βw is given by βw = ψs − ψw, where ψw denotes the wave
angle with respect to xn. With i ∈ J1; 6K, each component fwi of the Froude–Krilov and diffraction
forces generated by a single unit wave can be expressed by the following expression:

fwi (us, βw, ωw) = Ei (us, βw, ωw) cos
(

k cos (ψw) s(n)x +k sin (ψw) s(n)y −ωt− φ (us, βw, ωw) + εw

)
(A21)

where Ei is the amplitude of the ith component of f
w

and εw is a random phase.
For any wave spectrum Sw (ωw, ψw, εw), the Froude–Krilov and diffraction forces can be expressed
as follows:

Fw (us, ψs, Sw, εw) =
N

∑
j=1

√
2Sw

(
ωwj, ψwj

)
∆ψw∆ωw f

w

(
us, ψs − ψwj, ωj, εwj

)
(A22)

where εwj is a random phase equidistributed between 0 and 2π to obtain a Gaussian wave spectrum.



J. Mar. Sci. Eng. 2020, 8, 486 27 of 29

References

1. Leloup, R.; Roncin, K.; Behrel, M.; Bles, G.; Leroux, J.B.; Jochum, C.; Parlier, Y. A continuous and analytical
modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation.
Renew. Energy 2016, 86, 483–496. [CrossRef]

2. Naaijen, P.; Koster, V.; Dallinga, R. On the power savings by an auxiliary kite propulsion system.
Int. Shipbuild. Prog. 2006, 53, 255–279.

3. Ran, H.; Janson, C.E.; Allenström, B. Auxiliary kite propulsion contribution to ship thrust. In Proceedings of
the 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013;
pp. 1–9.

4. Bigi, N.; Behrel, M.; Roncin, K.; Leroux, J.B.; Nême, A.; Jochum, C.; Parlier, Y. Course Keeping of Ship Towed
by Kite. In Proceedings of the 15th Journees de l’Hydrodynamique, Brest, France, 22–24 November 2016;
pp. 1–14.

5. Newman, J.N. Marine Hydrodynamics; MIT Press: Cambridge, MA, USA, 1977.
6. Molin, B. Hydrodynamique des Structures Offshore; Editions Technip: Paris, France, 2002.
7. Faltinsen, O.M. Hydrodynamics of High-Speed Marine Vehicles; Cambridge University Press: Cambridge, UK,

2005; pp. 1–476. Available online: http://xxx.lanl.gov/abs/arXiv:1011.1669v3 (accessed on 5 June 2020).
8. Bertram, V. Practical Ship Hydrodynamics; Elsevier: Amsterdam, The Netherlands, 2012.
9. Salvesen, N.; Tuck, E.; Faltinsen, O. Ship motions and sea loads. Trans. SNAME 1970, 78, 250–287. [CrossRef]
10. Lee, C.H. WAMIT Theory Manual; Massachusetts Institute of Technology, Department of Ocean Engineering:

Cambridge, MA, USA, 1995.
11. Skejic, R. Ships Maneuvering Simulations in a Seaway—How close are we to reality? In Proceedings

of the International Workshop on Next Generation Nautical Traffic Models, Delft, The Netherlands,
6 November 2013; pp. 91–101.

12. Böttcher, H. Simulation of Ship Motions in a Seaway; Technical report; Institut für Schiffbau der Universität
Hamburg: Hamburg, Germany, 1989.

13. Sutulo, S.; Guedes Soares, C. An implementation of the Method of Auxiliary State Variables for solving
seakeeping problems. Int. Shipbuild. Prog. 2005, 52, 357–384.

14. Sutulo, S.; Soares, C. A generalized strip theory for curvilinear motion in waves. In Proceedings of
the International Conference on Offshore Mechanics and Arctic Engineering—OMAE, Estoril, Portugal,
15–20 June 2008; Volume 6, pp. 359–368. [CrossRef]

15. Cummins, W. The Impulse Response Function and Ship Motions; Technical report; David Taylor Model Basin:
Washington, DC, USA, 1962.

16. Kristiansen, E.; Hjulstad, A.; Egeland, O. State-space representation of radiation forces in time-domain vessel
models. Ocean Eng. 2005, 32, 2195–2216. [CrossRef]

17. Fossen, T.I.; Smogeli, Ø.N. Nonlinear time-domain strip theory formulation for low-speed manoeuvring
and station-keeping. Model. Identif. Control 2004, 25, 201–221. [CrossRef]

18. Pérez, T.; Fossen, T.I. Time-vs. frequency-domain Identification of parametric radiation force models for
marine structures at zero speed. Model. Identif. Control 2008, 29, 1–19. [CrossRef]

19. Behrel, M.; Roncin, K.; Leroux, J.B.; Montel, F.; Hascoet, R.; Neme, A.; Jochum, C.; Parlier, Y. Application of
phase averaging method for measuring kites performance: Onshore results. J. Sail. Technol. 2018.

20. Wellicome, J.F.J.F.; Wilkinson, S. Ship Propulsive Kites: An Initial Study; Technical report; Department of Ship
Science, University of Southampton: Southampton, UK, 1984.

21. Dadd, G.M.; Hudson, D.A.; Shenoi, R.A. Determination of kite forces using three-dimensional flight
trajectories for ship propulsion. Renew. Energy 2011, 36, 2667–2678. [CrossRef]

22. Fossen, T. A Nonlinear Unified State-Space Model for Ship Maneuvering and Control in a Seaway. Int. J.
Bifurc. Chaos 2005, 15, 2717–2746. [CrossRef]

23. The University of Iowa. EFD Data, The University of Iowa, Iowa City, USA, 2013. Available online:
https://www.iihr.uiowa.edu/shiphydro/efd-data/ (accessed on 30 June 2020).

24. Irvine, M.; Longo, J.; Stern, F. Pitch and Heave Tests and Uncertainty Assessment for a Surface Combatant in
Regular Head Waves. J. Ship Res. 2008, 52, 146–163.

25. Ikeda, Y.; Himeno, Y.; Tanaka, N. A Prediction Method for Ship Roll Damping; Technical report; Department of
Naval Architecture, University of Osaka Prefecture: Osaka, Japan, 1978.

http://dx.doi.org/10.1016/j.renene.2015.08.036
http://xxx.lanl.gov/abs/arXiv:1011.1669v3
http://dx.doi.org/citeulike-article-id:10193407
http://dx.doi.org/10.1115/OMAE2008-57936
http://dx.doi.org/10.1016/j.oceaneng.2005.02.009
http://dx.doi.org/10.4173/mic.2004.4.1
http://dx.doi.org/10.4173/mic.2008.1.1
http://dx.doi.org/10.1016/j.renene.2011.01.027
http://dx.doi.org/10.1142/S0218127405013691
https://www.iihr.uiowa.edu/shiphydro/efd-data/


J. Mar. Sci. Eng. 2020, 8, 486 28 of 29

26. Loyd, M.L. Crosswind kite power (for large-scale wind power production). J. Energy 1980, 4, 106–111.
[CrossRef]

27. Paulig, X.; Bungart, M.; Specht, B. Conceptual design of textile kites considering overall system performance.
In Airborne Wind Energy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 547–562.

28. Wellicome, J. Some comments on the relative merits of various wind propulsion devices. J. Wind Eng.
Ind. Aerodyn. 1985, 20, 111–142. [CrossRef]

29. Argatov, I.; Rautakorpi, P.; Silvennoinen, R. Estimation of the mechanical energy output of the kite wind
generator. Renew. Energy 2009, 34, 1525–1532. [CrossRef]

30. Leloup, R.; Roncin, K.; Bles, G.; Leroux, J.B.; Jochum, C.; Parlier, Y. Kite and classical rig sailing performance
comparison on a one design keel boat. Ocean Eng. 2014, 90, 39–48. [CrossRef]

31. Group, I.Q.S. ITTC Symbols and Terminology List Version 2014; Technical report. In Proceedings of the
International Towing Tank Conference, Copenhagen, Denmark, 31 August–5 September 2014.

32. Leloup, R. Modelling Approach and Numerical Tool Developments for Kite Performance Assessment and
Mechanical Design; Application to Vessels Auxiliary Propulsion. Ph.D. Thesis, Université de Bretagne
Occidentale, Brest, France, 2014.

33. Behrel, M.; Roncin, K.; Leroux, J.B.; Neme, A.; Jochum, C.; Parlier, Y. Experimental set up for measuring
onshore and onboard performances of leading edge inflatable kites—Presentation of onshore results.
In Proceedings of the 4th Innov’Sail Conference, Lorient, France, 28–30 June 2017.

34. Fagiano, L.; Zgraggen, A.U.; Khammash, M.; Morari, M. Automatic control of tethered wings for airborne
wind energy: Design and experimental results. In Proceedings of the European Control Conference (ECC),
Zurich, Switzerland, 17–19 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 992–997.

35. Fagiano, L.; Zgraggen, A.U.; Morari, M. On modeling, filtering and automatic control of flexible tethered
wings for airborne wind energy. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany,
2013; pp. 167–180.

36. Leloup, R.; Roncin, K.; Blès, G.; Leroux, J.B.; Jochum, C.; Parlier, Y. Estimation of the effect of rotation on the
drag angle by using the lifting line method. In Proceedings of the 13th Journees de L’Hydrodynamique,
Chatou, France, 21–23 November 2012.

37. Duport, C.; Leroux, J.B.; Roncin, K.; Jochum, C.; Parlier, Y. Comparison of 3D non-linear lifting
line method calculations with 3D RANSE simulations and application to the prediction of the global
loading on a cornering kite. In Proceedings of the 15th Journees de L’Hydrodynamique, Brest, France,
22–24 November 2015.

38. Fagiano, L. Control of Tethered Airfoils for High–Altitude Wind Energy Generation. Ph.D. Thesis,
Politecnico di Torino, Torino, Italy, 2009.

39. Fagiano, L.; Milanese, M.; Piga, D. Optimization of airborne wind energy generators. Int. J. Robust
Nonlinear Control 2012, 22, 2055–2083. [CrossRef]

40. Longo, J.; Stern, F. Resistance, sinkage and trim, wave profile, and nominal wake tests and
uncertainty assessment for DTMB model 5512. In Proceedings of the 25th American Towing Tank
Conference, Iowa City, IA, USA, 1998. Available online: https://pdfs.semanticscholar.org/3799/
7310985bd531109d91e38c08e6508353f4c9.pdf (accessed on 30 June 2020).

41. Bearman, P.W. Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 1984, 16, 195–222.
[CrossRef]

42. Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.
2004, 19, 389–447. [CrossRef]

43. Behrel, M.; Roncin, K.; Iachkine, P.; Hascoet, R.; Leroux, J.B.; Montel, F.; Parlier, Y. Boat towed by kite:
Methodolgy for sea trials. In Proceedings of the 16th Journées de l’Hydrodynamique, Marseille, France,
27–29 November 2018.

44. Martin, H.R.; Kimball, R.W.; Viselli, A.M.; Goupee, A.J. Methodology for Wind/Wave Basin Testing of
Floating Offshore Wind Turbines. J. Offshore Mech. Arct. Eng. 2014, 136, 021902. [CrossRef]

45. Giberti, H.; Ferrari, D. A novel hardware-in-the-loop device for floating offshore wind turbines and sailing
boats. Mech. Mach. Theory 2015, 85, 82–105. [CrossRef]

46. Ogilvie, F.T. Recent Progress Towards the Understanding and Prediction of Ship. In Proceedings of the 6th
Symposium on Naval Hydrodynamics, Bergen, Norway, 10–12 September 1964; pp. 3–79.

http://dx.doi.org/10.2514/3.48021
http://dx.doi.org/10.1016/0167-6105(85)90015-7
http://dx.doi.org/10.1016/j.renene.2008.11.001
http://dx.doi.org/10.1016/j.oceaneng.2014.06.043
http://dx.doi.org/10.1002/rnc.1808
https://pdfs.semanticscholar.org/3799/7310985bd531109d91e38c08e6508353f4c9.pdf
https://pdfs.semanticscholar.org/3799/7310985bd531109d91e38c08e6508353f4c9.pdf
http://dx.doi.org/10.1146/annurev.fl.16.010184.001211
http://dx.doi.org/10.1016/j.jfluidstructs.2004.02.005
http://dx.doi.org/10.1115/1.4025030
http://dx.doi.org/10.1016/j.mechmachtheory.2014.10.012


J. Mar. Sci. Eng. 2020, 8, 486 29 of 29

47. Riemann, B. Ueber die Darstellbarkeit Einer Function Durch eine Trigonometrische Reihe; Dieterichschen
Buchhandlung: Göttingen, Germany, 1867.

48. Routh, E.J. A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion; Macmillan and
Company: London, UK, 1877.

49. Hurwitz, A. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen
Theilen besitzt. Math. Ann. 1895, 46, 273–284. [CrossRef]

50. Greenhow, M. High- and low-frequency asymptotic consequences of the Kramers-Kronig relations.
J. Eng. Math. 1986, 20, 293–306. [CrossRef]

51. Kung, S.Y. A New Identification and Model Reduction Algorithm via Singular Value Decompositions.
In Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, USA,
6–8 November 1978; pp. 705–714.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01446812
http://dx.doi.org/10.1007/BF00044607
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Ship Towed by Kite Modeling 
	Reference Frame and Parametrization
	Ship Modeling
	Ship Motions
	Ship Modeling Validation

	Kite Modeling
	Short Literature Survey
	Zero-Mass Kite Model
	Kite Control According to a Trajectory
	Theoretical Lemniscate Trajectory

	Two Coupling Methods
	A Monolithic Approach
	A Segregated Approach


	Results
	Validation and Comments on the Kite Aerodynamic Characteristics
	Study Case
	Calm Water Case
	Kite Excitation Spectrum
	Comparison of the Segregated Approach with the Monolithic Approach

	Regular Beam Wave Case
	Ship Vertical Motion Influence on Kite Trajectory
	Interactions with Regular Beam Waves
	Kite Lock-in Phenomenon


	Discussion
	Conclusions and Future Work
	Ship Modeling 
	Time Domain Equations of Motion 
	Hydrodynamic Data and Linear Convolution Term
	Wave Forces

	References

